高二數(shù)學教學計劃15篇
時光在流逝,從不停歇,相信大家對即將到來的工作生活滿心期待吧!此時此刻我們需要開始制定一個計劃。好的計劃都具備一些什么特點呢?下面是小編為大家整理的高二數(shù)學教學計劃,歡迎大家借鑒與參考,希望對大家有所幫助。
高二數(shù)學教學計劃1
一、學生基本情況
261班共有學生75人,268班共有學生72人。268班學習數(shù)學的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對高二乃至整個高中的數(shù)學學習有很大的影響,數(shù)學成績尖子生多或少,但若能雜實復(fù)習好函數(shù)部分,加上學生又很努力,將來前途無量。若能好好的引導(dǎo),進一步培養(yǎng)他們的學習興趣,
二、教學要求
(一)情意目標
(1)經(jīng)過分析問題的方法的教學、經(jīng)過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
(3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
(4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權(quán)給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學發(fā)現(xiàn)歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)在對不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學習中,進一步培養(yǎng)記憶能力。做到記憶準確、持久,用時再現(xiàn)得迅速、正確。
(2)經(jīng)過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)經(jīng)過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)經(jīng)過解不等式及不等式組的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)經(jīng)過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生的思維能力。
(1)經(jīng)過含參不等式的求解,培養(yǎng)學生思維的周密性及思維的邏輯性。
(2)經(jīng)過解析幾何與不等式的一題多解、多題一解、經(jīng)過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)經(jīng)過不等式引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結(jié)合的能力。
(5)經(jīng)過解析幾何的概念教學,培養(yǎng)學生的正向思維與逆向思維的能力。
(6)經(jīng)過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉(zhuǎn)化思想方法。
4、培養(yǎng)學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)經(jīng)過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;
2、經(jīng)過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。
三、教材簡要分析
1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。不等式在整個高中數(shù)學中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導(dǎo)數(shù)和微分等知識的的基礎(chǔ)。,是直線方程的一個直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的.定義,標準方程,簡單幾何性質(zhì),以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并經(jīng)過分析標準方程研究它們的性質(zhì)。
四、重點與難點
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關(guān)系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質(zhì)。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導(dǎo),簡單線性規(guī)劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
五、教學措施
1、教學中要傳授知識與培育能力相結(jié)合,充分調(diào)動學生學習的主動性,培育學生的概括能力,是學生掌握數(shù)學基本方法、基本技能。
2、持之以恒與高三聯(lián)系,切實面向高考,以五大數(shù)學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,持之以恒學生主體性原則,持之以恒循序漸進原則,持之以恒啟發(fā)性原則。研究并采用以發(fā)現(xiàn)式教學模式為主的教學方法,全面提高教學質(zhì)量。
4、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量
5、持之以恒向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、持之以恒學法研討,加強個別輔導(dǎo)(差生與優(yōu)生),提高全體學生的整體數(shù)學水平,培育尖子學生。 7、加強數(shù)學研究課的教學研究指導(dǎo),培養(yǎng)學識的動手能力。
六、課時安排
本學期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時
高二數(shù)學教學計劃2
(1)知識目標:
1.在平面直角坐標系中,探索并掌握圓的標準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標:
1.進一步培養(yǎng)學生用解析法研究幾何問題的能力;
2.使學生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學生用數(shù)學的意識.
(3)情感目標:培養(yǎng)學生主動探究知識、合作交流的意識,在體驗數(shù)學美的過程中激發(fā)學生的學習興趣.
2.教學重點.難點
(1)教學重點:圓的標準方程的求法及其應(yīng)用.
(2)教學難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標準方程以及選擇恰
當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.
3.教學過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習)
解:以某一截面半圓的圓心為坐標原點,半圓的`直徑AB所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標法
如圖,設(shè)M(x,y)是圓上任意一點,根據(jù)定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點間的距離公式,點M適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本P77練習1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
II.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
III.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓練(形成方法)
問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
(五)小結(jié)反思(拓展引申)
1.課堂小結(jié):
(1)圓心為C(a,b),半徑為r 的圓的標準方程為:
當圓心在原點時,圓的標準方程為:
(2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法
(3) 已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是:
(4) 求解應(yīng)用問題的一般方法
2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習題7.6)1.2.4
(B)思維拓展型作業(yè):
試推導(dǎo)過圓 上一點 的切線方程.
3.激發(fā)新疑:
問題七:1.把圓的標準方程展開后是什么形式?
2.方程: 的曲線是什么圖形?
教學設(shè)計說明
圓是學生比較熟悉的曲線,初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點確定為用解析法研究圓的標準方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實際問題引導(dǎo)學生探究獲得圓的標準方程,然后,利用圓的標準方程由淺入深的解決問題,并通過圓的方程在實際問題中的應(yīng)用,增強學生用數(shù)學的意識。另外,為了培養(yǎng)學生的理性思維,我分別在引例和問題四中,設(shè)計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力。在問題的設(shè)計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計不但突出了重點,更使難點的突破水到渠成.
本節(jié)課的設(shè)計了五個環(huán)節(jié),以問題為紐帶,以探究活動為載體,使學生在問題的指引下、教師的指導(dǎo)下把探究活動層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學方法把學生學習知識的過程轉(zhuǎn)變?yōu)閷W生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力。
高二數(shù)學教學計劃3
一、指導(dǎo)思想:
在我校整體構(gòu)建的和諧教學模式下,學生可以在九年義務(wù)教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民的數(shù)學素養(yǎng),以適應(yīng)個人發(fā)展和社會進步的需要。具體目標如下。
1.獲取必要的數(shù)學基礎(chǔ)知識和技能,了解基本數(shù)學概念和結(jié)論的本質(zhì),了解概念和結(jié)論的背景和應(yīng)用,了解其中包含的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習和探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程。
2.提高空間想象、抽象概括、推理論證、計算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學上提出問題、分析問題和解決問題(包括簡單的實際問題)的能力,數(shù)學上表達和交流的能力,培養(yǎng)獨立獲取數(shù)學知識的能力。
4.培養(yǎng)數(shù)學應(yīng)用和創(chuàng)新意識,努力思考和判斷現(xiàn)實世界中包含的一些數(shù)學模型。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成堅忍不拔的精神和科學的態(tài)度。
6.有一定的數(shù)學視野,逐漸了解數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性思維習慣,崇尚數(shù)學的`理性精神,體驗數(shù)學的審美意義,從而進一步樹立辯證唯物主義和歷史唯物主義的世界觀。
二、教材的特點:
我們用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新的關(guān)系,體現(xiàn)基礎(chǔ)、時代、典型性、可接受性等。并具有以下特征:
1.“親和力”:以生動活潑的方式激發(fā)興趣和美感,激發(fā)學習熱情。
2.“問題”:用適時問題指導(dǎo)數(shù)學活動,培養(yǎng)問題意識,培養(yǎng)創(chuàng)新精神。
3.“科學”與“思想性”:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比、通俗化、特殊化、轉(zhuǎn)化等思想方法的應(yīng)用,學會數(shù)學思維,提高數(shù)學思維能力,培養(yǎng)理性精神。
4.“時代性”和“適用性”:用具有時代性和現(xiàn)實感的材料創(chuàng)設(shè)情境,加強數(shù)學活動,培養(yǎng)應(yīng)用意識。
三、教學方法分析:
1.選擇內(nèi)容典型、豐富、熟悉的材料,用生動活潑的語言,創(chuàng)造能反映數(shù)學、數(shù)學思想方法、數(shù)學應(yīng)用的學習情境的概念和結(jié)論,讓學生對數(shù)學產(chǎn)生親切感,引發(fā)學生“看發(fā)生了什么”的沖動,以培養(yǎng)興趣。
2.通過“觀察”、“思考”、“探究”等欄目,可以激發(fā)學生的思考和探究活動,提高學生的學習效率
高一班學習不錯,但是學生自我意識差,自控力弱,需要時不時提醒學生培養(yǎng)自我意識。上課最大的問題是計算能力差。學生不喜歡算題。他們只關(guān)注想法。因此,在未來的教學中,重點是培養(yǎng)學生的計算能力,進一步提高他們的思維能力。同時,由于初中課程改革,高中教材與初中教材銜接不夠強,需要在新的教學時間補充一些內(nèi)容。所以時間可能還是比較緊。同時它的基礎(chǔ)比較薄弱,只能在教學中先注重基礎(chǔ)再注重基礎(chǔ),力求每節(jié)課落實一個知識點,掌握一個知識點。
五.教學措施:
1.激發(fā)學生的學習興趣。通過數(shù)學活動、故事、吸引人的課堂、合理的要求、師生對話等方式,可以建立學生的學習信心,在主觀行動下提高和提高學生的學習興趣。
2.注意從實例出發(fā),從感性走向理性;注意運用比較的方法反復(fù)比較相似的概念;注意結(jié)合直觀的圖形來說明抽象的知識;關(guān)注已有知識,啟發(fā)學生思考。
3.加強學生邏輯思維能力的培養(yǎng),就是解決實際問題,培養(yǎng)和提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辯證唯物主義教育。
4.掌握公式的推導(dǎo)和內(nèi)部聯(lián)系;加強審查和檢查工作;掌握典型例題的分析,講解解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5.自始至終實施整體建設(shè),和諧教學。
6.注重數(shù)學應(yīng)用意識和能力的培養(yǎng)。
高二數(shù)學教學計劃4
一、教學內(nèi)容與內(nèi)容解析
1.內(nèi)容:
統(tǒng)計,簡單隨機抽樣,抽簽法,隨機數(shù)表法。
2.內(nèi)容解析:
本節(jié)課是人教版《高中數(shù)學》第三冊(選修Ⅱ)的第一章“概率與統(tǒng)計”中的“抽樣方法”的第一課時:簡單隨機抽樣.其主要內(nèi)容是介紹簡單隨機抽樣的概念以及如何實施簡單隨機抽樣.數(shù)理統(tǒng)計學包括兩類問題,一類是如何從總體中抽取樣本,另一類是如何根據(jù)對樣本的整理、計算和分析,對總體的情況作出一種推斷.可見,抽樣方法是數(shù)理統(tǒng)計學中的重要內(nèi)容.簡單隨機抽樣作為一種簡單的抽樣方法,又在其中處于一種非常重要的地位.因此它對于學習后面的其它較復(fù)雜的抽樣方法奠定了基礎(chǔ),同時它強化對概率性質(zhì)的理解,加深了對概率公式的運用.因此它起到了承上啟下的作用,在教材中占有重要地位.
