亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

分式說課稿

時間:2025-04-13 23:29:52 說課稿 我要投稿

分式說課稿

  作為一名無私奉獻(xiàn)的老師,時常會需要準(zhǔn)備好說課稿,說課稿有助于學(xué)生理解并掌握系統(tǒng)的知識。快來參考說課稿是怎么寫的吧!下面是小編整理的分式說課稿,希望對大家有所幫助。

分式說課稿

分式說課稿1

  我們知道,分式是表示數(shù)量關(guān)系的工具,是刻畫現(xiàn)實(shí)世界解決實(shí)際問題的一種模型。本節(jié)課的內(nèi)容是分式的起始課。下面我將從教學(xué)背景、教法學(xué)法、教學(xué)過程、設(shè)計(jì)說明四個方面來具體闡述我對這節(jié)課的理解和設(shè)計(jì)。

  一、教學(xué)背景

  1.教學(xué)內(nèi)容分析

  (1)地位與作用:《分式》是北師大版新教材八年級下冊第三章第一節(jié),本節(jié)內(nèi)容分兩課時完成。我設(shè)計(jì)的是第一課時的教學(xué),主要內(nèi)容是分式概念、意義和用分式表示數(shù)量關(guān)系。分式是繼整式之后,又一代數(shù)學(xué)習(xí)的基本內(nèi)容,是小學(xué)所學(xué)分?jǐn)?shù)的延伸和擴(kuò)展,學(xué)好本節(jié)課,是今后繼續(xù)學(xué)習(xí)分式的性質(zhì)、運(yùn)算以及解分式方程的前提。

 。2)重點(diǎn):分式的定義

 。3)難點(diǎn):識別分式有無意義;用分式描述數(shù)量關(guān)系

  分式概念是《分式》這一章學(xué)習(xí)的起點(diǎn)和基礎(chǔ),因此分式的概念是教學(xué)的重點(diǎn)。又由于初中學(xué)生的認(rèn)知結(jié)構(gòu)中存在著這樣的障礙:不善于概括數(shù)學(xué)材料、缺乏對字母及其他數(shù)學(xué)符號用于運(yùn)算的能力,所以判定分母中整式的值何時不為零、用分式表示數(shù)量關(guān)系是教學(xué)的難點(diǎn)。

  2.教學(xué)目標(biāo)

  (1)知識與技能目標(biāo):掌握分式概念,學(xué)會判別分式何時有意義,能用分式表示數(shù)量關(guān)系,進(jìn)一步發(fā)展符號感。

 。2)過程與方法目標(biāo):經(jīng)歷分式概念的自我建構(gòu)過程及用分式描述數(shù)量關(guān)系的過程,學(xué)會與人合作,并獲得代數(shù)學(xué)習(xí)的一些常用方法:類比轉(zhuǎn)化、合情推理、抽象概括等。

 。3)情感與態(tài)度目標(biāo):通過豐富的數(shù)學(xué)活動,獲得成功的經(jīng)驗(yàn),體驗(yàn)數(shù)學(xué)活動充滿著探索和創(chuàng)造,體會分式的模型思想。

  經(jīng)過七年級一年的學(xué)習(xí),學(xué)生初步養(yǎng)成了自主探究意識。一方面,在七年級下冊中,學(xué)生已經(jīng)學(xué)習(xí)了整式,分式與整式一樣也是代數(shù)式,因此研究與學(xué)習(xí)的方法與整式相類似;另一方面,"分式"是"分?jǐn)?shù)"的"代數(shù)化",學(xué)生可以通過類比進(jìn)行分式的學(xué)習(xí)。所以我依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,以教材特點(diǎn)和學(xué)生認(rèn)知水平為出發(fā)點(diǎn),確定以上3個方面為本節(jié)課的教學(xué)目標(biāo)。

  二、教法與學(xué)法

  基于以上教材特點(diǎn)和學(xué)生情況的分析,我在本節(jié)課主要采用"引導(dǎo)—發(fā)現(xiàn)教學(xué)法",于計(jì),通過"問題情境—建立模型—解釋、應(yīng)用與拓展"的模式展開教學(xué)。

  三、教學(xué)過程

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:"數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。"為能更多地向?qū)W生提供從事數(shù)學(xué)活動的機(jī)會,我將本節(jié)課設(shè)為以下五個環(huán)節(jié):發(fā)現(xiàn)新知—再探新知—應(yīng)用新知—深化拓展—小結(jié)鞏固,以期在多樣的活動中激發(fā)學(xué)生的.學(xué)習(xí)潛能,引導(dǎo)學(xué)生積極自主探索、合作交流與實(shí)踐創(chuàng)新。

  (一) 創(chuàng)設(shè)情景導(dǎo)入新課

  問題情景1.在這兒我對教材進(jìn)行了處理,課本引例是 "土地沙化、固沙造林"問題,設(shè)問是"這一問題中有哪些等量關(guān)系?"我將引課方式改為通過學(xué)生自己構(gòu)造代數(shù)式去發(fā)現(xiàn)分式,:

  問題情景2.輪船在水上航行,靜水速為每小時20千米,順?biāo)叫?00千米與逆水

  航行60千米所有時間相等。試表示順?biāo)c逆水所用時間

  3利用學(xué)生舉實(shí)例列出相應(yīng)的代數(shù)式

  這樣從學(xué)生熟悉的整式及其運(yùn)算入手,引導(dǎo)學(xué)生從舊知中發(fā)現(xiàn)新知,與學(xué)生的原有認(rèn)知水平更相吻合,有利于探索活動的展開,培養(yǎng)學(xué)生的創(chuàng)新意識。

  "好的教師不是在教數(shù)學(xué)而是激發(fā)學(xué)生自己去學(xué)數(shù)學(xué)".通過學(xué)生對自己所構(gòu)造的代數(shù)式進(jìn)行觀察,創(chuàng)設(shè)發(fā)現(xiàn)情境,學(xué)會把自己的活動作為思考的對象,更好地進(jìn)行分式概念的建構(gòu)活動。

  (二) 合作交流,解讀探究

  1,分式的概念

 。1)議一議:你們所發(fā)現(xiàn)的這一類新代數(shù)式它們有什么共同特征?它們與整式有什么不同?

