二次函數(shù)教學反思
身為一名人民教師,我們要有一流的課堂教學能力,借助教學反思可以快速提升我們的教學能力,如何把教學反思做到重點突出呢?以下是小編為大家收集的二次函數(shù)教學反思,僅供參考,大家一起來看看吧。
二次函數(shù)教學反思1
經(jīng)過本周的教學,九三學生初步能做到:
、倌芨鶕(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點和對稱軸。
②理解并能運用二次函數(shù)的圖象和性質(zhì)解決有關(guān)問題。但是,學生對二次函數(shù)圖象和性質(zhì)的綜合應(yīng)用掌握不好。特作以下反思:
首先,讓學生課下完成二次函數(shù)圖象和性質(zhì)的基礎(chǔ)訓練,促使學生對二次函數(shù)圖象和性質(zhì)的知識點全面梳理和掌握。發(fā)現(xiàn)有問題,我及時評講分析,幫助學生解決。
其次,讓學生多做二次函數(shù)基礎(chǔ)題目,注重數(shù)形結(jié)合思想的應(yīng)用,圖像的'平移,從函數(shù)圖像上觀察出對稱軸,頂點坐標,會用描點法畫二次函數(shù)圖像,會求函數(shù)最值問題,循序漸進推出,符合學生的認知規(guī)律,使學生對二次函數(shù)圖象和性質(zhì)有了進一步的理解和提高。
再次,本周完成后,我感到也有不足的地方:課堂容量稍有點偏大,學生沒有時間獨立完成作業(yè)。雖然我對每個問題及時小結(jié)、歸納,但沒有留一定時間讓學生整理消化。準確把握重點,突破難點方面注重自己的提高,同時在駕馭課堂能力方面注重自己的進步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學此文轉(zhuǎn)自水平再上一個臺階。
二次函數(shù)教學反思2
1、一定要留足時間讓學生自己作出二次函數(shù)的圖象
可能在教學過程中,有些教師會覺得作圖象是上一節(jié)課的重點,這一節(jié)主要是學生觀察、分析圖象,從而不讓學生畫圖象或者只是簡單的畫一兩個。這種做法看上去好像更加突出了重點、難點,卻沒有給學生探索與發(fā)現(xiàn)的過程,造成學生對于二次函數(shù)性質(zhì)的理解停留在表面,知識遷移相對薄弱,不利于培養(yǎng)學生自主研究二次函數(shù)的能力。
2、相信學生并為學生提供充分展示自己的`機會
在歸納二次函數(shù)性質(zhì)的時候,也要充分的相信學生,鼓勵學生大膽的用自己的語言進行歸納,因為學生自己的發(fā)現(xiàn)遠遠比老師直接講解要深刻得多。在教學過程中,要注重為學生提供展示自己聰明才智的機會,這樣也利于教師發(fā)現(xiàn)學生分析問題解決問題的獨到見解,以及思維的誤區(qū),以便指導今后的教學。課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學習,幫助學生形成積極主動的求知態(tài)度。
3、注意改進的方面
在讓學生歸納二次函數(shù)性質(zhì)的時候,學生可能會歸納得比較片面或者沒有找出關(guān)鍵點,教師一定要注意引導學生從多個角度進行考慮,而且要組織學生展開充分的討論,把大家的觀點集中考慮,這樣非常有利于訓練學生的歸納能力。
二次函數(shù)教學反思3
因教研組活動的安排需要,本周二我作為初四代表出示研討課,課題為《二次函數(shù)的應(yīng)用——————形如拋物線型》,結(jié)合老師的評課反思一下:
我的設(shè)計思路是:前置補償(確定二次函數(shù)解析式的方法和思路)———————探索新知(由前置補償?shù)谒男☆}過渡到問題一,目的在于體會數(shù)學與實際問題的轉(zhuǎn)化,并得出確定實際問題中解析式的關(guān)鍵在于有實際意義得出關(guān)鍵點的坐標;然后過渡到?jīng)]有坐標系的實際問題中,該怎么處理,有學生探索并分情況展示,然后比較過程與結(jié)果,增強優(yōu)化意識。另一方面由實際問題的解決,體會二次函數(shù)應(yīng)用中的數(shù)學思想:第一環(huán)節(jié),實際意義—→關(guān)鍵點的坐標—→解析式,注意由實際意義到點的坐標轉(zhuǎn)化時的符號,進一步明確解決問題的第二個環(huán)節(jié),解析式—→關(guān)鍵點的坐標—→實際意義,注意由坐標到實際意義轉(zhuǎn)化時要取絕對值。)—————活學活用(解決一個隧道問題,目的加強對思路的理解與體會,從本節(jié)課上也提高一下難度,但因時間關(guān)系,沒有完成)。
評課整理如下:
優(yōu)點:
思路比較清晰,過渡比較自然,題后反思比較到位。
缺點:
1、孫老師:對學生的評價比較模糊,比如有錯誤的情況下還打個對號。
2、郭老師:解題步驟需加以規(guī)范和總結(jié):一建二設(shè)三解四答。
3、張老師:知識總結(jié)有些地方不太到位,比如,三種不同的情況為什么a的取值不變?比較三種的優(yōu)劣時可以從兩個方面進行即確定解析式和解決最后實際問題。這樣可以更體會更深刻一些。
4、付主任:本節(jié)課有寬度,但缺乏深度,容量比較小,學案可以在濃縮一下,可以將問題一和問題二結(jié)合起來。
5、齊主任:課堂模式和反映出來的教學理念比較過時,以學生為主體的教育理念體現(xiàn)的不夠突出,如果把這節(jié)課放在課改之前可能是一堂好課。
自我反思:
1、從郭老師、張老師和孫老師的建議中,我應(yīng)該加強對課的精細化要求,授課態(tài)度要嚴謹,對學生的一點一滴都要負責任,同時對教材知識的挖掘面面俱到,引領(lǐng)學生對知識能有一個更全面更深入的'理解。