本節(jié)課是在學生初中已學習了統(tǒng)計初步知識的基礎(chǔ)上,系統(tǒng)學習統(tǒng)計的基本方法,體驗統(tǒng)計思想的第一課時.本節(jié)課通過結(jié)合具體的實際問題情景,使學生認識到隨機抽樣的必要性和重要性,進而分析得到簡單隨機抽樣的定義、常用實施方法.這些活動的實施就是想引導(dǎo)學生從現(xiàn)實生活或其它學科中提出具有一定價值的統(tǒng)計問題,初步形成運用統(tǒng)計的思想和方法(用數(shù)據(jù)說話)來思考問題和解決問題的習慣.。
本課題為“簡單隨機抽樣”,主要學習簡單隨機抽樣的理論與方法.從理論上講,“簡單”是指抽取的樣本為“簡單隨機樣本”,獲取簡單隨機樣本的抽樣方法稱為簡單隨機抽樣.簡單隨機抽樣要滿足以下兩個條件:(1)代表性,即要求樣本的每個分量Xi與所考察的總體X具有相同的概率分布F(X);(2)獨立性,X1,X2,…,Xn為相互獨立的隨機變量,也就是說,每個觀察結(jié)果不影響其它觀察結(jié)果,也不受其它觀察結(jié)果的影響.當然在有限總體中,樣本的各個觀察結(jié)果可以是不獨立的.在本節(jié)課中,要將這些關(guān)于隨機抽樣的理論,用淺顯的例子滲透在學生的學習過程中.因此,教學的內(nèi)容應(yīng)側(cè)重于如何使抽取的數(shù)據(jù)能代表總體,即抽取的樣本要能反映總體的本質(zhì)特征.要抓住兩個特征展開,要求抽取的樣本有代表性,樣本的容量要適當,太大沒有必要,太小不能反映總體的特征.其次,要體現(xiàn)獨立性,在簡單隨機抽取時,總體中每個個體被抽到的概率是相等的,說明這種抽樣的方法是獨立的.抽取的樣本的分布與總體分布相似度越高,樣本的代表就越大.這就為后續(xù)學習三種抽樣方法的形成與評價提供基礎(chǔ).
從知識的應(yīng)用價值來看,重視數(shù)學知識的應(yīng)用和關(guān)注人文內(nèi)涵是新教材的顯著特點.豐富的生活實例為學生用數(shù)學的眼光看待生活,體驗生活即數(shù)學的理念,體驗用算法思想解決模式化問題的作用,有助于學生對統(tǒng)計思想和方法的掌握,增加學生的感性認識.。
二、教學目標與目標解析
1.目標:
(1)通過實例,了解學習統(tǒng)計的意義,了解統(tǒng)計學的基本內(nèi)容和方法.
(2)通過實例,了解隨機抽樣的必要性.
(3)理解隨機抽樣的概念.這里隨機抽樣的概念在初中階段學生已經(jīng)學習過,但在此處學習正是體現(xiàn)知識的螺旋上升,這里提出的總體、個體和樣本的概念應(yīng)該更加理性.
(4)通過實例分析隨機抽樣應(yīng)滿足的基本條件.作為教師要明確學習隨機抽樣的主要目的是用樣本估計總體,要使所抽取的樣本能估計總體,抽取數(shù)據(jù)的方法要根據(jù)對數(shù)據(jù)的要求而定,方法應(yīng)該是量身定做的.
(5)體會簡單隨機抽樣的方法.教學過程應(yīng)該充分體現(xiàn)學生的主體作用,不囿于教材順序的限定,結(jié)合學生已有的知識結(jié)構(gòu),充分展示學生的學習經(jīng)驗和能力.
2.目標解析:
教學目標(3)和(4)是本節(jié)課的教學重點也是難點。我們要建立一種數(shù)學的基本思維過程,也是人們學習和生活中經(jīng)常使用的思維方式。借助學生已有生活常識,形成推理的直觀認識;讓學生通過自己動手體驗數(shù)學的一種基本思維過程,經(jīng)歷人們學習和生活中經(jīng)常使用的思維活動。
教學目標(5)是學生初學時不易達到的目標,教學時要緊密地結(jié)合學生熟悉的已學過的數(shù)學實例和生活實例,是學生體會解決問題時應(yīng)該關(guān)注的要點,體會簡單隨機抽樣的方法.應(yīng)用簡單隨機抽樣的方法。
三、教學問題診斷分析
教學重點、難點
重點:簡單隨機抽樣的定義,抽樣方法,各種方法適用情況,及對比
難點:簡單隨機抽樣中的等可能性及簡單隨機抽樣的特點,隨機數(shù)表法應(yīng)用。
本節(jié)課是學生在義教階段學習了數(shù)據(jù)的收集、抽樣、總體、個體、樣本等統(tǒng)計概念以后,進一步學習統(tǒng)計知識的.這是義教階段統(tǒng)計知識的發(fā)展,因此教學過程不應(yīng)是一種簡單的.重復(fù),也不應(yīng)停留在對普查與抽樣優(yōu)劣的比較和方法的選擇,而應(yīng)該發(fā)展到對抽樣進一步思考上,主要應(yīng)集中的以下四個問題上:(1)為什么要進行隨機抽樣;(2)什么是隨機抽樣(數(shù)理統(tǒng)計上的隨機抽樣概念);(3)簡單隨機抽樣應(yīng)滿足什么樣的條件;(4)如何進行簡單隨機抽樣.教學的重點是使學生關(guān)注數(shù)據(jù)收集的方法應(yīng)該由目的與要求所決定的,任何數(shù)據(jù)的收集都有一定的目的,數(shù)據(jù)的抽取是隨機的.要更加理性地看待數(shù)據(jù)收集的方法,要從隨機現(xiàn)象本身的規(guī)律性來看待數(shù)據(jù)收集的方法.特別是要突出簡單隨機樣本的兩個特征.要改變學生僅從形式上來理解簡單隨機抽樣的問題.在教學中學生可能會產(chǎn)生隨機抽樣中簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣的雛形,教師不必進一步明確界定概念,可待后續(xù)的學習中進一步完善.