 。2)類比分?jǐn)?shù),概括分式的概念及表達(dá)形式

  兩個數(shù) , 相除可以用" "或" "來表示,如果兩個代數(shù)式A,B相除我們也可以用"A÷B" 或" "來表示。

  分式的概念:兩個整式A,B相除時,可以表示為的形式,如果分母B中含有字母,那么 叫做分式。如:分母中都含有字母,都是分式。

  這樣的安排可以刺激學(xué)生復(fù)習(xí)和回憶前面所學(xué)的知識,選擇能作為新知識的生長點(diǎn)的舊知識,將新知識的各因素聯(lián)系起來,并以組織好的方式呈現(xiàn)給學(xué)生,使學(xué)生看到了知識的發(fā)展過程的同時,也學(xué)到了新的知識。通過比較概括,是新舊知識相聯(lián)系,通過啟發(fā),激活學(xué)生頭腦中的舊知識,調(diào)動學(xué)生主動學(xué)習(xí)的心理傾向。使他們對分式的概念先有一個粗略的總體認(rèn)識,為下一步的教學(xué)作好鋪墊,使學(xué)生對反映新知識內(nèi)容的文字、符號先有一個表層的認(rèn)識。

  (3)小組內(nèi)互舉例子,判定是否分式

  根據(jù)分式的概念,我們還可以看到分?jǐn)?shù)線具有雙重意義:(1)表示括號;(2)表示除號。所以為了讓學(xué)生體會到這一點(diǎn),

  2,在掌握了分式的概念以后,教師通過"要分?jǐn)?shù)有意義,只要使分母不為零"讓學(xué)生很自然得過渡到"要分式有意義,也只要使分母不為零"即可的思想。

  教師抓住這一契機(jī),給出練習(xí)1

  3.學(xué)生根據(jù)之前的結(jié)論解決問題,教師順?biāo)浦郏俳o出以下分式,讓學(xué)生討論,這時當(dāng)x取什么值時,分式值為零,給出練習(xí)2.

  通過三步的學(xué)習(xí)鞏固學(xué)生對概念的強(qiáng)化理解。

  (三)應(yīng)用遷移鞏固提高

  根據(jù)學(xué)生基礎(chǔ)差的特點(diǎn),又設(shè)計(jì)了三個題組訓(xùn)練,讓學(xué)生在鞏固的基礎(chǔ)上加以提高。

  (四)總結(jié)反思,拓展升華

  一節(jié)課已進(jìn)入尾聲,教師指導(dǎo)學(xué)生反思:我們是如何得到分式概念的?分式和我們以前學(xué)過的什么知識有聯(lián)系?我們用了哪些方法進(jìn)一步揭示了分式意義的本質(zhì)?在以上的學(xué)習(xí)過程中你的收獲有哪些?

  教師整理學(xué)生的發(fā)言,歸納小結(jié):

  (1)整式和分式統(tǒng)稱為有理式

 。2)分式的概念:兩個整式A,B相除時,可以表示為 的形式,如果分母B中含有字母,那么叫做分式。

  (3)要分式有意義,也只要使分母不為零

  (4)當(dāng)分母為零時,分式就無意義

  (5)分式的值為零必須滿足兩個條件:(1)分子的值為零;(2)同時分母的值不等于零。

  通過師生共同反思,目的是為了更好地促進(jìn)新舊知識之間的聯(lián)系,使新知識與學(xué)生頭腦中原有的舊知識建立邏輯性的穩(wěn)固聯(lián)系,從而形成新的認(rèn)知結(jié)構(gòu)。同時,體現(xiàn)在學(xué)習(xí)策略的選擇、實(shí)施、調(diào)整等方面,從整體上也提高了學(xué)生的認(rèn)知水平。學(xué)生通過反思,不僅可以梳理在學(xué)習(xí)過程中對概念的理解程度,還可以評價自己在認(rèn)知加工過程中所閃爍出的思維火花,領(lǐng)悟其中的數(shù)學(xué)思想和方法,對提高數(shù)學(xué)思維能力起到了積極的作用。

分式說課稿2

  一、地位和作用

  這一節(jié)內(nèi)容是初中數(shù)學(xué)新教材八年級上冊第十一章第三節(jié)的內(nèi)容。它是在學(xué)生學(xué)習(xí)了前面一節(jié)一次函數(shù)后,回過頭重新認(rèn)識已經(jīng)學(xué)習(xí)過的一些其他數(shù)學(xué)概念,即通過討論一次函數(shù)與一元一次不等式的關(guān)系,從運(yùn)動變化的角度,用函數(shù)的觀點(diǎn)加深對已經(jīng)學(xué)習(xí)過的不等式的認(rèn)識,構(gòu)建和發(fā)展相互聯(lián)系的知識體系。它不是簡單的回顧復(fù)習(xí),而是居高臨下的進(jìn)行動態(tài)分析。

  2、活動目標(biāo)

 、倮斫庖淮魏瘮(shù)與一元一次不等式的關(guān)系。會根據(jù)一次函數(shù)圖像解決一元一次不等式解決問題。

 、趯W(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問題。

  ③經(jīng)歷不等式與函數(shù)問題的探討過程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證思想。

 、茉鰪(qiáng)學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué),探索數(shù)學(xué)奧妙的愿望,體驗(yàn)成功的感覺,品嘗成功的喜悅。

  總的來講,希望達(dá)到張孝達(dá)對我們教育工作者的要求:給我們所有的學(xué)生,一雙能用數(shù)學(xué)視角觀察世界的眼睛,一個能用數(shù)學(xué)思維思考世界的大腦。

  二、學(xué)情分析

  八年級學(xué)生的思維已逐步從直觀的形象思維為主向抽象的邏輯思維過渡,而且具備一定的信息收集的能力。

  三、學(xué)法分析

  1、學(xué)生自主探索,思考問題,獲取知識,掌握方法,真正成為學(xué)習(xí)的主體。

  2、學(xué)生在小組合作學(xué)習(xí)中體驗(yàn)學(xué)習(xí)的快樂。合作交流的友好氛圍,讓學(xué)生更有機(jī)會體驗(yàn)自己與他人的想法,從而掌握知識,發(fā)展技能,獲得愉快的心理體驗(yàn)。

  四、教法分析

  由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應(yīng)的觀點(diǎn)考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識:

  ⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。

 、茝暮瘮(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。

  教學(xué)過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。

  1、“動”―――學(xué)生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。

  2、“探”―――引導(dǎo)學(xué)生動手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。

  3、“樂”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂于學(xué)習(xí),樂于思考。

  4、“滲”―――在整個教學(xué)過程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證思想。

  五、教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)回顧

  1.一次函數(shù)的定義。

  2.一次函數(shù)的圖象。

  3.直線y=kx+b與方程的聯(lián)系。

  那么一元一次不等式與一次函數(shù)是怎樣的關(guān)系呢?本節(jié)課研究一元一次不等式與一次函數(shù)的關(guān)系。

  教師活動:引導(dǎo)學(xué)生回顧一次函數(shù)相關(guān)概念以及一次函數(shù)與方程的關(guān)系。

  設(shè)計(jì)意圖:回顧所學(xué)知識作好新知識的銜接。

  二、導(dǎo)探激勵

  問題1:作出函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:

 。1) x取何值時,2x-5=0?