2、受付主任建議的啟發(fā),可以嘗試刪掉問題一,由問題二承擔起原問題一和問題二的雙重作用,即:實際意義確定點的坐標;建立適當?shù)淖鴺讼怠?梢匀杂械谒男☆}引入到問題二(建好坐標系,頂點在原點處),然后實際問題中不可能存在現(xiàn)成的坐標系,引發(fā)學生思考坐標系的建立情況,然后加以拓展,并結(jié)合解決實際問題體會三種情況的優(yōu)劣。這樣應(yīng)該可以節(jié)省一些時間,但我估計不會太多,最多能節(jié)省5分鐘,但這或許就可以分析活學活用中的題目了。
自己的體會是,因為這是第一課時,很多東西不可能面面俱到,知識的理解還需要有個循序漸進的過程(或許這也是一個托辭,這就是我們與名師的差距)。與名師相比,我們的課堂容量太小,一方面我們平時的課堂對知識中的思想方法挖掘滲透的太少,學生頭腦中的知識不系統(tǒng),形不成知識體系;另一方面,與本人的知識素養(yǎng)有關(guān)系,還需要進一步對教材知識進行深入挖掘,對新的教育理念進行學習,只有準備充足了,才能在課堂上游刃有余。
3、結(jié)合齊主任的評課,我站在別人的高度試想了如果是云老師或宋老師來評課,會提出什么意見,我隱約感覺到這肯定不是一節(jié)好課,有很大的問題,至于是什么問題我也說不清楚,或許就如齊主任所說的教育理念比較陳腐導致課堂沒有推陳出新的亮點,并且我覺得可以做大手術(shù),如果真能請云老師或宋老師來評課的話,我或許就會豁然開朗,而不再這般的迷茫。
二次函數(shù)教學反思4
二次函數(shù)是中學數(shù)學的重要內(nèi)容,也是中考的熱點。其中考試涉及的主要有考查二次函數(shù)的定義、圖象與性質(zhì)及應(yīng)用等。在九年級的教學中,教師就要立足課堂,瞄準中考,研究中考試題。近年來,二次函數(shù)的應(yīng)用題目不斷出現(xiàn)在各地中考題中,特別值得一提的是,有些源自課本中的例題或習題原型和變式。在日常教學時,注重對接,為中考做好鋪墊,是我對這節(jié)二次函數(shù)解決實際問題實踐探索課的期待。
二次函數(shù)應(yīng)用題型一般情況下,解題思路不外乎建立平面直角坐標系,標出圖象上的點的坐標,求圖象解析式,利用圖象解析式及性質(zhì),來解決最優(yōu)化等實際問題。一開始我引導學生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式,并說出它們各自的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標,最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。結(jié)合教材教學內(nèi)容,呈現(xiàn)習題27.2第5題,讓學生分小組去試驗探索解決問題。各小組很快就得出三個特殊點的坐標(0,0)(5,4)(10,0),并求出了拋物線的解析式,當然速度有快有慢,第二問,就是求當x=6時y的'值,不少學生紛紛舉手示意完成,我很高興,也沒細究每個同學的情況。繼續(xù)按照預(yù)定方案,組織學生活動,開始對一道試題進行探究。
如圖,有一個橫截面為拋物線的橋洞,橋洞地面寬為8米,橋洞最高處距地面6米,F(xiàn)有一輛卡車,裝載集裝箱,箱寬3米,車與箱共高4.5米,請您計算一下,車輛能否通過橋洞。
對于這個問題,不少學生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復引導,幾次提醒按例題的方法,從函數(shù)的圖象上進行考慮,但就是沒有人響應(yīng),探究幾乎陷于停頓,讓我大感意外,超乎我的想象。好在我尚能應(yīng)付,便提問素有“小諸葛”之稱的張文賀,你是怎樣思考的?張文賀說,他也知道首先建立平面直角坐標系,但問題是不知道把坐標系原點建在哪里,更不知道卡車是如何穿過橋洞,是靠中間走,還是靠邊通過?我一聽,才恍然大悟。原來學生的'認知和老師想象的不一樣,加上生活經(jīng)驗較少,難怪學生會沉默不語。對于坐標系的建立方法,學生面對多種可能的選擇,往往束手無策,根本原因就是老師不重視對學生思考水平的研究,導致以老師思維代替學生思維,造成學生思考與實踐脫節(jié)。這就要求老師要從學生的實際出發(fā),了解學生的學習狀況,善于啟發(fā)和引導,才能較好的達到教學目標。
本節(jié)課的設(shè)計初衷,原是讓學生從具體的生活實踐中,感知數(shù)學模型,達到從實際問題中抽象出數(shù)學模型,并用數(shù)學知識解決問題,同時讓學生感知和體會一題多變的變式訓練,增加對數(shù)學解題思想的認識。但在教學時,學生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點坐標求二次函數(shù)解析式,學生解三元一次方程組感到困難等。
當我充滿自信準備進行下一問時,有學生說,我還沒得出答案呢?我說,你們小組不是展示過了,怎么你還不會呢?他說,我的解析式設(shè)y=ax2+bx+c,我代入得不出來,組長設(shè)的和我不一樣。我告訴他,其實你用一般式同樣可以做的很準,只不過速度稍慢一些,這就需要加強運算練習。下課后我一直在思考,學生越是基礎(chǔ)差,那些好的方法他們就越難掌握。學起來既吃力又費氣,這就需要在平常加強雙基訓練,每個學生都必須掌握好基本概念和基本技能。
二次函數(shù)教學反思5