如何發(fā)現(xiàn)隨機抽樣的公平性,也就是“如何去觀察,才能發(fā)現(xiàn)規(guī)律”。學生可以很順利地得到幾個事實,但是如何去觀察,這是學生學習時遇到的第一個教學問題。也是本節(jié)課的教學難點之一。教學時,應(yīng)通過實例,幫助學生總結(jié)出觀察一定要有目標,并用具體問題讓學生練習進行體會。
四、教學支持條件
本節(jié)課教學支持條件首先是學生已經(jīng)學習過隨機抽樣的概念,因此教學可以在此基礎(chǔ)上展開.教材例題的選取都來自于學生的生活經(jīng)驗,便于學生理解.可以通過投影和計算機,擴展學生收集數(shù)據(jù)的方法.基于本節(jié)課內(nèi)容的特點和學生的心理及思維發(fā)展的特征,在教學中選擇問題引導(dǎo)、事例討論和歸納總結(jié)相結(jié)合的教學方法.與學生建立平等融洽的互動關(guān)系,營造合作交流的學習氛圍.在引導(dǎo)學生進行觀察、分析、抽象概括、練習鞏固各個環(huán)節(jié)中運用多媒體進行演示,增強直觀性,提高教學效率,激發(fā)學生的學習興趣.
五、教學過程設(shè)計
六、目標檢測設(shè)計
(1)利用隨機數(shù)表法從40件產(chǎn)品中抽取10件檢查。
(2)分小組進行社會問題的實際調(diào)查,題目自擬。
。ㄔO(shè)計意圖:通過訓練,鞏固本課所學知識,檢測運用所學知識解決問題的能力;實習作業(yè)的設(shè)置為了教會學生怎樣利用資料進行數(shù)學學習,同時讓學生了解網(wǎng)絡(luò)是自主學習和拓展知識面的一個重要平臺。這是本節(jié)內(nèi)容的一個提高與拓展。)
高二數(shù)學教學計劃5
一、指導(dǎo)思想:
在學校教學工作意見指導(dǎo)下,在學部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執(zhí)行學校的各項教育教學制度和要求,強化數(shù)學教學研究,提高全組老師的教學、教研水平,明確任務(wù),團結(jié)協(xié)作,圓滿完成教學教研任務(wù)。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的.美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二.學生基本情況
高二傾理學生共有166人,學生學習數(shù)學的氣氛不濃、基礎(chǔ)很差。由于學生對學過的知識內(nèi)容不及時復(fù)習,致使對高二的數(shù)學學習有很大的影響,高一數(shù)學成績充分反映沒有尖子生,成績特差的學生也有不少,有一批思維相當靈活的學生,但學習不夠刻苦,學習成績一般,但有較大的潛力,以后好好的引導(dǎo),進一步培養(yǎng)他們的學習興趣,從而帶動全班同學的學習熱情,提高學生的數(shù)學成績。
三、教法分析:
1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應(yīng)用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2.通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
四、教學措施:
1、認真落實,搞好集體備課。每周至少進行一次集體備課。各組老師根據(jù)自已承擔的任務(wù),提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學方法等。
2、詳細計劃,保證練習質(zhì)量。教學中用配備資料《創(chuàng)新設(shè)計》,要求學生按教學進度完成相應(yīng)的習題,教師要提前向?qū)W生指出不做的題,以免影響學生的時間,每周以內(nèi)容滾動式編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。
3、抓好第二課堂,穩(wěn)定數(shù)學優(yōu)生,培養(yǎng)數(shù)學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優(yōu)生,注意激發(fā)學生的學習興趣,隨時注意學生學習方法的指導(dǎo)。
4、加強輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學學習困難的學生,教師的下班輔導(dǎo)十分重要。教師教學中,要盡快掌握班上學生的數(shù)學學習情況,有針對性地進行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學生。
五、教學進度表:(略)
高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高二數(shù)學上學期教學計劃,希望大家喜歡。
高二數(shù)學教學計劃6
一、指導(dǎo)思想:
在學校教育工作意見指導(dǎo)下,嚴格執(zhí)行學校各教育教育制度和要求,加強數(shù)學教育研究,提高全組教師教育、教育研究水平,明確任務(wù),團結(jié)合作,圓滿完成教育教育研究任務(wù)。具體任務(wù)如下:
1.讓學生獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),理解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體驗其中包含的數(shù)學思想和方法,以及其在后續(xù)學習中的作用。通過不同形式的自主學習、探索活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷史。
2.提高學生空間想象力、抽象摘要、推理論證、運算解決、數(shù)據(jù)處理等基本能力。
3.提高學生提出、分析和解決數(shù)學問題(包括簡單的實際問題)的`能力,提高數(shù)學表現(xiàn)和交流的能力,發(fā)展獨立獲得數(shù)學知識的能力。
4.發(fā)展學生數(shù)學應(yīng)用意識和創(chuàng)新意識,努力思考和判斷現(xiàn)實世界包含的數(shù)學模式。
5.提高學生學習數(shù)學的興趣,確立學習數(shù)學的自信,形成堅持不懈的鉆研精神和科學態(tài)度。
6.使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應(yīng)用價值和文化價值,形成批判性的思考習慣,崇尚數(shù)學的理性精神,體驗數(shù)學的美學意義,進一步確立辯證唯物主義和歷史唯物主義世界觀。
二、教法分析:
1.選擇與內(nèi)容密切相關(guān)、典型、豐富、學生熟悉的素材,用生動活潑的語言創(chuàng)造數(shù)學概念和結(jié)論、數(shù)學思想和方法、數(shù)學應(yīng)用的學習情況,使學生產(chǎn)生對數(shù)學的親切感,引起學生看到最后的沖動,達到培養(yǎng)興趣的目的。
2.通過觀察、思考、探索等欄目,引起學生的思考和探索活動,切實改善學生的學習方式。
3.在教育中強調(diào)類比、普及、特殊化、歸化等數(shù)學思想方法,盡量養(yǎng)成邏輯思維的習慣。
三、教育措施:
1.全體老師誠實團結(jié),相互關(guān)心,相互支持,努力使我們的高二數(shù)學組成為充滿活力的優(yōu)秀集團。互相上課,取長補短,完善自己,加強形式、時間、場所的交流。在日常工作中,保持和優(yōu)化個人特色,實現(xiàn)資源共享,同類班級相關(guān)工作基本統(tǒng)一。
2.認真執(zhí)行,做好集體準備課程。每周四上午三四節(jié)集體備課,認真分析教材內(nèi)容,研討其中的重點、難點、教學方法等。
3.詳細規(guī)劃,保證練習質(zhì)量。在教育中充分利用資料,要求學生根據(jù)教育進度完成相應(yīng)的練習題,每周以內(nèi)容滾動式制作周練試卷,老師必須整理,存在的普遍問題必須安排時間評價,成績在星期四之前自己輸入年級計算機。
4.抓住第二課,穩(wěn)定數(shù)學優(yōu)秀學生,培養(yǎng)數(shù)學能力興趣。各班培養(yǎng)好本班優(yōu)生,注意激發(fā)學員學習興趣,隨時注意學員學習方法輔導(dǎo)。
5.加強指導(dǎo)工作。對于數(shù)學學習困難的學生來說,教師的下班指導(dǎo)非常重要。在教師教育中,要盡快把握班級學生的數(shù)學學習狀況,有目的地進行指導(dǎo)工作,注意班級優(yōu)生層,不能忽視班級困難的學生。
高二數(shù)學教學計劃7
教學目標:
1、知識與技能
(1)了解算法的含義,體會算法的思想;
(2)能夠用自然語言敘述算法;
(3)掌握正確的算法應(yīng)滿足的要求;
(4)會寫出解線性方程(組)的算法;
(5)會寫出一個求有限整數(shù)序列中的最大值的算法.
2、過程與方法
(1)通過求解二元一次方程組,體會解方程的一般性步驟,從而得到一個解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法;
(2)同一個問題也可能有多個算法,能模仿求解二元一次方程組的步驟,寫出一個求有限整數(shù)序列中的最大值的算法.
3、情感與價值觀
通過本節(jié)的學習,對計算機的算法語言有一個基本的了解;明確算法的要求,認識到計算機是人類征服自然的一個有力工具,進一步提高探索、認識世界的能力.
教學重點、難點:
重點:算法的含義,解二元一次方程組、判斷一個數(shù)為質(zhì)數(shù)和利用“二分法”求方程近似解的算法設(shè)計.
難點:把自然語言轉(zhuǎn)化為算法語言.
教學過程:
(一)創(chuàng)設(shè)情景、導(dǎo)入課題
問題1:把大象放入冰箱分幾步?