 。2) x取哪些值時, 2x-5>0?

 。3) x取哪些值時, 2x-5<0?

 。4) x取哪些值時, 2x-5>3?

  教師活動:展示問題1,適當(dāng)時間后請學(xué)生解答并說明理由,教師借助課件作結(jié)論性評判。

  設(shè)計(jì)意圖:問題1可以直接解不等式(或方程)求解,但這里意圖是讓學(xué)生通過直接圖象得到。引導(dǎo)學(xué)生體會既可以運(yùn)用函數(shù)圖象解不等式,也可以運(yùn)用解不等式幫助研究函數(shù)問題,二者互相滲透,互相作用。

  學(xué)生可以用不同方法解答,教師意圖是盡量用圖象求解。

  問題2:用畫函數(shù)圖象的方法解不等式:

 。2x+3<3x-7.

  分析:

  由一次函數(shù)與一元一次不等式的關(guān)系可先將其化為一般形式,

  再畫圖求解;也可以將-2x+3與3x-7看作是兩個

  關(guān)于x的一次函數(shù),即y1=-2x+3,y2=3x-7。

  于是不等式的.解集即對應(yīng)著y1

  解法1:

  原不等式化為5x-10>0,畫出直線y=5x-10如圖所示,

  可以看出x>2時這條直線上的點(diǎn)在x軸上方,

  即這時y=5x-10>0,所以不等式的解集為x>2.

  解法2:

  將原不等式的兩邊分別看作是兩個一次函數(shù),

  畫出直線l1∶y=-2x+3,y2=3x-7,如圖所示,

  可以看出它們的交點(diǎn)的橫坐標(biāo)為2,當(dāng)x>2時,

  對于同一個x,直線y=-2x+3上的點(diǎn)在直線y=3x-7上相應(yīng)的點(diǎn)的下方,這時-2x+3<3x-7,所以不等式的解集為x>2.

  三、達(dá)測深化

  做一做:

  兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函數(shù)關(guān)系式,作出函數(shù)圖象,觀察圖象回答下列問題:

 。1)何時哥哥追上弟弟?

 。2)何時弟弟跑在哥哥前面?

 。3)何時哥哥跑在弟弟前面?

  (4)誰先跑過20m?誰先跑過100m?

 。5) 你是怎樣求解的?與同伴交流。

  教師活動:展示做一做,鼓勵學(xué)生從多角度思考問題。請部分學(xué)生展示其解法。教師借助課件對學(xué)生解答作出評判。展示練習(xí),在學(xué)生思考后,用課件展示圖象以便學(xué)生識圖。

  設(shè)計(jì)意圖:函數(shù)、方程、不等式都是刻畫現(xiàn)實(shí)世界中量與量之間變化規(guī)律的重要模型,通過具體例子滲透三者之間的內(nèi)在聯(lián)系,幫助學(xué)生從整體上認(rèn)識不等式,感受函數(shù)、方程、不等式的作用。

  四、小結(jié)

  通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

  五、作業(yè) P19 讀一讀 P20 習(xí)題1.6

分式說課稿3

  一、教材分析

  1、教材的地位和作用

  可化為一元一次方程的分式方程是在學(xué)生已熟練地掌握了一元一次方程的解法、分式四則運(yùn)算等有關(guān)知識的基礎(chǔ)進(jìn)行學(xué)習(xí)的。它既可看成是分式有關(guān)知識在解方程中的應(yīng)用;也可看成是進(jìn)一步學(xué)習(xí)研究其它分式方程的基礎(chǔ),因此它有著承前啟后的作用。同時學(xué)習(xí)了分式方程后也為解決實(shí)際問題拓寬了路子。

  2、教學(xué)目標(biāo)

  根據(jù)本課在教材中的地位與作用,結(jié)合學(xué)生的實(shí)際學(xué)習(xí)情況,我將本課主要教學(xué)目標(biāo)確定如下:

  知識與技能:使學(xué)生了解分式方程的概念,掌握分式方程的解法,理解分式方程增根的含義和產(chǎn)生原因,會檢驗(yàn)分式方程的增根;

  過程與方法:使學(xué)生經(jīng)歷探索發(fā)現(xiàn)分式方程解法的過程,掌握化歸的數(shù)學(xué)思想方法;

  情感與態(tài)度:培養(yǎng)學(xué)生的自主探究意識,提高學(xué)習(xí)興趣和數(shù)學(xué)創(chuàng)新能力。

  3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)健

  本著新課程標(biāo)準(zhǔn),在鉆研教材的基礎(chǔ)上,我確定本節(jié)課的重點(diǎn)、難點(diǎn)為:

  重點(diǎn):解分式方程的思想方法與基本步驟,以及對增根概念的理解。

  難點(diǎn):對增根產(chǎn)生的原因的理解以及驗(yàn)根的方法的掌握。

  關(guān)鍵:“化未知為已知”的數(shù)學(xué)學(xué)習(xí)方法。

  二、學(xué)情分析

  學(xué)生是在掌握了分式的意義、分式的混合運(yùn)算和熟練解一元一次方程的基礎(chǔ)上學(xué)習(xí)本節(jié)內(nèi)容的,同時學(xué)生具有一定的豐富的想象力、好奇心和主觀能動性。但對于解分式方程過程中會出現(xiàn)增根,部分同學(xué)理解起來較為困難,因此在教學(xué)過程中應(yīng)重點(diǎn)強(qiáng)調(diào)如何把分式方程轉(zhuǎn)化為整式方程和解分式方程過程中產(chǎn)生增根的原因及如何驗(yàn)根。

  三、教法與學(xué)法

  1、說教法:

  本節(jié)內(nèi)容從實(shí)際問題出發(fā)引了出分式方程的概念,介紹分式方程的求解方法。采用了設(shè)疑引導(dǎo)、協(xié)助總結(jié)的教學(xué)方法,真正體現(xiàn)以學(xué)生為主體。針對學(xué)生的回答所出現(xiàn)的一些問題給出及時的糾正,練習(xí)時,除了讓盡可能多的學(xué)生板演以外,要及時的發(fā)現(xiàn)并總結(jié)學(xué)生所出現(xiàn)的問題,比較典型的全班講評。

  2、說學(xué)法

  本節(jié)課我主要指導(dǎo)學(xué)生采用了合作交流、自主探究學(xué)習(xí)方法,使學(xué)生積極主動得參與到教學(xué)過程,通過合作交流,激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)探索的快樂,使學(xué)生的主體地位得到充分的發(fā)揮。

  四、說教學(xué)過程

  1、創(chuàng)設(shè)情景、導(dǎo)入新課

  為了滿足經(jīng)濟(jì)高速發(fā)展的需求,我國鐵路部門不斷進(jìn)行技術(shù)革新,提高列車運(yùn)行速度;在相距1600的兩地之間運(yùn)行一列車,速度提高25﹪后,運(yùn)行時間縮短了4,你能列出列車提速前的速度嗎?