本節(jié)的學習內(nèi)容是在前面學過二次函數(shù)的概念和二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,運用圖像變換的觀點把二次函數(shù)的圖像經(jīng)過一定的平移變換,而得到二次函數(shù)的圖像。二次函數(shù)是初中階段所學的最后一類最重要、圖像性質(zhì)最復雜、應(yīng)用難度最大的函數(shù),是學業(yè)達標考試中的重要考查內(nèi)容之一。教材中主要運用數(shù)形結(jié)合的方法從學生熟悉的知識入手進行知識探究。這是教學發(fā)現(xiàn)與學習的常用方法,同學們應(yīng)注意學習和運用。另外,在本節(jié)內(nèi)容學習中同學們還要注意“類比”前一節(jié)的內(nèi)容學習,在對比中加強聯(lián)系和區(qū)別,從而更深刻的體會二次函數(shù)的圖像和性質(zhì)。
通過本節(jié)課教學,得出幾點體會:
1、在教學中二次函數(shù)圖像的對稱軸,頂點坐標,開口方向尤其重要,必需特別強調(diào)。
2、在探究中要積累研究問題的方法并積累經(jīng)驗,學生在前面已經(jīng)歷過探索、分析和建立兩個變量之間的關(guān)系的過程,學習了一次函數(shù)和反比例函數(shù),學會了用描點法作函數(shù)圖象并據(jù)此分析得出函數(shù)的性質(zhì)。我們可以把研究這些問題的方法應(yīng)用于研究二次函數(shù)的圖象和性質(zhì),并據(jù)此形成研究問題的基本方法。
3、要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題解決問題的獨到見解以及思維的'誤區(qū),以便指導今后的教學。但在復習與練習的過程中,我發(fā)現(xiàn)學生存在著這樣幾個問題。
本節(jié)課,我合理、充分利用了多媒體教學的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標準、動畫形式的二次函數(shù)的`圖像,讓抽象思維不強的學生,更加形象的結(jié)合圖形,分析說出二次函數(shù)的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學思想。為了突出重點,攻破難點,我要求學生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學過程中以學生為主體,老師起主導作用的教學原則。本節(jié)課,讓學生有觀察,有思考,有討論,有練習,充分調(diào)動了學生的學習興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準備。
二次函數(shù)教學反思6
這節(jié)課我首先讓學生思考了三個列函數(shù)關(guān)系式的實際問題,接著在學生探究這三個實際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實背景,使學生感受二次函數(shù)的意義,感受數(shù)學的廣泛聯(lián)系和應(yīng)用價值。通過學生的探究性活動(經(jīng)歷數(shù)學化的過程),和學生之間的合作與交流,通過分析實際問題,引出二次函數(shù)的概念,使學生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計了不同題型的.問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預(yù)設(shè)好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務(wù)完成。
二次函數(shù)教學反思7
二次函數(shù)問題在整個初中階段既是重點又是難點,其應(yīng)用題綜合性比較強,知識涉及面廣,對學生能力的要求更高,因此成為教學中的重點,也成為學習的一大難點。在升學考試中占有相當大的分值,往往又以中檔題或高檔題的形式出現(xiàn),成為中考的壓軸題。作為教師在組織教學的過程中,應(yīng)注意選擇合適的教學方法分散其難點。若采用分類教學,學生易于掌握,針對不同的題型進行訓練,短期內(nèi)確實有利于提高學生的學習成績。但從長遠看,這樣做容易使學生形成思維定勢,不利于思維能力和創(chuàng)新能力的培養(yǎng)。教師可以針對不同的學生分梯度設(shè)置不同的題型,放手讓學生自主探索,自己去感悟,疑難問題通過小組合作學習來解決,同時教師做適當?shù)狞c撥,這樣可以激發(fā)學生學習數(shù)學的興趣,讓不同的學生都得到發(fā)展。
我認為初中階段應(yīng)從以下幾個方面來處理好二次函數(shù)的應(yīng)用問題:
一、注重與代數(shù)式知識的類比教學,觸及函數(shù)知識。
現(xiàn)在人教版教材把函數(shù)提前到初二進行教學,我認為這是很好的整合。初二的學生對基本概念還是比較難理解,但能夠要求學生有意識的'去理解函數(shù)這一概念,逐步接觸函數(shù)的知識和建模思想,認識到數(shù)學問題來源于生活應(yīng)用于生活,建模后又高于生活。不管是列代數(shù)式還是代數(shù)式的求值,只要變換一個字母或量的數(shù)值,代數(shù)式的值就隨之變化,這本身就可以培養(yǎng)學生的函數(shù)意識。
二、注意在方程教學中有意識滲透函數(shù)思想。