第一步:把冰箱門打開;
第二步:把大象放進冰箱;
第三步:把冰箱門關(guān)上.
問題2:指出在家中燒開水的過程分幾步?(略)
問題3:如何求一元二次方程 的解?
第一步:計算 ;
第二步:如果 ,
如果 ,方程無解
第三步:下結(jié)論.輸出方程的根或無解的信息.
注意:在以上三個問題的求解過程中,老師要緊扣算法定義,帶領(lǐng)學生總結(jié),反復(fù)強調(diào),使學生體會以下幾點:
、儆懈F性:步驟是有限的,它應(yīng)在有限步操作之后停止,而不能是無限地執(zhí)行下去。
、诖_定性:每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當是模棱兩可的。
、圻壿嬓裕簭某跏疾襟E開始,分為若干個明確的步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。
、懿晃ㄒ恍裕呵蠼饽骋粋問題的算法不一定只有唯一的一個,可以有不同的算法。
、萜毡樾裕汉芏嗑唧w的問題,都可以設(shè)計合理的算法去解決。
注:其他還有輸入性、輸出性等特征,結(jié)論不固定.
提問:算法是如何定義?
(二)師生互動、講解新課
x-2y=-1 ①
回顧(課本P2內(nèi)容): 寫出解二元一次方程組 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程組的解為 x= ;y= 。
思考1:你能寫出求解一般的二元一次方程組的步驟嗎?
上題的算法是由加減消元法求解的,這個算法也適合一般的二元一次方程組的解法
對于一般的二元一次方程組 可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程組的解為
。ǜ咚瓜シǎ
思考2:根據(jù)上述分析,用加減消元法解二元一次方程組,可以分為五個步驟進行,這五個步驟就構(gòu)成了解二元一次方程組的.一個“算法”.我們再根據(jù)這一算法編制計算機程序,就可以讓計算機來解二元一次方程組.那么解二元一次方程組的算法包括哪些內(nèi)容?
思考3:一般地,算法是由按照一定規(guī)則解決某一類問題的基本步驟組成的.
你認為:
(1)這些步驟的個數(shù)是有限的還是無限的?
(2)每個步驟是否有明確的計算任務(wù)?
總結(jié):在數(shù)學中,按照一定規(guī)則解決某一類問題的明確和有限的步驟稱為算法.
算法(algorithm)一詞出現(xiàn)于12世紀,源于算術(shù)(algorism),即算術(shù)方法.指的是用阿拉伯數(shù)字進行算術(shù)運算的過程.在數(shù)學中,算法通常是指按照一定的規(guī)則解決某一類問題的明確的和有限的步驟.現(xiàn)在,算法通?梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題.后來,人們把它推廣到一般,把進行某一工作的方法和步驟稱為算法.
廣義地說,算法就是做某一件事的步驟或程序.菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算
法,歌譜是一首歌曲的算法.在數(shù)學中,主要研究計算機能實現(xiàn)的算法,即按照某種機械程序步驟一定可以得到結(jié)果的解決問題的程序.比如解方程的算法、函數(shù)求值的算法、作圖的算法,等等.
(三)例題剖析,鞏固提高
例1(課本P3例1):如果讓計算機判斷7是否為質(zhì)數(shù),如何設(shè)計算法步驟?
算法:
第一步,用2除7,得到余數(shù)1,所以2不能整除7.
第二步,用3除7,得到余數(shù)1,所以3不能整除7.
第三步,用4除7,得到余數(shù)3,所以4不能整除7.
第四步,用5除7,得到余數(shù)2,所以5不能整除7.
第五步,用6除7,得到余數(shù)1,所以6不能整除7.
因此,7是質(zhì)數(shù).
課堂練習1:
整數(shù)89是否為質(zhì)數(shù)?如果讓計算機判斷89是否為質(zhì)數(shù),按照上述算法需要設(shè)計多少個步驟?
思考4:用2~88逐一去除89求余數(shù),需要87個步驟,這些步驟基本是重復(fù)操作,我們可以按下面的思路改進這個算法,減少算法的步驟.
(1)用i表示2~88中的任意一個整數(shù),并從2開始取數(shù);
(2)用i除89,得到余數(shù)r. 若r=0,則89不是質(zhì)數(shù);若r≠0,將i用i 1替代,再執(zhí)行同樣的操作;
(3)這個操作一直進行到i取88為止.
你能按照這個思路,設(shè)計一個“判斷89是否為質(zhì)數(shù)”的算法步驟嗎?
算法設(shè)計:
第一步,令i=2;
第二步,用i除89,得到余數(shù)r;
第三步,若r=0,則89不是質(zhì)數(shù),結(jié)束算法;若r≠0,將i用i 1替代;
第四步,判斷“i>88”是否成立?若是,則89是質(zhì)
數(shù),結(jié)束算法;否則,返回第二步.
探究:一般地,判斷一個大于2的整數(shù)是否為質(zhì)數(shù)的算法步驟如何設(shè)計?
在中央電視臺幸運52節(jié)目中,有一個猜商品價格的環(huán)節(jié),竟猜者如在規(guī)定的時間內(nèi)大體猜出某種商品的價格,就可獲得該件商品.現(xiàn)有一商品,價格在0~8000元之間,采取怎樣的策略才能在較短的時間內(nèi)說出比較接近的答案呢?
例2、一群小兔一群雞,兩群合到一群里,要數(shù)腿共48,要數(shù)腦袋整17,多少只小兔多少只雞?
算法1:S1 首先計算沒有小兔時,小雞的數(shù)為:17只,腿的總數(shù)為34條。
S2 再確定每多一只小兔、減少一只小雞增加的腿數(shù)2條。
S3 再根據(jù)缺的腿的條數(shù)確定小兔的數(shù)量: (48-34)/2=7只
S4 最后確定小雞的數(shù)量:17-7=10只.
算法2:S1 首先設(shè) 只小雞, 只小兔。
S2 再列方程組為:
S3 解方程組得:
S4 指出小雞10只,小兔7只。
算法3:S1 首先設(shè) 只小雞,則有 只小兔
S2 列方程
S3 解方程得 ,則
S4 指出小雞10只,小兔7只.
算法4:S1 “請一名馴獸師”所有小雞抬一條腿,所有小兔抬兩條腿
S2 有小兔 只
S3 有小雞 只
S4 指出小雞10只,小兔7只.
算法5:S1 有小兔 只
S2 有小雞 只
二分法:
對于區(qū)間[a,b ]上連續(xù)不斷,且f(a)f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,而得到零點近似值的方法叫做二分法.
例3(課本P4例2):寫
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,則方程 的解就是函數(shù)f(x)的零點.
第一步,令f(x)= ,給定精確度d.
第二步,確定區(qū)間[a,b],滿足f(a)·f(b)<0.
第三步,取區(qū)間中點 .
第四步,若f(a)·f(m)<0,則含零點的區(qū)間為[a,m],否則,含零點的區(qū)間為[m,b].
將新得到的含零點的區(qū)間仍記為[a,b];
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
(四)課堂小結(jié),鞏固反思
1、算法的主要特點:
(1)有限性:一個算法在執(zhí)行有限步后必須結(jié)束;
(2)確切性:算法的每一個步驟和次序必須是確定的;
(3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件.
(4)輸出:一個算法有1個或多個輸出,以反映對輸入數(shù)據(jù)加工后的結(jié)果.沒有輸出的算法是毫無意義的.
2、計算機解決任何問題都要依賴算法,算法是建立在解法基礎(chǔ)上的操作過程,算法不一定要有運算結(jié)果.設(shè)計一個解決某類問題的算法的核心內(nèi)容是將解決問題的過程分解為若干個明確的步驟,即算法,它沒有一個固定的模式,但有以下幾個基本要求:
(1)符合運算規(guī)則,計算機能操作;
(2)每個步驟都有一個明確的計算任務(wù);
(3)對重復(fù)操作步驟作返回處理;
(4)步驟個數(shù)盡可能少;
(5)每個步驟的語言描述要準確、簡明.