  師生活動:教師提出問題,設(shè)計(jì)意圖:先通過實(shí)際問題,引導(dǎo)學(xué)生從分析入手,列出含未知數(shù)的式子表示有關(guān)的量,并進(jìn)一步根據(jù)相等關(guān)系列出方程,為探索分式方程及分式方程的解法作準(zhǔn)備。

  2、合作交流、探究新知:

  (1)對所得方程觀察其形式,不是整式方程中的一元一次方程,從而提出分式方程的概念。

  師生活動:教師提出問題,學(xué)生思考、議論后在全班交流。

  學(xué)生歸納出:該方程的特征是分母中含有未知數(shù)。

  設(shè)計(jì)意圖:通過觀察、比較,培養(yǎng)學(xué)生的觀察問題和語言表達(dá)能力。

 。2)對比一元一次方程的解法,讓學(xué)生探究方程的解法,通過去分母、去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1,等步驟求出,并檢驗(yàn)解的正確性。

  師生活動:鼓勵學(xué)生尋求解決問題的辦法,引導(dǎo)學(xué)生將分式方程轉(zhuǎn)化為整式方程,學(xué)生自然會想到“去分母”來實(shí)現(xiàn)這種轉(zhuǎn)變,求出方程的解,并要求學(xué)生驗(yàn)根。

  設(shè)計(jì)意圖:怎樣解分式方程,這是本節(jié)的核心問題,也是本節(jié)課的重點(diǎn),本次活動中用“轉(zhuǎn)化”思想,把函待解決的問題,通過轉(zhuǎn)化,化歸到已經(jīng)解決或比較容易的問題中去,最終使問題得到解決。從而突破本節(jié)課的重點(diǎn)。

 。3)進(jìn)一步探究:仿照上例方程的解法,解方程并檢驗(yàn)。

  學(xué)生發(fā)現(xiàn)不能作為原方程的解,時原方程中的分式無意義,從而引出增根的概念:是所得的整式方程的解,但不是原分式方程的解。是因?yàn)樵诮夥匠痰倪^程中的一些不合理變形造成的。

  對增根產(chǎn)生的原因進(jìn)行初步探討:只有在第一步去分母時,可能出問題,兩邊同乘以的最簡公分母的值不能為零。

  解分式方程時,去分母后所得整式方程的解是原分式方程的解,也可能不是,這是為什么呢?如何進(jìn)行檢驗(yàn)?zāi)兀?/p>

  師生活動:學(xué)生獨(dú)立解決問題,然后提出自己的看法在小組討論,在學(xué)生討論期間,教師應(yīng)參與到學(xué)生的數(shù)學(xué)活動中,鼓勵學(xué)生勇于探索、實(shí)踐,解釋產(chǎn)生這一現(xiàn)象的原因,并懂得在解分式方程時一定要進(jìn)行驗(yàn)根。

  設(shè)計(jì)意圖:通過引導(dǎo)學(xué)生進(jìn)行比較、探究,并進(jìn)行充分的討論,最后統(tǒng)一認(rèn)識,用分式的意義及分式的基本性質(zhì)解釋分式方程可能無解的原因,學(xué)生在數(shù)學(xué)活動中,通過積極參與和有效參與,達(dá)到知識和能力、過程和方法、情感態(tài)度和價值觀三維目標(biāo)的全面落實(shí),從而突破本節(jié)課的難點(diǎn)。

  (4)總結(jié)解分式方程的一般步驟,并比較其與解一元一次方程的異同點(diǎn)。

  教師活動:提示學(xué)生對比一元一次方程的解法總結(jié)分式方程的解法,并探查它們之間的異同點(diǎn)。

  設(shè)計(jì)意圖:提高學(xué)生的數(shù)學(xué)意識,培養(yǎng)化歸思想的逐步形成,提高學(xué)生自主解決數(shù)學(xué)問題的能力。

  3、新知應(yīng)用、聯(lián)系拓廣:

  投影展示例題

  師生活動:教師出示題目,學(xué)生獨(dú)立完成,指名2名學(xué)生板演,教師巡視。

  設(shè)計(jì)意圖:①例題的`作用可以培養(yǎng)學(xué)生學(xué)以致用的能力、嚴(yán)格的解題規(guī)范格式,從而養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

 、谠u價時采用生生評價的方式可以提高學(xué)生學(xué)習(xí)的興趣,活躍課堂氣氛,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣。

  4、課堂練習(xí)、檢查驗(yàn)收:

  師生活動:教師出示題目,學(xué)生獨(dú)立完成,判斷題點(diǎn)名由學(xué)生口答,解方程請4名學(xué)生板演,教師強(qiáng)調(diào)步驟,特別是檢驗(yàn)。

  設(shè)計(jì)意圖:及時鞏固所學(xué)知識,了解學(xué)生學(xué)習(xí)效果,增強(qiáng)學(xué)生應(yīng)用知識的能力。

  5、課堂總結(jié)、落實(shí)新知:

  師生活動:學(xué)生個體小結(jié),小組歸納,集體補(bǔ)充。

  設(shè)計(jì)意圖:①讓學(xué)生以反思的形式回憶本節(jié)的學(xué)習(xí)內(nèi)容與方法,更有利于學(xué)生加深對所學(xué)知識的印象,有利于培養(yǎng)學(xué)生養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

 、谧⒅貙W(xué)生間的相互合作,培養(yǎng)學(xué)生的合作意識、競爭意識,養(yǎng)成“愛提問、敢質(zhì)疑、富聯(lián)想、善應(yīng)變”的好習(xí)慣。

  6、布置作業(yè)、復(fù)習(xí)鞏固

  設(shè)計(jì)意圖:分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲。

  五、評價分析

  在本課的教學(xué)過程中,我嚴(yán)格遵循由感性到理性,將數(shù)學(xué)知識始終與現(xiàn)實(shí)生活中學(xué)生熟悉的實(shí)際問題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問題、解決問題的能力。在重視課本基礎(chǔ)知識的基礎(chǔ)上,適當(dāng)進(jìn)行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識,同時根據(jù)新課程標(biāo)準(zhǔn)的評價理念,在教學(xué)過程中,不僅注重學(xué)生的參與意識,而且注重學(xué)生對待學(xué)習(xí)的態(tài)度是否積極。課堂中也盡量給學(xué)生更多的空間、更多展示自我的機(jī)會,使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過程成為一個在發(fā)現(xiàn)中創(chuàng)造的認(rèn)知過程。

分式說課稿4

尊敬的老師、各位同學(xué):

  下午好!