方程與函數(shù)之間具有很深的聯(lián)系。在學習方程時要有意識的打破只關(guān)注等量關(guān)系而忽略分析數(shù)量關(guān)系的弊端,這是對函數(shù)建模提供的最好的契機。教師在組織教學中,特別是應(yīng)用題教學,不能只讓學生尋找等量關(guān)系,而不注重學生分析量與量、數(shù)與數(shù)之間的內(nèi)在聯(lián)系能力的培養(yǎng),從而更加大了學生學習函數(shù)的難度。不管是一元方程還是二元方程應(yīng)用題教學中,應(yīng)該訓練學生分析問題中的量與量關(guān)系的能力,讓學生樹立只要有量就應(yīng)該也可以用字母去表示它,不要怕量多字母多,量表示好了再通過數(shù)量關(guān)系逐步縮少字母即可。這樣就為后續(xù)函數(shù)的學習做好了鋪墊。
三、通過數(shù)形結(jié)合方法體驗函數(shù)建模思想。
不管是長度、角度還是面積的有關(guān)計算,都應(yīng)該通過適當變換數(shù)據(jù)來樹立函數(shù)思想。圖形具有豐富性與直觀性,圖形變化具有條件性,因此說圖形教學相比純粹數(shù)量計算教學更能夠體現(xiàn)函數(shù)思想。
函數(shù)思想的建立,應(yīng)用題解題方式的定型絕不是一蹴而就的,它需要慢慢的滲透與慢慢體驗的過程。從這個意義上說,二次函數(shù)應(yīng)用題的教學不需要分類。二次函數(shù)的學習是把以前學習的內(nèi)容進行適當加深或以嶄新的視角重新審視,因此二次函數(shù)應(yīng)用題的解決,需要師生在教與學中有意識的樹立函數(shù)思想。正是二次函數(shù)的這種綜合性,要求教師在組織教學中把這一難點消化在平日教學中,而不是簡單的把二次函數(shù)應(yīng)用題進行分類來加重學生的負擔。
二次函數(shù)教學反思8
這周二聽了代老師的一節(jié)數(shù)學課---二次函數(shù)的圖像,收獲頗多。
上課一開始,就對所學過的函數(shù)進行了總結(jié)復習,使學生在畫二次函數(shù)圖象時列表、描點、連線找得很快、很準確。在講解拋物線的概念時,利用多媒體直觀展示了拋物線的特征,激發(fā)了學生的學習興趣。引導學生自主進行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學活動,得出二次函數(shù)的圖象和性質(zhì),在教學中,由學生自己動手,通過列表、描點、連線繪制出二次函數(shù)的圖象,培養(yǎng)了學生動手動腦的習慣和綜合分析歸納的能力。
小組合作學習,發(fā)現(xiàn)其中的規(guī)律。鼓勵學生相互交流自己的想法,并說明理由。如在畫出圖象后,提問學生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學生觀察、綜合分析的'能力,增加了學習的自信心和學習的能力。
老師適時地總結(jié)、深化,提高認識水平。老師在不斷地總結(jié)中滲透數(shù)學思想方法,抓住時機培養(yǎng)學生思維的深刻性。如本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖象,總結(jié)出函數(shù)的性質(zhì),再利用所學知識解決有關(guān)問題。在師生的共同討論中,深化所學知識,培養(yǎng)學生具備反省思維的能力。
二次函數(shù)教學反思9
新人教版九年級數(shù)學第二十二章《二次函數(shù)》是學生學習了正比例函數(shù)、一次函數(shù)進一步學習函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié),二次函數(shù)單元教學反思。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學模型,它既是其他學科研究時所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學模型。和一次函數(shù)一樣,二次函數(shù)也是一種非常基本的初等函數(shù),對二次函數(shù)的研究將為學生進一步學習函數(shù)、體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗。二次函數(shù)作為初中階段學習的重要函數(shù)模型,對理解函數(shù)的性質(zhì),掌握研究函數(shù)的方法,體會函數(shù)的思想是十分重要的,因此本章的重點是二次函數(shù)的圖象與性質(zhì)的理解與掌握,應(yīng)教會學生畫二次函數(shù)圖象,學會觀察函數(shù)圖象,借助函數(shù)圖象來研究函數(shù)性質(zhì)并解決相關(guān)的問題。本章的難點是體會二次函數(shù)學習過程中所蘊含的數(shù)學思想方法,函數(shù)圖象的特征和變換有及二次函數(shù)性質(zhì)的靈活應(yīng)用。
下面是我通過本單元對《二次函數(shù)》教學內(nèi)容的分類后的幾點反思:
“二次函數(shù)概念”教學反思
關(guān)于“二次函數(shù)概念”教學中我的成功之處是:教學時,通過實例引入二次函數(shù)的概念, 讓學生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型。通過學習求一些簡單的實際問題中二次函數(shù)的解析式和它的定義域;大部分學生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達式以及二次項和二次項的系數(shù)、一次項和一次項的系數(shù)及常數(shù)項。