高二數(shù)學教學計劃8
一、指導(dǎo)思想
努力把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學,注重滲透數(shù)學思想和方法。針對學生實際,不斷研究數(shù)學教學,改進教法,指導(dǎo)學法,立足掌握基本技能和基本能力,著力培養(yǎng)學生的創(chuàng)新精神,運用數(shù)學的.意識和能力,奠定他們終身學習的基礎(chǔ)。堅持一切為了學生,為了學生一切,人人都能成功的教學理念。
高二數(shù)學教學計劃9
一、指導(dǎo)思想:
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學,注重滲透數(shù)學思想和方法。立足學生的實際,不斷研究數(shù)學教學,改進教法,指導(dǎo)學法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學生的創(chuàng)新精神,運用數(shù)學的意識和能力,奠定他們終身學習的基礎(chǔ)。
二、學生基本情況分析:
1、基本情況:高二10個理科班,4個文科班,每個班的學生對數(shù)學學習各不相同。其中,1—6班為實驗班,大部分人,基礎(chǔ)較好,數(shù)學學習興趣較為濃厚。還有些學生對自己學習數(shù)學的信心不足,學習積極性和主動性不夠,大部分學生學習上只滿足完成老師所布置的任務(wù),對于靈活運用知識分析問題、解決問題的能力還不夠強,不能舉一反三進一步挖深問題,在選例題時盡量選中等難度題目,以適應(yīng)大多數(shù)學生的適應(yīng)能力。
三、教學目標
針對以上問題的出現(xiàn),在本學期擬訂以下目標和措施。其具體目標如下:
1、獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學的提出、分析和解決問題的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4、提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
四、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應(yīng)用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,以達到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
五、教學措施:
1、抓好課堂教學,提高教學效益。 課堂教學是教學的主要環(huán)節(jié),因此,抓好課堂教學是教學之根本,是提高數(shù)學成績的主要途徑。
、僬J真落實,搞好集體備課。每周至少進行一次集體備課,星期一的上午升旗后至第二節(jié)課結(jié)束。每位老師都要提前一周進行單元式的備課,集體備課時,由兩名老師作主要發(fā)言人,對下一周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學方法等。
、诩哟笳n堂教改力度,培養(yǎng)學生的自主學習能力。最有效的`學習是自主學習,因此,課堂教學要大力培養(yǎng)學生自主探究的精神,逐步形成知識體系,提高能力。同時要養(yǎng)成學生良好的學習習慣,不斷提高學生的數(shù)學素養(yǎng),從而提高數(shù)學素養(yǎng),并大面積提高數(shù)學成績。
2、加強課外輔導(dǎo),提高競爭能力。 課外輔導(dǎo)是課堂的有力補充,是提高數(shù)學成績的有力手段。
①加強學習方法的指導(dǎo),全方面提高他們的數(shù)學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數(shù)學成績更上一層樓。
②加強對雙差生的輔導(dǎo)。雙差生是一個班級教學成敗的關(guān)鍵,因此,我將下大力氣輔導(dǎo)雙差生,通過個別或集體的方法進行耐性教學,從而使他們的紀律以及數(shù)學成績有一定的進步。
3、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導(dǎo)學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
六、教學進度安排
本學期授課時間約為20周,本學期的教學任務(wù):
第一學段:數(shù)學必修3;
第二學段:理科2-1。另完成選修4—5,和選修4—4的教學任務(wù),保證完成教學任務(wù)。
高二數(shù)學教學計劃10
一、教材依據(jù)
本節(jié)課是湘教版數(shù)學(必修三)第二章《解析幾何初步》第二節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。
二、教材分析
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題——求直線方程問題。在引入,過程中要讓學生弄清直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。
在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
三、教學目標
知識與技能:(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。
過程與方法:在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。
情態(tài)與價值觀:通過讓學生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學生數(shù)形結(jié)合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學生能用聯(lián)系的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的應(yīng)用。
要點:運用數(shù)形結(jié)合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1.教學方法的選擇:啟發(fā)、引導(dǎo)、討論.
創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學模式引導(dǎo)學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性學習活動。
2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學建模的`思想;學生要學會用“數(shù)形結(jié)合”的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學生積極參與課堂學習,我主要指導(dǎo)了以下的學習方法:
、.讓學生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學生的參與意識和數(shù)學表達能力。
、.分組討論。
七、教學過程
問 題
師生活動
設(shè)計意圖
1、在直線坐標系內(nèi)確定一條直線,應(yīng)知道哪些條件?
學生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標 滿足的關(guān)系式。
使學生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。
2、直線 經(jīng)過點 ,且斜率為 。設(shè)點 是直線 上的任意一點,請建立 與 之間的關(guān)系。
學生根據(jù)斜率公式,可以得到,當 時, ,即
(1)
教師對基礎(chǔ)薄弱的學生給予關(guān)注、引導(dǎo),使每個學生都能推導(dǎo)出這個方程。
培養(yǎng)學生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標 滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。
3、(1)過點 ,斜率是 的直線 上的點,其坐標都滿足方程(1)嗎?
學生驗證,教師引導(dǎo)。
使學生了解方程為直線方程必須滿兩個條件。
(2)坐標滿足方程(1)的點都在經(jīng)過 ,斜率為 的直線 上嗎?
學生驗證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式.
使學生了解方程為直線方程必須滿兩個條件。
4、直線的點斜式方程能否表示坐標平面上的所有直線呢?
學生分組互相討論,然后說明理由。
使學生理解直線的點斜式方程的適用范圍。
5、(1) 軸所在直線的方程是什么? 軸所在直線的方程是什么?
(2)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
(3)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
教師學生引導(dǎo)通過畫圖分析,求得問題的解決。
進一步使學生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
6、例2、例4的教學。
教師引導(dǎo)學生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標平面內(nèi),要畫一條直線可以怎樣去畫。
學會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。
7、例3的教學。
求經(jīng)過點 ,斜率為 的直線 的方程。
學生獨立求出直線 的方程:
(2)
在此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學生分析方程(2)由哪兩個條件確定,讓學生理解斜截式方程概念的內(nèi)涵。
引入斜截式方程,讓學生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
8、觀察方程 ,它的形式具有什么特點?
學生討論,教師及時給予評價。
深入理解和掌握斜截式方程的特點?
9、直線 在 軸上的截距是什么?
學生思考回答,教師評價。
使學生理解“截距”與“距離”兩個概念的區(qū)別。
10、你如何從直線方程的角度認識一次函數(shù) ?一次函數(shù)中 和 的幾何意義是什么?你能說出一次函數(shù) 圖象的特點嗎?
學生思考、討論,教師評價、歸納概括。
體會直線的斜截式方程與一次函數(shù)的關(guān)系.