  今天我說課的課題是《分式的加減》,下面我將從教材、教學(xué)目標(biāo)、教學(xué)方法、教學(xué)過程這幾個方面具體闡述我對這節(jié)課的理解和設(shè)計(jì)。 首先,我對本節(jié)教材進(jìn)行簡要分析。

  一、說教材

  本節(jié)內(nèi)容是江蘇教育出版社的義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》八年級下冊第八章第三節(jié)第一課時《分式的加減法》,屬于數(shù)與代數(shù)領(lǐng)域的知識。它是代數(shù)運(yùn)算的基礎(chǔ),分兩課時完成,我所設(shè)計(jì)的是第一課時的教學(xué),主要內(nèi)容是同分母的分式相加減及簡單的異分母的分式相加減。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了分?jǐn)?shù)的加減法運(yùn)算,同時也學(xué)習(xí)過分式的基本性質(zhì),這為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。而掌握好本節(jié)課的知識,將為《分式的加減法》第二課時以及《分式方程》的學(xué)習(xí)做好必備的知識儲備。因此,在分式的學(xué)習(xí)中,占據(jù)重要的地位。

  本節(jié)課中掌握分式的加減運(yùn)算法則是重點(diǎn),運(yùn)用法則計(jì)算分式的加減是難點(diǎn),掌握計(jì)算的一般解題步驟是解決問題是關(guān)鍵。

  基于以上對教材的認(rèn)識,考慮到學(xué)生已有的認(rèn)識和結(jié)構(gòu)與心理特征,我制定如下的教學(xué)目標(biāo)。

  二、說目標(biāo)

  根據(jù)學(xué)生已有的認(rèn)識基礎(chǔ)及本課教材的地位和作用,依據(jù)新課程標(biāo)準(zhǔn)制定如下:

  知識與技能:會進(jìn)行簡單的分式加減運(yùn)算,具有一定解決問題計(jì)算的能力;過程與方法:使學(xué)生經(jīng)歷探索分式加減運(yùn)算法則的過程,理解其算理;情感態(tài)度與價值觀:培養(yǎng)學(xué)生大膽猜想,積極探究的學(xué)習(xí)態(tài)度,發(fā)展學(xué)生有條理思考及代數(shù)表達(dá)能力,體會其價值。

  為突出重點(diǎn),突破難點(diǎn),抓住關(guān)鍵使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我載從教法和學(xué)法上談?wù)勗O(shè)計(jì)思路。

  三、說教學(xué)方法

  教法選擇與手段:本課我主要以"復(fù)習(xí)舊知,導(dǎo)入新知,例題講解,拓展延伸"為主線,啟發(fā)和引導(dǎo)貫穿教學(xué)始終,通過師生共同研究探討,體現(xiàn)以教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)過程。

  學(xué)法指導(dǎo):根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計(jì)了"觀察思考、猜想歸納、例題學(xué)習(xí)和鞏固提高"四個層次的學(xué)法。

  最后,我來具體談一談本節(jié)課的教學(xué)過程。

  四、說教學(xué)過程

  在分析教材、確定教學(xué)目標(biāo)、合理選擇教法與學(xué)法的基礎(chǔ)上,我預(yù)設(shè)的教學(xué)過程是:觀察導(dǎo)入、例題示范、習(xí)題鞏固、歸納小結(jié)和作業(yè)布置。

  第一環(huán)節(jié):觀察導(dǎo)入

  觀察:從下面的兩種運(yùn)算中,你能發(fā)現(xiàn)什么?

  (1)(2), ; .

  問題:我們學(xué)過的分?jǐn)?shù)的加減運(yùn)算可以分為同分母分?jǐn)?shù)的加減和異分母分?jǐn)?shù)的加減,具體的運(yùn)算法則是什么?

  老師活動:提出問題,促進(jìn)思考。

  學(xué)生活動:思考問題、發(fā)言回答。

  設(shè)計(jì)意圖:通過觀察兩組運(yùn)算,可以讓學(xué)生自主總結(jié)分?jǐn)?shù)的加減運(yùn)算法則,這為引入分式的加減運(yùn)算作鋪墊,由已知到未知,有由淺入深,讓學(xué)生更容易接受新知識。

  與分?jǐn)?shù)的加減運(yùn)算法則相似,分式的加減也分為同分母分式相加減和異分母分式相加減,

  類比猜測:

  (1)同分母的分式如何加減?

  如,怎樣計(jì)算:b/a+c/a=? ;b/a-c/a=?

 。2)異分母的分式如何加減?

  如,怎樣計(jì)算:b/a+c/d=? ;b/a-c/d=?

  老師活動:鼓勵學(xué)生通過類比、探究并大膽猜想分式的加減運(yùn)算法則。 學(xué)生活動:思考、討論、交流,進(jìn)行類比,而后發(fā)表意見,說明自己的推測。

  設(shè)計(jì)意圖:通過問題引發(fā)學(xué)生思考,讓他們在探索問題的過程中體驗(yàn)學(xué)習(xí)的樂趣,由學(xué)生的類比猜想的結(jié)論,給出本節(jié)課學(xué)習(xí)的重點(diǎn):分式的

  加減運(yùn)算法則。并給以定義:同分母分式相加減,分母不變,分子相加減;異分母分式相加減,先通分,后加減。

  第二環(huán)節(jié):例題示范

  例一:計(jì)算(1)

  (2)

  老師活動:講解兩個例題,演示分式的加減的步驟,教會學(xué)生法則的運(yùn)用,同時也強(qiáng)調(diào)計(jì)算過程的注意點(diǎn)(結(jié)果要化為最簡)。

  學(xué)生活動:通過例題示范,領(lǐng)悟規(guī)律,學(xué)會法則的運(yùn)用。

  設(shè)計(jì)意圖:通過例題向?qū)W生展示同分母分式相加減和異分母分式相加減兩種運(yùn)算的主要步驟,給出分?jǐn)?shù)的加減運(yùn)算的具體過程,同時突出法則重點(diǎn),步驟是關(guān)鍵。例題示范讓學(xué)生不僅熟悉了分式的加減法則,也了解了分式加減的'具體運(yùn)算步驟。

  第三環(huán)節(jié):習(xí)題鞏固

  我將板書四個習(xí)題讓學(xué)生自主解答,這四個題包含了同分母分式的加減和異分母分式的加減,具體題目如下:

  練習(xí):計(jì)算 (1)

 。2)

 。3)

  (4)

  設(shè)計(jì)意圖:本環(huán)節(jié)圍繞分式的加減法則在計(jì)算中的應(yīng)用這一難點(diǎn)設(shè)計(jì),設(shè)置的習(xí)題也緊緊圍繞教學(xué)重點(diǎn)和難點(diǎn)展開,讓學(xué)生在計(jì)算習(xí)題的過程中掌握分式的加減運(yùn)算,及時鞏固已學(xué)的知識,學(xué)以致用,同時讓學(xué)生抓住運(yùn)算步驟之一關(guān)鍵,體驗(yàn)問題解決的方法。

  第四環(huán)節(jié):歸納總結(jié)

  今天學(xué)習(xí)了分式的加減,通過本節(jié)的學(xué)習(xí),你有什么收獲?還有哪些問題?