不足之處表現(xiàn)在:少數(shù)學生不能從函數(shù)本身的實際意義去正確判定一個函數(shù)是否是二次函數(shù)。
“二次函數(shù)的圖像及性質(zhì)”教學反思
關(guān)于“二次函數(shù)的圖象和性質(zhì)”在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導引探"的教學理念。通過引導學生在坐標紙上畫出二次函數(shù)y=ax的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導學生取點的,其間我引導學生要明確取點注意的事項,比如代表性、易操作性。在性質(zhì)的探究中我讓學生觀察圖像自主探討當a>0時函數(shù)y=ax的`性質(zhì)。當a<0時函數(shù)y=ax的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點坐標和最值方面入手,讓學生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。通過觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax的兩種情況,找出a的符號不同時他們的相同點、不同點和聯(lián)系點。絕大多數(shù)學生通過觀察圖像理解并掌握了y=ax圖像的性質(zhì),緊接著,我用了三節(jié)課時間引導學生通過坐標平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的圖像,絕大多數(shù)學生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì),教學反思《二次函數(shù)單元教學反思》。達到了學習目標中的要求。
不足之處表現(xiàn)在:
1.課堂上時間安排欠合理。學生說的多,動手不夠
2. 學生作圖速度慢。簡單的列表、描點、連線。學生做起來就比較困難,作圖中單位長度不準確,描點不準確,圖象中的平滑曲線不夠平滑
3.合作學習的有效性不夠。對于老師提出的問題,各組匯報討論結(jié)果的效果不明顯。說明自主、探究、合作的學習方式?jīng)]有落到實處,學生的創(chuàng)新能力的培養(yǎng)不夠。
4.少數(shù)學生二次函數(shù)圖像平移變換能力差。不會進行二次函數(shù)圖像的平移變換。
“求二次函數(shù)解析式”教學反思
關(guān)于“求二次函數(shù)解析式”教學中,我通過創(chuàng)設(shè)有關(guān)待定系數(shù)法的問題情境出發(fā),導入求二次函數(shù)一般解析式的方法。學生把已知點代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學生很快就理解了求二次函數(shù)一般解析式的方法。然后我通過變式,給出拋物線的頂點坐標和經(jīng)過拋物線的一個點,引導學生設(shè)頂點式的二次函數(shù)解析式,學生在老師的點撥下,將已知點代入,很快理解了用頂點式求的二次函數(shù)解析式的方法。再通過變式我又引導學生觀察拋物線與x軸的交點,啟發(fā)學生設(shè)交點式解析式求二次函數(shù)解析式的方法。在整個教學中,環(huán)環(huán)相扣,充分調(diào)動了學生學習的積極性和主動性,所以教學非常流暢,效果不錯,目標的達成度較高。
不足之處表現(xiàn)在:
1.一般式的應(yīng)用中學生的難度在于解三元一次方程組上。
2.學生對求頂點式和交點式的二次函數(shù)解析式方法欠靈活
3.變式訓練的習題太少導致學生掌握知識不夠牢固
“實際問題與二次函數(shù)”教學反思
關(guān)于“實際問題與二次函數(shù)”教學中我通過引導學生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式的表達形式,以及二次函數(shù)的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標,最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。然后出示問題1,即最大面積問題。教材中的三個探究我分別安排了三節(jié)課進行分類教學。我從學生的實際出發(fā),幫助學生解決學習中的困難,啟發(fā)和引導學生觀察二次函數(shù)圖像,對圖像進行分析,得出解決問題的方案。教學每一類實際問題,我都搜集了大量的實例,所以教學重點、難點把握的較準確,同時調(diào)動大多數(shù)學生學習的積極性和主動性,所以這部分內(nèi)容學生掌握的比較好。
不足之處表現(xiàn)在:
1.“探究1”中少數(shù)學生對于用配方法或公式法求函數(shù)的極值容易出錯
2.少數(shù)學生不會分析題意,不能正確列式求出二次函數(shù)的解析式
3.“探究2”少數(shù)學生對最大利潤問題中的漲價和定價理解有偏差
4.“探究3”少數(shù)學生不會靈活建立直角坐標系把實際問題轉(zhuǎn)化為數(shù)學問題
以上就是我在教學本單元的感受、體會。因為二次函數(shù)知識是函數(shù)中的重點也是中考的重點考點,所以針對教學中的不足和學生暴露出的問題,在期末復習中還要制定詳實有效的復習計劃,通過精選習題再進行最后的強化訓練。
二次函數(shù)教學反思10
課后查看了數(shù)學課程標準中對二次函數(shù)的要求:
1、通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。