11、課堂練習第65頁練習第1,2,3題。
學生獨立完成,教師檢查反饋。
鞏固本節(jié)課所學過的知識。
12、小結(jié)
教師引導(dǎo)學生概括:(1)本節(jié)課我們學過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
使學生對本節(jié)課所學的知識有一個整體性的認識,了解知識的來龍去脈。
13、布置作業(yè):第77頁第5題
學生課后獨立完成。
鞏固深化
八、教學反思
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。
本節(jié)課的基本題形:
1、已知直線上一點及直線的傾斜角,求直線的方程并作圖;
2、已知直線上兩點,求直線的方程并作圖。教學時應(yīng)注意讓學生明確直線的傾斜角與斜率的關(guān)系,掌握過兩點的直線的斜率公式,訓練學生求直線方程的書寫格式及直線的規(guī)范作圖。
高二數(shù)學教學計劃11
一、有計劃的安排一學期的教學工作計劃:
新學期開課的第一天,備課組進行了第一次活動。該次活動的主題是制定本學期的教學工作計劃及討論如何響應(yīng)學校的號召,開展主體式教學模式
的教學改革活動。
一個完整完善的工作計劃,能保證教學工作的順利開展和完滿完成,所以一定要加以十二分的重視,并要努力做到保質(zhì)保量完成。
在以后的教學過程中,堅持每周一次的關(guān)于教學工作情況總結(jié)的備課組活動,發(fā)現(xiàn)情況,及時討論及時解決。
二、定時進行備課組活動,解決有關(guān)問題
備課組將進行每周一次的活動,內(nèi)容包括有關(guān)教學進度的安排、疑難問題的分析討論研究,數(shù)學教學的動態(tài)、數(shù)學教學的`改革與創(chuàng)新等。一般每次
備課組活動都有專人主要負責發(fā)言,時間為二節(jié)課。經(jīng)過精心的準備,每次的備課組活動都將能解決一到幾個相關(guān)的問題,各備課組成員的教學研
究水平也會在不知不覺中得到提高。
三、積極抓好日常的教學工作程序,確保教學工作的有效開展
按照學校的要求,積極認真地做好課前的備課資料的搜集工作,然后集體備課,制作成教學課件后共享,全備課組共用。一般要求每人輪流制作,
一人一節(jié),上課前兩至三天完成。每位教師的電教課比例都要在90%以上。每周至少兩次的學生作業(yè),要求全批全改,發(fā)現(xiàn)問題及時解決,及時在
班上 評講,及時反饋;每章至少一份的課外練習題,要求要有一定的知識覆蓋面,有一定的難度和深度,每章由專人負責出題;每章一次的測驗
題,也由專人負責出題,并要達到一定的預(yù)期效果。
四、積極參加教學改革工作,使學校的教研水平向更高處推進
本學期學校全面推行主體式的教學模式,要使學生參與到教學的過程中來,更好地提高他們學習的興趣和學習的積極性,使他們更自主地學習,學
會學習的方法。積極響應(yīng)學校教學改革的要求,充分利用網(wǎng)上資源,使用分組討論式教學,充分體現(xiàn)以學生為主體的教學模式,不斷提高自身的教
學水平。
高二數(shù)學教學計劃12
一、教材分析。
1、教材地位、作用。
本節(jié)課的內(nèi)容選自《普通高中課程標準實驗教科書數(shù)學必修3(A)版》第三章中的第3.2.1節(jié)古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。
古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內(nèi)容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節(jié)課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學情分析。
學生基礎(chǔ)一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節(jié)上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學目標。
1、知識與技能目標。
。1)理解等可能事件的概念及概率計算公式。
(2)能夠準確計算等可能事件的概率。
2、過程與方法。
根據(jù)本節(jié)課的知識特點和學生的認知水平,教學中采用探究式和啟發(fā)式教學法,通過生活中常見的實際問題引入課題,層層設(shè)問,經(jīng)過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。
3、情感態(tài)度與價值觀。
概率問題與實際生活聯(lián)系緊密,學生通過概率知識的學習,可以更好的理解隨機現(xiàn)象的本質(zhì),掌握隨機現(xiàn)象的規(guī)律,科學地分析、解釋生活中的一些現(xiàn)象,初步形成實事求是的科學態(tài)度和鍥而不舍的求學精神。
三、重點、難點。
1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
四、教學過程。
1、創(chuàng)設(shè)情境,提出問題。
師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
通過這個同學們經(jīng)常會遇到的問題,引導(dǎo)學生合作探索新知識,符合“學生為主體,老師為主導(dǎo)”的現(xiàn)代教育觀點,也符合學生的認知規(guī)律。隨著新問題的提出,激發(fā)了學生的求知欲望,使課堂的有效思維增加。
2、抽象思維。形成概念、
師:考察試驗一“拋擲一枚質(zhì)地均勻的骰子”,有幾種不同的結(jié)果,結(jié)果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。
師:考察試驗二“拋擲一枚質(zhì)地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:
。1)在“拋擲一枚質(zhì)地均勻的骰子”試驗中,會同時出現(xiàn)“1點”和“2點”這兩個基本事件嗎?
。2)事件“出現(xiàn)偶數(shù)點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
。1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
。ㄗ寣W生交流討論,教師再加以總結(jié)、概括)
讓學生歸納與總結(jié),鼓勵學生用自己的語言表述,從而提高學生的表達能力與數(shù)學語言的組織能力
例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結(jié)果寫出來,本小題我們可以按照字母排序的.順序,用列舉法列出所有基本事件的結(jié)果。
解:所求的基本事件共有6個:
____________________________________________________________________________________。
由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數(shù),不僅能讓學生直觀的感受到對象的總數(shù),而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數(shù)這一難點,同時滲透了數(shù)形結(jié)合及分類討論的數(shù)學思想。
師:你能發(fā)現(xiàn)前面兩個數(shù)學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎(chǔ)上再進行補充)
試驗一中所有可能出現(xiàn)的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
試驗二中所有可能出現(xiàn)的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現(xiàn)的可能性相等,都是;
例1中所有可能出現(xiàn)的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
經(jīng)概括總結(jié)后得到:
、僭囼炛兴锌赡艹霈F(xiàn)的基本事件只有有限個;
②每個基本事件出現(xiàn)的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
學生在合作交流的探究氛圍中思考、質(zhì)疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現(xiàn)了數(shù)學的化歸思想。啟發(fā)誘導(dǎo)的同時,訓練了學生觀察和概括歸納問題的能力。
3、概念深化,加深理解。
試驗“向一個圓面內(nèi)隨機地投射一個點,如果該點落在圓內(nèi)任意一點都是等可能的”。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果是圓面內(nèi)所有的點,試驗的所有可能結(jié)果數(shù)是無限的,雖然每一個試驗結(jié)果出現(xiàn)的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學隨機地向一靶心進行射擊,這一試驗的結(jié)果只有有限個:命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)’。你認為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果只有7個,而命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)的出現(xiàn)不是等可能的,即不滿足古典概型的第二個條件。
這兩個問題的設(shè)計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養(yǎng)學生思維的深刻性與批判性。
4、觀察比較,推導(dǎo)公式。
師:在古典概型下,隨機事件出現(xiàn)的概率如何計算?(讓學生討論、思考交流)
生:試驗二中,出現(xiàn)各個點的概率相等,即
P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)
由概率的加法公式,得
P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1
因此P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
P(“出現(xiàn)偶數(shù)點”)=P(“2點”)+P(“4點”)+P(“6點”)=++==
P(“出現(xiàn)偶數(shù)點”)=?=
師:根據(jù)上述試驗,你能概括總結(jié)出,古典概型計算任何事件的概率計算公式嗎?
生:_________________________________________________________________。
學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數(shù)學知識形成的發(fā)生與發(fā)展的過程,體現(xiàn)具體到抽象、從特殊到一般的數(shù)學思想,同時讓學生感受數(shù)學化歸思想的優(yōu)越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應(yīng)該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應(yīng)該注意:
、僖袛嘣摳怕誓P褪遣皇枪诺涓判停
、谝页鲭S機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
5、應(yīng)用與提高。
例2:單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考查的內(nèi)容,他可以選擇惟一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
解:這是一個古典概型,因為試驗的可能結(jié)果只有4個:選擇A、選擇B、選擇C、選擇D,從而由古典概型的概率計算公式得:
探究:在標準化考試中既有單選題又有不定項選擇題,不定項選擇題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
解:這是一個古典概型,因為試驗的可能結(jié)果只有15個:選擇A、選擇B、選擇C、選擇D,選擇AB、選擇AC、選擇AD、選擇BC、選擇BD、選擇CD、選擇ABC、選擇ABD、選擇ACD、選擇BCD、選擇ABCD,從而由古典概型的概率計算公式得:
P(“答對”)=1/15
解決了課前提出的思考題,讓學生明確解決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
例3:同時擲兩個骰子,計算:
(1)一共有多少種不同的結(jié)果?
。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
。3)向上的點數(shù)之和是5的概率是多少?
。ń處熛茸寣W生獨立完成,再抽兩位不同答案的學生回答)
學生1:
、偎锌赡艿慕Y(jié)果是:
。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。
、谙蛏系狞c數(shù)之和為5的結(jié)果有2個,它們是(1,4)(2,3)。
、巯蛏宵c數(shù)之和為5的結(jié)果(記為事件A)有2種,因此,由古典概型的概率計算公式可得
學生2:
、贁S一個骰子的結(jié)果有6種,我們把兩個骰子標上記號1,2以便區(qū)分,由于1號骰子的每一個結(jié)果都可與2號骰子的任意一個結(jié)果配對,組成同時擲兩個骰子的一個結(jié)果,我們可以用列表法得到(如圖),其中第一個數(shù)表示1號骰子的結(jié)果,第二個數(shù)表示2號骰子的結(jié)果。
由表中可知同時擲兩個骰子的結(jié)果共有36種。
②在上面的所有結(jié)果中,向上的點數(shù)之和為5的結(jié)果有4種:(1,4),(2,3),(3,2),(4,1)。
、塾捎谒36種結(jié)果是等可能的,其中向上點數(shù)之和為5的結(jié)果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學生交流討論,教師再抽學生回答)
生:答案1是錯的,原因是其中構(gòu)造的21個基本事件不是等可能發(fā)生的,因此就不能用古典概型的概率公式求解。
師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現(xiàn)是等可能的”這個條件,否則計算出的概率將是錯誤的。
本題通過學生的觀察比較,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現(xiàn)了學生的主體地位,逐漸使學生養(yǎng)成自主探究能力。同時培養(yǎng)學生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學生數(shù)學思維情趣。
6、知識梳理,課堂小結(jié)。
(1)本節(jié)課你學習到了哪些知識?