  提示:

  (1)同分母分式的加減法則;

 。2)異分母分式的加減法則;

  (3)計(jì)算分式的加減的一般解題步驟。

  設(shè)計(jì)意圖:我將用提問的方法引導(dǎo)學(xué)生回答問題,強(qiáng)調(diào)分式的加減運(yùn)算的法則是本節(jié)課的重點(diǎn);讓學(xué)生總結(jié)計(jì)算分式的加減的一般解題步驟,突出這是本節(jié)課的教學(xué)難點(diǎn)。通過問題式的小結(jié),讓學(xué)生再次歸納總結(jié)本節(jié)課的重點(diǎn),彌補(bǔ)教學(xué)中的不足。同時也鍛煉學(xué)生及時總結(jié)的良好習(xí)慣和歸納能力。

  第五環(huán)節(jié):分層作業(yè)

  必做題:第45頁,習(xí)題8.3第1題。

  選做題:第45頁,習(xí)題8.3第2、3題。

  設(shè)計(jì)意圖:根據(jù)新課標(biāo)精神,"人人學(xué)數(shù)學(xué);人人學(xué)有用的數(shù)學(xué);不同的人學(xué)不同的數(shù)學(xué)。"在作業(yè)時給出有梯度的練習(xí),以滿足不同層次學(xué)生學(xué)習(xí)的需要。而且通過選作題的探究,讓學(xué)生體會分式加減運(yùn)算在解決現(xiàn)實(shí)問題中的應(yīng)用,為下節(jié)課分式的加減的第二課時奠定基礎(chǔ)。

  各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會隨著學(xué)生和教師的靈活發(fā)揮而隨機(jī)生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

  本說課一定存在諸多不足,懇請各位老師提出寶貴意見。謝謝!

分式說課稿5

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。班級學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。

  過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展班級學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  情感態(tài)度與價值觀: 激發(fā)班級學(xué)生愛國熱情,讓班級學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮班級學(xué)生的主體作用,通過班級學(xué)生動手實(shí)驗(yàn),讓班級學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級班級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,班級學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng)。

  教法分析:結(jié)合七年級班級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用"問題情境----建立模型----解釋應(yīng)用---拓展鞏固"的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為班級學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,班級學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使班級學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題 2.實(shí)驗(yàn)操作,模型構(gòu)建 3.回歸生活,應(yīng)用新知

  4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)

 。ㄒ唬﹦(chuàng)設(shè)情境提出問題

 。1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 20xx年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會會標(biāo) 設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。

 。2) 某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的'底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個"數(shù)學(xué)化"的過程,從而引出下面的環(huán)節(jié)。

  四、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于班級學(xué)生參與探索,利于培養(yǎng)班級學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織班級學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓班級學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:班級學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)班級學(xué)生抽象、概括的能力,同時發(fā)揮了班級學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  五;貧w生活應(yīng)用新知

  讓班級學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)班級學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  六、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧班級學(xué)生的個體差異,關(guān)注班級學(xué)生的個性發(fā)展。知識的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基。通過班級學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加班級學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和班級學(xué)生合作交流的方式,拓展班級學(xué)生的思維、發(fā)展空間想象能力。

  七、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  作業(yè): 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說明::1.探索定理采用面積法,為班級學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓班級學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

  2.讓班級學(xué)生人人參與,注重對班級學(xué)生活動的評價,一是班級學(xué)生在活動中的投入程度;二是班級學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。

分式說課稿6

  一.教學(xué)內(nèi)容分析:

  列分式方程解決應(yīng)用問題比列一次方程(組)要稍微復(fù)雜一點(diǎn),教學(xué)時候要引導(dǎo)學(xué)生抓住尋找等量關(guān)系,恰當(dāng)選擇設(shè)未知數(shù),確定主要等量關(guān)系,用含未知數(shù)的分式或者整式表示未知量等關(guān)鍵環(huán)節(jié),細(xì)心分析問題中的數(shù)量關(guān)系。對于常用的數(shù)量關(guān)系,雖然學(xué)生以前大都接觸過,但是在本章的教學(xué)中仍然要注意復(fù)習(xí)、總結(jié),并且抓住用兩個已知量表示第三個量的表達(dá)式,引導(dǎo)學(xué)生舉一反三,進(jìn)一步提高分析問題與解決問題的能力。此外,教學(xué)時要有意識地進(jìn)一步提高學(xué)生的閱讀理解能力,鼓勵學(xué)生從多角度思考問題,注意檢驗(yàn),解釋所獲得結(jié)果的合理性。

  課本呈現(xiàn)了大量由具體問題抽象出數(shù)量關(guān)系的實(shí)例,目的是讓學(xué)生經(jīng)歷觀察、歸納、類比、猜想等思維過程,所以,評價應(yīng)該首先關(guān)注學(xué)生在這些具體活動中的投入程度—————能否積極主動地參與各種活動;其次看學(xué)生在這些活動中的思維發(fā)展水平—————能否獨(dú)立思考,能否用數(shù)學(xué)語言(分式分式方程)表達(dá)自己的想法,能否反思自己的思維過程,進(jìn)而發(fā)現(xiàn)新的問題。

  課本設(shè)置了豐富的實(shí)際例子,這些涉及工業(yè)、農(nóng)業(yè)、環(huán)保、學(xué)生實(shí)際、教學(xué)本身等方面,教學(xué)過程中引導(dǎo)學(xué)生從現(xiàn)實(shí)生活中發(fā)現(xiàn)并提出數(shù)學(xué)問題的能力,關(guān)注學(xué)生能否嘗試用不同方法尋求問題中的數(shù)量關(guān)系,并且用分式、分式方程表示,能否表達(dá)自己解決問題的過程,能否獲得問題的答案,并且檢驗(yàn)、解釋結(jié)果的合理性。