2、會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。
3、會根據(jù)公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導),并能解決簡單的實際問題。
4、會利用二次函數(shù)的圖象求一元二次方程的近似解。
發(fā)現(xiàn)并沒有提到用頂點式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的教學中也沒有要求用頂點式來求二次函數(shù)的解析式。但是我認為新課標所提出的要求應(yīng)該是對學生的最低要求,它并不反對教師結(jié)合學生的實際對教材的'重新處理。并且從教學的反饋來看,加上了這3個練習學生能較好的理解本課的教學目標,同時也能對前面所學的二次函數(shù)頂點的知識加深印象。適應(yīng)學生的最近發(fā)展區(qū)。何樂而不為。
二次函數(shù)教學反思11
自從事教學以來,我還是第一次參與集體單元備課,而且還是復習課,作為主備與主講之一的我,立足于二次函數(shù)在初中數(shù)學函數(shù)教學中的地位,著眼于20xx年河北省中考方向,根據(jù)學生對二次函數(shù)的學習及掌握的情況,從梳理知識點出發(fā)采用以習題帶知識點的形式,精心地準備了《二次函數(shù)》的第一節(jié)復習課,教學重點為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學難點為a、b、c與二次函數(shù)的圖象的關(guān)系。
最初,“拋物線的開口方向、對稱軸、頂點坐標、增減性”這一相關(guān)性質(zhì)復習設(shè)計中安排了3個訓練題目,其中第(2)小題側(cè)重在拋物線的對稱性與增減性,集體備課后我進一步認識了課標要求河北省中考命題評價方向,在復習側(cè)重方向上作了調(diào)整:加強利用配方法將二次函數(shù)一般式化頂點式、判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓練,從而刪去原例(2)增加新例(2)(見復備),另外還預(yù)想借圖象識別2a與b的'關(guān)系將是本節(jié)課的一個難點。
本節(jié)課在悠揚的音樂聲中拉開了序幕,通過建立函數(shù)體系回憶了二次函數(shù)的定義,其圖象與性質(zhì)及與一次、反比例函數(shù)圖象的綜合應(yīng)用,相繼進行,但此環(huán)節(jié)中“2a與b的關(guān)系”學生沒有提到,迫于突破此難點,我讓學生觀察課例圖象,并進一步引導觀察對稱軸的具體位置后,僅有十幾個學生準確理解、掌握,于是我進一步的.分析“2a與b的關(guān)系”由對稱軸的具體位置決定,并說明由a>0與b>0能推導出2a+b>0的方法僅適于此題,但效果不盡人意,仍有一部分學生應(yīng)用此法解決相關(guān)問題。本知識點預(yù)設(shè)6分鐘完成而實際用了15分鐘。如此導致處理二、2、(2)題時間緊張,使得重點不凸現(xiàn)。將第(3)題留為課后作業(yè),來了個將錯就錯,為下一節(jié)課復習“二次函數(shù)與二元一次方程”的關(guān)系巧作鋪墊。
在這次活動中,我受益匪淺,感受頗多:在如何備復習課,準確把握一個單元及一節(jié)課的重點及突破難點方面有了很大提高;在巧妙駕馭課堂方面有了很大進步;在如何與他人相處方面有了更好的認識,踏踏實實地做人?傊,在實踐中獲得靈感,在交流中撞出智慧,在反思中調(diào)整思路,在堅持中取得進步。
二次函數(shù)教學反思12
對于二次函數(shù)總體復習的時間定為三個課時。1、基本知識與性質(zhì),2、待定系數(shù)法,3、應(yīng)用。
一、本章主要內(nèi)容有:
1、概念?疾榈姆绞绞桥袛嗪瘮(shù)是否是二次函數(shù),需要注意的是分母里有二次的函數(shù);可以化掉二次項的函數(shù);以及二次項系數(shù)可能為零的函數(shù)。
2、待定系數(shù)法求解析式。設(shè)解析式有三種形式,一般形式,雙根式,頂點式。
另外還有根據(jù)實際問題求解析式。特別是一些辯證性很強的題目,比如售價為某一個值時銷售量為具體的某一個值,當售價提高后,銷售量減少。為了獲得最大的利潤,應(yīng)該怎樣定價格。這種是典型的二次函數(shù)解決實際問題的.類型。同樣的背景在八年級的時候也有出現(xiàn),通過一元二次方程解決。
3、圖文信息題。根據(jù)圖像來回答問題,求交點坐標,頂點坐標,構(gòu)成三角形的面積等。同時要能判斷增減性,在什么情況下函數(shù)值大于零,在什么情況下函數(shù)值小于零。
4、拋物線的平移。拋物線的形狀和大小由二次項的系數(shù)決定,一次項系數(shù)和常數(shù)項主要是確定位置。所以拋物線的平移的前提條件是二次項的系數(shù)不變,規(guī)律是“上加下減,左加右減”。
5、根據(jù)圖像來判斷一些代數(shù)式的符號。主要用到的是開口方向,與縱軸的交點,頂點以及自變量為1和-1時的函數(shù)值來確定。
二、成功之處:
(一)在探究二:已知二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點坐標為(-1,-6),并且該圖象過點P(2,3),求這個二次函數(shù)的表達式中,設(shè)計了兩個問題:
1、通過已知頂點A的坐標(-1,-6),你從中還能獲取什么信息?