(2)本節(jié)課滲透了哪些數(shù)學思想方法?
7、作業(yè)布置。
。1)閱讀本節(jié)教材內(nèi)容
。2)必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題
。3)選做題課本134頁習題B組第1題
8、教學反思。
本節(jié)課的教學設(shè)計以“問題串”的方式呈現(xiàn)為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發(fā)現(xiàn),把“數(shù)學發(fā)現(xiàn)”的權(quán)力還給學生,讓學生感受知識形成的過程,獲得數(shù)學發(fā)現(xiàn)的體驗。將學習的主動權(quán)較完整地交還給學生。
本節(jié)課始終本著在教師的引導(dǎo)下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構(gòu)建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。
高二數(shù)學教學計劃13
一、指導(dǎo)思想:
在學校教學工作意見指導(dǎo)下,在年級部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執(zhí)行學校的各項教育教學制度和要求,強化數(shù)學教學研究,提高全組老師的教學、教研水平,明確任務(wù),團結(jié)協(xié)作,圓滿完成教學教研任務(wù)。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應(yīng)用性、聯(lián)系性等特點。
三、教學任務(wù)
本學期上半期授課內(nèi)容為《選修1-2》和《選修4-4》,中段考后進入第一輪復(fù)習。
四、學生基本情況及教學目標
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以雙基教學為主要內(nèi)容,堅持抓兩頭、帶中間、整體推進,使每個學生的數(shù)學能力都得到提高和發(fā)展。
高二文科學生共有10個班,其中尖尖班2個,8個平行重點班。尖尖班的學生重點是數(shù)學尖子生的培養(yǎng),沖刺高考數(shù)學高分為目標。平行班學生的主要任務(wù)有兩點,第一點:保證重點學生的數(shù)學成績穩(wěn)步上升,成為學生的優(yōu)勢科目;第二點:加強數(shù)學學習比較困難學生的輔導(dǎo)培養(yǎng),增加其信息并逐步縮小數(shù)學成績差距。
五、教法分析:
1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應(yīng)用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的`沖動,以達到培養(yǎng)其興趣的目的。
2.通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
六、教學措施:
1、認真落實,搞好集體備課。每兩周進行一次集體備課。各組老師根據(jù)自已承擔的任務(wù),提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學方法等。
2、詳細計劃,保證練習質(zhì)量。教學中用配備資料《導(dǎo)學案》,要求學生按教學進度完成相應(yīng)的習題,教師要提前向?qū)W生指出不做的題,以免影響學生的時間,每周以內(nèi)容滾動式編一份練習試卷,學生完成后老師要收齊批改,對存在的普遍性問題要安排時間講評。
3、抓好第二課堂,穩(wěn)定數(shù)學優(yōu)生,培養(yǎng)數(shù)學能力興趣。尖尖班的教學進度可適當調(diào)整,教學難度要有所提升;其他各班要培育好本班的優(yōu)生,注意激發(fā)學生的學習興趣,隨時注意學生學習方法的指導(dǎo)。備課組也將組織學生上培優(yōu)班。
4、加強輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學學習困難的學生,教師的下班輔導(dǎo)十分重要。教師教學中,要盡快掌握班上學生的數(shù)學學習情況,有針對性地進行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學生。并根據(jù)需要在年級開設(shè)數(shù)學困難生補充輔導(dǎo)班。
七、教師任務(wù)分工安排表
周末試卷出卷以及備課組集體備課主講人時間安排表
周數(shù) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
負責人 | 張國應(yīng) | 樊國林 | 時俊 | 盧三順 | 祝入云 | 張國應(yīng) | 樊國林 | 時俊 | 盧三順 | 祝入云 |
周數(shù) | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
負責人 | 張國應(yīng) | 樊國林 | 時俊 | 盧三順 | 祝入云 | 張國應(yīng) | 樊國林 | 時俊 | 盧三順 | 祝入云 |
八、教學進度表:略
最后,希望小編整理的下學期高二數(shù)學教學計劃對您有所幫助,祝同學們學習進步。
高二數(shù)學教學計劃14
一、指導(dǎo)思想:
以1215課堂教學模式為指引,以學校教導(dǎo)處、教研組、年級部工作計劃為指南,加強高二數(shù)學備課組教師的教育教學理論學習,更新教學觀念,落實教學常規(guī),全面提高學生的數(shù)學能力,尤其是提高創(chuàng)新意識和實踐能力,為社會培養(yǎng)創(chuàng)造型人才。
二、學情分析及相關(guān)措施:
今年高二重新分班后我接了高二(1)和高二(13)一理一文兩個班的數(shù)學教學,學生程度不是太好而且新來的學生需要適應(yīng)過程,教學中要從學生的認知水平和實際能力出發(fā),及時糾正不合理學習方法,研究學生的心理特征,做好高二與高一的銜接工作。注重培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣。具體措施如下:
(1)注意研究學生,做好高二與高一學習方法的銜接。
(2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標準設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學,為進一步的`學習打好堅實的基礎(chǔ),切勿忙于過早的拔高,講難題。同時應(yīng)放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進。
(3)培養(yǎng)學生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學知識進行能力方面的分析,引導(dǎo)學生了解數(shù)學需要哪些能力要求。
(4)讓學生通過周月考和單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準備,用周周練及時的鞏固復(fù)習所學內(nèi)容知識點,以及一些常見的題型和方法。
(5)合理利用晚自習的時間抓好尖子生與后進生的輔導(dǎo)工作,分析周周練的作業(yè)和課外輔導(dǎo)資料。適當安排時間將高一的重點內(nèi)容帶著學生們復(fù)習回顧。
(6)注意運用現(xiàn)代化教學手段輔助數(shù)學教學;注意運用投影儀、電腦軟件等現(xiàn)代化教學手段輔助教學,提高課堂效率,激發(fā)學生學習興趣。
三、教學進度(草稿):
第1周 | 數(shù)學必修2:立體幾何 1.1空間幾何體的結(jié)構(gòu) |
第2周 | |
第3周 | |
第4周 | |
第5周 | 2.2直線、平面平行的判定及其性質(zhì)(1)(2)(3)(4) |
第6周 | 2.3直線、平面垂直的判定及其性質(zhì)(1)(2)(3)(4) |
第7周 | 2.3直線、平面垂直的判定及其性質(zhì)(4) 空間點、線、面復(fù)習 |
第8周 | 選修2-1:空間向量 第三章3.1空間向量及其運算 |
第9周 | 空間向量及其運算 |
第10周 | 期中考試 |
第11周 | 空間向量 |
第12周 | 1.1命題及其關(guān)系 |
第13周 | 1.3簡單的邏輯連結(jié)詞 |
第14周 | |
第15周 | 2.1橢圓(3課時) |
第16周 | 2.2雙曲線(2課時) |
第17周 | 2.3拋物線(1課時) |
第18周 | 曲線與方程(2課時) |
第19周 | 總復(fù)習 |
第20周 | 期末考試 |
高二數(shù)學教學計劃15
數(shù)學分析
1。解析幾何是利用代數(shù)方法來研究幾何圖形性質(zhì)的一門學科,它包括平面解析幾何和空間解析幾何兩部分。它的主要研究對象是直線和平面、二次曲線和二次曲面。在大學階段,“解析幾何”是以圓錐曲線和圓錐曲面為研究對象的一門學科,研究三元二次方程表示的曲線和曲面,如空間直線、平面、柱面、錐面、旋轉(zhuǎn)曲面和二次曲面的方程等,研究的內(nèi)容比較固定,研究方法比較成熟。高中階段主要研究二元二次方程所表示的曲線,比如圓、橢圓、雙曲線、拋物線等。