  二.重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):引導(dǎo)學(xué)生從不同角度尋求等量關(guān)系是解決實(shí)際問題的關(guān)鍵。

  難點(diǎn):引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,并且進(jìn)行解答,解釋解的合理性。增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識。

  三.教學(xué)方法

  本節(jié)課采用:引導(dǎo)分析、合作探究、自我展示等教學(xué)方法。這樣可以培養(yǎng)學(xué)生的良好學(xué)習(xí)習(xí)慣、語言表達(dá)與分析問題的能力、思維的縝密性。

  四.教學(xué)過程

  本節(jié)課分四部分進(jìn)行:復(fù)習(xí)引入、探究新知、應(yīng)用、小結(jié)

 。ㄒ唬⿵(fù)習(xí)。首先,我讓學(xué)生回顧了分式方程及分式方程的解法、步驟,目的是讓學(xué)生進(jìn)一步認(rèn)識分式方程與整式方程的區(qū)別、解法的不同,為后面的學(xué)習(xí)打下基礎(chǔ)。其次,通過一個練習(xí)(分式方程的`解法及公式變形)加強(qiáng)解題能力的培養(yǎng)。

 。ǘ┬轮骄。例1、是一個工程問題,例2是一個行程問題。這一例題只給出了情境沒有具體的問題,進(jìn)而讓學(xué)生去分析題意及各個量間的關(guān)系找出等量關(guān)系式。然后提出自己想知道的問題,最后我在學(xué)生所提問題中選一問題進(jìn)行解決。(規(guī)定工期是多少?)這樣給學(xué)生的思考留下了很大的空間,也培養(yǎng)了學(xué)生的分析問題解決問題的能力,同時也促進(jìn)了每個學(xué)生的發(fā)展。在解決問題過程中多采用了學(xué)生間的交流合作、獨(dú)立完成、互幫互助、上板展示的學(xué)習(xí)方法。教學(xué)時我重點(diǎn)引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,并且進(jìn)行解答,解釋解的合理性,這樣有利于學(xué)生養(yǎng)成良好的學(xué)習(xí)品質(zhì)。

 。ㄈ┲R應(yīng)用。同樣是一個行程問題一個工程問題,例3、例4作為練習(xí)題這樣不僅鞏固了新知應(yīng)用,而且進(jìn)一步檢測了學(xué)生的分析、表達(dá)、書寫等各個方面的能力,增強(qiáng)他們的應(yīng)用意識。

 。ㄋ模┬〗Y(jié):讓學(xué)生在組內(nèi)交流和在班內(nèi)交流,暢所欲言,這樣每個學(xué)生都有回顧知識、表現(xiàn)自我的機(jī)會;教師補(bǔ)充小結(jié)使學(xué)生分析、歸納、總結(jié)的良好習(xí)慣。

  五、課堂練習(xí)和課后作業(yè)

  1、課本108頁第1題、109頁第5題

  2、基礎(chǔ)訓(xùn)練同步練習(xí)

  六、板書

  板書是基本基本量列表和關(guān)系式,讓學(xué)生書寫解題過程,這樣有利于把握重點(diǎn)、掌握新知。

分式說課稿7

  一、說教材

  1。本課在在教材中的地位和作用 《分式的加減》這節(jié)課是代數(shù)運(yùn)算的基礎(chǔ),分兩課時完成,我所設(shè)計(jì)的是第一課時的教學(xué),主要內(nèi)容是同 分母的分式相加減及簡單的異分母的分式相加減。學(xué)生已掌握了分?jǐn)?shù)的加減法運(yùn)算,同時也學(xué)習(xí)過分式的基本性質(zhì), 這為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),而掌握好本節(jié)課的知識,將為《分式的加減》第二課時以及《分式方程》的學(xué)習(xí)做好 必備的知識儲備。

  2。教學(xué)目標(biāo)

 、僦R與技能:會進(jìn)行簡單的分式加減運(yùn)算,具有一定的代數(shù)化歸能力,能解決一些簡單的實(shí)際問題;

 、谶^程與方法:使學(xué)生經(jīng)歷探索分式加減運(yùn)算法則的過程,理解其算理;

  3。情感態(tài)度與價值觀:培養(yǎng)學(xué)生大膽猜想,積極探究的學(xué)習(xí)態(tài)度,發(fā)展學(xué)生有條理思考及代數(shù)表達(dá)能力,體會其價值。

 。3)重點(diǎn)、難點(diǎn)

 、僦攸c(diǎn):掌握分式的加減運(yùn)算

  ②難點(diǎn):異分母的分式加減運(yùn)算及簡單的分式混合運(yùn)算

  二、說教法

  本課我主要以“創(chuàng)設(shè)情景——引導(dǎo)探究——類比歸納——拓展延伸”為主線,啟發(fā)和引導(dǎo)貫穿教學(xué)始終, 通過師生共同研究探討,體現(xiàn)以教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)過程。

  三、說學(xué)法

  根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計(jì)了“自主探索、合作交流、猜想歸納和鞏固提高”四個層次的學(xué)法。 四、說教學(xué)過程

  (一)創(chuàng)設(shè)情境,導(dǎo)入新知

  第一環(huán)節(jié):提出問題

  問題 1: 甲工程隊(duì)完成一項(xiàng)工程需 n 天,乙工程隊(duì)要比甲隊(duì)多用 3 天才能完成這項(xiàng)工程,兩隊(duì)共同工作一天完 成這項(xiàng)工程的'幾分之幾?

  問題 2:20xx 年,20xx 年,20xx 年某地的森林面積(單位:公頃)分別是 S1,S2,S3,20xx 年與 20xx 年相比, 森林面積增長率提高了多少?