2、在不改變已知條件的前提下,你能選用“一般式”嗎?
設(shè)計意圖是:
1、由頂點(-1,-6),可知對稱軸是直線x=-1,函數(shù)的最大(小)值是-6。從而得出,當已知對稱軸或函數(shù)最值時,仍然選用“頂點式”。
2、挖掘頂點坐標的內(nèi)涵:(1)由拋物線的軸對稱性,可求出點P(2,3)關(guān)于對稱軸x=-1對稱點P’的坐標是(-4,3);(2)用點A、點P和對稱軸;(3)用點A、點P和頂點的縱坐標等。
3、得出結(jié)論:凡是能用“頂點式”確定的,一定可用“一般式”確定,進一步明確兩種表達式只是形式的不同和沒有本質(zhì)的區(qū)別;在做題時,不僅會使用已知條件,同時要養(yǎng)成挖掘和運用隱含條件的習慣。
(二)在知識運用部分采用猜想、比較、方法選擇等方法引導學生探究問題,從而大大的提高學生分析問題、解決問題的能力。
三、遺憾之處:在課題引入后,由于對學生估計不足,復習中學生還習慣有老師引著做,因此在處理完復習一后用時間相對較多,對于后面的教學造成小的影響,特別是對于復習三的處理時不夠充分,造成一點遺憾。
二次函數(shù)教學反思13
二次函數(shù)是初中階段的重要知識點,如何讓學生學得好,也是困擾我很久的問題。通過畫圖,在觀察圖形中總結(jié)出圖形的性質(zhì),對學生來說不是難點。重點和難點在準確靈活地應(yīng)用性質(zhì)。但是要想準確應(yīng)用,熟記圖形與性質(zhì)是前提,于是我重點放在對“性質(zhì)的記憶”和“對學生高要求上”。
強化記憶,功夫在平時。每節(jié)課上課一開始,我在黑板上板書上節(jié)學過的有代表性的函數(shù),為防止出錯,開始以小組或者同為相互檢查快速說性質(zhì):包括圖形、對稱軸、頂點坐標、增減性、最值六個方面。每節(jié)課都將前幾節(jié)課學過的函數(shù)式板書,學生自然形成習慣。直到學習頂點式的`一般形式這節(jié)課,共出示六個代表性的函數(shù),盡管多,但是在前幾節(jié)課的基礎(chǔ)上,學生已經(jīng)達到熟練快速準確。我和學生開玩笑說,必須將函數(shù)性質(zhì)記憶到說夢話都說函數(shù)性質(zhì)的地步。
深化理解,學生對著自己曾經(jīng)畫過函數(shù)說性質(zhì),不知不覺中將圖像和性質(zhì)有機的結(jié)合在了一起。并逐步的將說具體函數(shù)的性質(zhì)過渡到說一般表達式的函數(shù)性質(zhì)。y=ax2y=ax2+k,y=a(x-h)2+k.
提高要求。因為手中沒有合適的材料供學生練習使用,因此我們每節(jié)課印制了兩份隨堂練習,因為剛學完性質(zhì),對學生來說訓練題難度不大,開始對學生的要求是最多錯一個題,結(jié)果發(fā)現(xiàn)學生的錯誤很少,后期發(fā)現(xiàn)自己的要求低了,于是我改變要求,必須一個不錯方可得A等級。結(jié)果發(fā)現(xiàn),學生自然對自己的要求也提高了。當發(fā)現(xiàn)自己錯一個時,就會反思自己那里沒學好。一班的學生平時反映靈活,但是缺少深入細致,必須提高要求,方可讓他們耐下心來認真學習。
同時從學生的答題中,及時發(fā)現(xiàn)學生存在的問題,及時提醒學生反思改進。上節(jié)課講過的下次再考照樣錯,如:李萌。在她的反思中,分析到自己不是智力問題,而是心態(tài)和習慣問題,遇到問題不深入細致,導致基礎(chǔ)知識的應(yīng)用出問題。他月考和期中檢測均是等級B。“就按這樣的習慣學下去,不能考A”“老師,下次我一定考A”我試圖在平時的學習中發(fā)現(xiàn)她的問題,多么希望她保持好的等級。
二次函數(shù)教學反思14
這節(jié)課是人教版九年級數(shù)學下冊的一節(jié)探究課。在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)主體參與、自主探索、合作交流、指導引探的教學理念。整個教學過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設(shè)計目的是讓學生在復習這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)。應(yīng)該說這樣設(shè)計既讓初三同學復習了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學生的探究能力。第二部分是學習探究,探求活動前先讓一名同學讀了學習目標,讓大家?guī)е繕巳ヌ骄。探究活動一是讓學生在坐標紙上畫出二次函數(shù)y=ax^2的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導學生取點的,其間我引導大家要明確取點注意的事項,比如代表性、易操作性。這樣學生在下一個環(huán)節(jié)就能游刃有余。學生在我的引導下順利地畫出了函數(shù)的圖象。緊接著我讓學生按照學案的要求自主探討當a0時函數(shù)y=ax^2的性質(zhì)。探究活動二是獨立畫出函數(shù)y=-2x^2的圖象,然后是自主探討當a0時函數(shù)y=ax^2的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點坐標和最值方面入手,讓學生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。