2!敖馕鰩缀嗡枷搿贝砹搜芯壳和曲面的一般方法和手段,即用代數(shù)為工具解決幾何問題。用解析幾何的思想方法來研究幾何問題,思維工程可以表現(xiàn)為以下步驟:第一,用代數(shù)的語言來描述幾何圖形,例如“點”可以用“數(shù)對”表示,“曲線”可以用“方程”表示等;第二,把幾何問題轉(zhuǎn)化為代數(shù)問題,例如,“兩直線平行”可以轉(zhuǎn)化為“兩直線方程組成的方程組無解”等;第三,實施代數(shù)運算,求解代數(shù)問題;第四,將代數(shù)解轉(zhuǎn)化為幾何結(jié)論。隨著數(shù)學本身的發(fā)展,出現(xiàn)了代數(shù)數(shù)論、代數(shù)幾何等的數(shù)學分支,而拓撲學、泛函等代數(shù)工具都可以作為研究心得曲線和曲面的工具,這些都是“解析幾何思想”的發(fā)展個推廣。解析幾何初步的重點是幫助學生理解解析幾何的基本思想,即把代數(shù)作為一種工具和手段來研究幾何問題。
3。“坐標系”是解析幾何思想的主要組成部分,因為建立了坐標系,就能把曲線和曲面的性質(zhì)用代數(shù)來表示,從而把幾何問題轉(zhuǎn)化為代數(shù)問題來解決。適當?shù)剡x擇坐標系可以大大簡化對圖形性質(zhì)的研究,但圖形的性質(zhì)不會豎著坐標系的.變化而改變。我們要研究的正是那些和坐標系的選擇無關(guān)的性質(zhì);或者說建立坐標系正是為了擺脫圖形對坐標系的依賴,這在對數(shù)上就表現(xiàn)為某個線性變換群下的不變量和不變關(guān)系。
4。圓錐曲線是我們生活中最基本的圖形。①圓錐曲線(面)可以幫助我們刻畫一些基本的運動。例如,太陽系中,八大行星的運動軌跡都是橢圓。②光學性質(zhì)和圓錐曲線是密不可分的,基本的光學性質(zhì)都是由圓錐曲線體現(xiàn)出來的。例如,探照燈就是利用拋物面的光學性質(zhì)制作而成的,它可以將點光源發(fā)出的光折射成平行光,照射到足夠遠的地方。幾乎所有的光學儀器都是依照圓錐曲線(面)的性質(zhì)制成的。③研究圓錐曲線(面)的性質(zhì)時體現(xiàn)解析幾何本質(zhì)的最好載體,即便是在大學數(shù)學系的學習中,如何利用方程的系數(shù)確定二次曲線的形狀,揭示其規(guī)律也是數(shù)學的經(jīng)典內(nèi)容。
教育分析
1。有助于學生數(shù)形結(jié)合思想的培養(yǎng)。
解析幾何的本質(zhì)是用代數(shù)的方法研究圖形的幾何性質(zhì),它溝通了代數(shù)與幾何之間的聯(lián)系,體現(xiàn)了數(shù)形結(jié)合的'重要思想。在解析幾何初步的學習中,經(jīng)歷將幾何問題代數(shù)化、處理代數(shù)問題、分析代數(shù)結(jié)果的幾何含義、解決幾何問題的過程,有助于學生認識數(shù)學內(nèi)容之間的內(nèi)在聯(lián)系,體會數(shù)形結(jié)合的思想,形成正確的數(shù)學觀。
2。是培養(yǎng)學生運算能力的重要載體。
運算思想是數(shù)學中最重要的思想之一。解析幾何的運算,往往有較強的綜合性,設(shè)計相應(yīng)的代數(shù)方程知識(包括消元思想、整體思想、函數(shù)思想、同解原理、韋達定理、方程的解、構(gòu)造不等式、參變量代換、求解不等式)等內(nèi)容,對學生計算能力要求較高。在解決解析幾何問題時,要注重“數(shù)”與“形”的統(tǒng)一,在計算時,要結(jié)合圖形自身的特點,充分挖掘圖形的幾何結(jié)論,這往往是解決問題的突破口和簡化解題過程的有效方法。比如,涉及圓的問題時,注重運用圓的相關(guān)幾何性質(zhì),對于直線與圓的位置關(guān)系要強化幾何處理,淡化代數(shù)處理方法,解析幾何獨有的特點,最培養(yǎng)學生的運算能力起到了獨特的作用。
課標解讀
1。整體定位
“解析幾何初步”研究的問題是直線和圓,及其之間的關(guān)系,還有空間直角坐標系的概念。高中階段解析幾何內(nèi)容的分布,除了“解析幾何初步”外,在選修系列1,2中,都延續(xù)了解析幾何的內(nèi)容,設(shè)計了“圓錐曲線與方程”。在選修系列4的《幾何證明選講》中,還將繼續(xù)研究圓錐曲線。研究圓錐曲線有兩種方法:綜合幾何的方法和解析幾何的方法。在選修系列4的《幾何證明選講》中,運用了綜合幾何的方法。
“解析幾何初步”是要依托直線的方程與圓的標準方程,讓學生把握用代數(shù)方法解決幾何問題的基本步驟,初步形成代數(shù)方法解決幾何問題的能力,幫助學生理解解析幾何的基本思想。
2。具體要求
(1)直線與方程
①在平面直角坐標系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
、诶斫庵本的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;
、勰芨鶕(jù)斜率判定兩條直線平行或垂直;
、芨鶕(jù)確定直線位置關(guān)系的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;
、菽苡媒夥匠探M的方法求兩直線的交點坐標;
⑥探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
、倩仡櫞_定圓的幾何要素,在平面直角坐標系中,探索并掌握圓的標準方程與一般方程;
、谀芨鶕(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關(guān)系;
、勰苡弥本和圓的方程解決一些簡單的問題。
(3)在平面“解析幾何初步”的學習過程中,體會用代數(shù)方法處理幾何問題的思想。
(4)空間直角坐標系
、偻ㄟ^具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會空間直角坐標系刻畫點的位置;
、谕ㄟ^表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索并得出空間兩點間的距離公式。
《標準》中對“解析幾何初步”的要求只是階段性要求,在選修系列1,2中,還將進一步學習圓錐曲線與方程的內(nèi)容。因此,對本部分內(nèi)容的教學要把握好“度”,特別是對于解析幾何思想的理解不能要求一步到位。
3。課標解讀
(1)要注重知識的發(fā)生與發(fā)展的過程
解析幾何初步的教學,要注重知識的發(fā)生與發(fā)展的`過程,首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何元素及其關(guān)系,進而將幾何問題代數(shù)化;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。同時,應(yīng)強調(diào)借助幾何直觀理解代數(shù)關(guān)系的意義,即對代數(shù)關(guān)系的幾何意義的解釋。讓學生在這樣的過程中,不斷地體會“數(shù)形結(jié)合”的思想方法。
數(shù)學課程應(yīng)返璞歸真,努力揭示數(shù)學概念、法則、結(jié)論的發(fā)展過程和本質(zhì),要通過學生的自主探索活動,使學生理解數(shù)學概念、結(jié)論逐步形成的過程,體會蘊涵在其中的思想方法。在解析幾何初步的教學中,同樣要通過觀察、操作探索,確定直線與圓的幾何要素,并由此探索掌握直線與圓的幾種形式的方程,探索掌握一些距離公式。
比如如何在平面直角坐標系中描述直線,這是解析幾何教學中遇到的第一個問題。在坐標系中,一條直線或者與x軸平行,或者與x軸相交。與x軸平行的直線的代數(shù)特征很簡單,這條直線上的點的縱坐標是個常數(shù),即y=a。除了x=a,還有什么方法可以刻畫與x軸相交的直線?也就是如何用代數(shù)的方法刻畫直線的斜率。
(2)在高中階段,直線的斜率一般一般有三種表示方式
、儆脙A斜角的正切
這是傳統(tǒng)教材的方式,由于傾斜角是大于等于0°小于180°,傾斜角與其正切一一對應(yīng)的(90°除外);當然,也可以用傾斜角的余弦值表示直線的斜率,傾斜角與其余弦值是一一對應(yīng)的,但這種表示要復(fù)雜一些,一般都選擇使用傾斜角的正切。
這需要先引入0°到180°的正切函數(shù)的概念。
、谟孟蛄
內(nèi)容結(jié)構(gòu)
1。知識內(nèi)容
2。 章節(jié)安排
本章教學時間約需18課時,具體分配如下:
1 直線與直線的方程 8課時
2 圓與圓的方程 5課時
3 空間直角坐標系 3課時
【高二數(shù)學教學計劃】相關(guān)文章:
高二數(shù)學的教學計劃06-01
高二數(shù)學教學計劃10-02
高二數(shù)學教學計劃07-08
高二數(shù)學下冊的教學計劃10-21
高二數(shù)學教學計劃(15篇)08-14
高二數(shù)學教學計劃7篇06-23
高二數(shù)學教學計劃15篇08-07
高二數(shù)學教學計劃(通用15篇)11-05
高二數(shù)學教學計劃合集15篇10-17