應(yīng)該說探究活動二在活動一的基礎(chǔ)上讓學生鍛煉了自我學習的能力,學生們完成的很好。探索活動三是小組合作活動。觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax^2的兩種情況,找出a的符號不同時他們的相同點、不同點和聯(lián)系點。這個環(huán)節(jié)能充分發(fā)揮小組合作的優(yōu)勢,讓學生在談?wù)撝畜w會分類思想。小組討論完畢后我讓學生展示他們的成果,大部分學生躍躍欲試,他們討論的很全面,出乎我的預(yù)料。這里面還有個知識點我是用幾何畫板演示的,就是通過改變a的值讓學生們觀察圖象的開口方向和開口寬度。幾何畫板在此起到了突破難點的作用,讓我真正體會到了掌握幾何畫板對自己的`教學是多么的有利。第三部分是課堂檢測。最后五分鐘時我讓學生們獨立完成課堂檢測部分題目。課堂檢測共出了四個小題(基礎(chǔ)題)一個應(yīng)用題(選做題),下課鈴聲響了,大部分的同學還沒有完成選做題,所以我就讓同桌交換試卷,公布前四個基礎(chǔ)題的答案。從當堂的反饋來看,絕大多數(shù)同學能掌握本節(jié)課的知識,達到了學習目標中的要求。
我的優(yōu)點主要包括:
1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2、教學目標明確、思路清晰,注重學生的自我學習培養(yǎng)和小組合作學習的落實。
3、能運用現(xiàn)代化的教學手段教學,尤其是能用幾何畫板等軟件突破重難點。
我的不足之處表現(xiàn)在:
1、知識的生成過程體現(xiàn)的不夠具體。在活動一中,雖然引導學生選點和列表,但是沒有在黑板上演示作圖的過程,雖然說明白了選點的注意事項但是學生還是被動的接受,他們不一定能理解為什么要選那個點。
2、作圖的過程沒必要放到課堂上來。可以事先在前置作業(yè)中讓學生作圖,在課堂上讓學生匯報作圖中遇到的困難,這樣教師再去訂正,效果要好很多。有時候就是要讓學生經(jīng)歷錯誤的過程,這樣他們才會懂。正所謂我聽到的,我會忘記;我見到的,我會記住;我做過的,我會理解
3、課堂上講的太多。有些過程,讓學生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學生總結(jié)了,學生還是被動的接受。其實這還是思想的問題,說明我沒有真的放開手。真正讓學生有了空間,他們也會給我們很大的驚喜。
4、學生在回答問題的過程中我老是打斷學生。提問一個問題,學生說了一半,我就迫不及待地引導他說出下一半,有的時候是我替學生說了,這樣學生的思路就被我打斷了。破壞學生的思路是我們教師最大的毛病,此頑疾不除,教學質(zhì)量難以保證。
5、合作學習的有效性不夠。其實在演示幾何畫板的過程中,學生在a0的情況下能得到a越大開口越小,a0的情況下a越小開口越大。但是綜合起來學生就困難的多了。這個時候不妨讓大家小組討論完成知識的總結(jié)。有這樣一種說法:你我各一個蘋果,交換之后,你我還是一個蘋果;你我各有一種思想,交換之后,你我卻有了兩種思想。這很形象地說出了合作學習的好處。教師把學習的主動權(quán)交給學生,把思維的過程還給學生,問題在分組討論中得以共同解決。正所謂:水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光。只有真正把自主、探究、合作的學習方式落到實處,才能培養(yǎng)學生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。
二次函數(shù)教學反思15
二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的'數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型。許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究。本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式和它的定義域。在教學中要重視二次函數(shù)概念的形成和建構(gòu),在概念的`學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。在教學中,我主要遇到了這樣幾個問題:
1、關(guān)于能夠進行整理變?yōu)檎降氖阶有问脚袛嗖粶,主要是我自身對這個概念把握不是很清楚,通過這節(jié)課的教學過程,和各位老師的幫助知道,真正達到了教學相長的效果。
2、在細節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強調(diào)按自變量的降冪排列進行整理,這類問題在今后的教學中,我會注意這些方面的教學。
3、在變式訓練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學安排的合理性。另外在教學語言的精煉方面我還有待加強。
【二次函數(shù)教學反思】相關(guān)文章:
數(shù)學二次函數(shù)教學反思11-01
《二次函數(shù)復習課》教學反思07-16
函數(shù)的概念教學反思09-05
二次函數(shù)說課稿12-08
對數(shù)函數(shù)教學反思09-06
《對數(shù)函數(shù)》教學反思07-11
二次根式教學反思11-06
《正比例函數(shù)》教學反思09-21