  老師活動:組織學(xué)生分組討論,再共同研究 學(xué)生活動:小組討論、探究、發(fā)言 設(shè)計(jì)意圖:通過創(chuàng)設(shè)這兩個問題情境,引入分式的加減運(yùn)算,既體現(xiàn)了分式加減運(yùn)算的意義,又讓學(xué)生經(jīng) 歷從實(shí)際問題建立分式模型的過程,并在此基礎(chǔ)上激發(fā)學(xué)生尋求解決問題的方法。

  第二環(huán)節(jié):同分母分式相加減

  想一想:(1)同分母的分?jǐn)?shù)如何加減?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3; (2)思考:類比分?jǐn)?shù)的加減法則,你能歸納出分式的加減法則嗎? 老師活動:鼓勵學(xué)生通過類比、探究并大膽猜想分式的加減運(yùn)算法則 學(xué)生活動:分組進(jìn)行討論、交流,并多舉類似例子進(jìn)行類比,而后,小組發(fā)表意見,說明自己的推測。 在學(xué)生通過交流得到猜想的基礎(chǔ)上出示做一做: 做一做:(1)1/a+2/a=_____________ 2 (2)x /(x—2) – 4/(x—2)=___________ (3)(x+2)/(x+1) –(x—1)/(x+1)+(x—3)/(x+1)=___________ 教師通過讓學(xué)生練習(xí)“做一做”的題目,加以驗(yàn)證和領(lǐng)悟,法則的形成打下基礎(chǔ),并導(dǎo)出分式加減運(yùn)算法 則:同分母的分式相加減,分母不變,把分子相加減 老師活動:引入習(xí)題“做一做”,適當(dāng)糾正學(xué)生的語言,并板書法則 學(xué)生活動:通過個體練習(xí),領(lǐng)悟規(guī)律,再小組交流,形成法則 設(shè)計(jì)意圖:引導(dǎo)學(xué)生通過類比分?jǐn)?shù)運(yùn)算方法,大膽猜想分式的加減法則

  (二)主動探究,拓展延伸

  第三環(huán)節(jié):異分母的分式相加減 想一想:(1)異分母的分?jǐn)?shù)如何相加減?如:1/2+2/3=?:1/2—2/3=?。 (2)你認(rèn)為異分母的分式應(yīng)該如何加減?如:1/a+2/b=? 老師活動:提出問題,引導(dǎo)、啟發(fā)學(xué)生通過異分母分?jǐn)?shù)相加減的方法類比得到異分母分式相加減的方法 學(xué)生活動:參與交流、討論、歸納異分母分式加減的方法 設(shè)計(jì)意圖:進(jìn)一步鍛煉學(xué)生的類比思想;同時通過討論解決分式的通分,使學(xué)生掌握異分母分式轉(zhuǎn)化為同 分母分式的方法,培養(yǎng)學(xué)生的轉(zhuǎn)化思想,為下節(jié)課做好準(zhǔn)備

  (三)例題教學(xué)

  第四環(huán)節(jié):解決問題

  (1)回到開始提出的兩個問題: s3 ? s 2 s 2 ? s1 1 1 ? 問題一: ( ? ) s2 s1 n n ?3 問題二:

 。2)例題 1:計(jì)算(課本 P81 頁) 老師活動:出示習(xí)題,巡視、引導(dǎo)、糾正 學(xué)生活動:自主完成

  設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對異分母分式的加減運(yùn)算能力

  (四)隨堂練習(xí)

  第五環(huán)節(jié):鞏固深化

  老師活動:巡視、引導(dǎo) 學(xué)生活動:個體練習(xí)、板演 設(shè)計(jì)意圖:檢驗(yàn)學(xué)生是否掌握分式的加減運(yùn)算方法 (五)課堂小結(jié) 第六環(huán)節(jié):提高認(rèn)識 老師活動:本節(jié)課我們學(xué)了哪些知識?在運(yùn)用過程中需要注意些什么?你有什么收獲? 學(xué)生活動

  歸納總結(jié)

 。1)同分母分式加減法則

 。2)簡單異分母分式的加減 設(shè)計(jì)意圖:鍛煉學(xué)生及時總結(jié)的良好習(xí)慣和歸納能力 (六)作業(yè)布置 第七環(huán)節(jié):反思提煉 課本 P27 第 1、2 題 五、板書設(shè)計(jì)

分式說課稿8

  一、教材分析

 。ㄒ唬┙滩牡闹饕獌(nèi)容和地位

  數(shù)學(xué)是一門來源于生活,又應(yīng)用于生活的學(xué)科。生活實(shí)際中,有不少問題的解決都涉及到數(shù)學(xué)中的分式知識。分式是繼整式之后對代數(shù)式的進(jìn)一步研究,是小學(xué)所學(xué)分?jǐn)?shù)的延伸和擴(kuò)展。與整式一樣,分式也是表示具體問題情境中的數(shù)量關(guān)系的一種工具,是解決實(shí)際問題的常見模型之一。本章內(nèi)容的學(xué)習(xí)為今后進(jìn)一步學(xué)習(xí)函數(shù)和方程等知識起到奠基的作用。蘇科版教材將“分式”這部分內(nèi)容安排在八年級下冊!斗质健返1節(jié)的內(nèi)容分兩課時來完成,而第一課時的內(nèi)容則是分式的起始課,它是在學(xué)生學(xué)習(xí)了整式運(yùn)算、分解因式的基礎(chǔ)上進(jìn)行的,學(xué)好本節(jié)課,是今后學(xué)習(xí)分式的性質(zhì)、分式的運(yùn)算及解分式方程的前提;其中對“分式有意義的討論”為以后學(xué)習(xí)反比例函數(shù)作了鋪墊。因此,本節(jié)內(nèi)容起到了承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律,充分體現(xiàn)知識螺旋上升的特點(diǎn)。

 。ǘ┙虒W(xué)理念

  本節(jié)內(nèi)容充分體現(xiàn)了數(shù)學(xué)離不開生活,生活離不開數(shù)學(xué),進(jìn)一步認(rèn)識到數(shù)學(xué)的重要性。體現(xiàn)“人人學(xué)有價值的數(shù)學(xué),人人都能獲得必須的數(shù)學(xué)”的新課標(biāo)精神。學(xué)生的活動交流也會促進(jìn)他們的合作、探究能力的增長。

  二、目標(biāo)分析

 。ㄒ唬⿲W(xué)習(xí)目標(biāo)

  根據(jù)學(xué)生認(rèn)知發(fā)展水平和已有了知識經(jīng)驗(yàn)基礎(chǔ),結(jié)合新課程標(biāo)準(zhǔn)“分式”的目標(biāo)要求,我從“知識與技能、過程與方法、情感與態(tài)度”三個方面確定了本節(jié)課的教學(xué)目標(biāo)。

  1、知識與技能目標(biāo):

  知道分式概念,學(xué)會判別分式何時有意義,何時值為零,能用分式表示實(shí)際問題中的數(shù)量關(guān)系;明確分式與整式的區(qū)別

  2、過程與方法目標(biāo):

  經(jīng)歷分式概念的自我構(gòu)建過程及用分式描述數(shù)量關(guān)系的過程,體會分式的模型思想,進(jìn)一步發(fā)展數(shù)感;學(xué)會與他人合作,并獲得代數(shù)學(xué)習(xí)的一些常用方法:類比轉(zhuǎn)化、合情推理、抽象概括等。

  3、情感和態(tài)度目標(biāo):

  通過豐富的數(shù)學(xué)活動,獲得成功的經(jīng)驗(yàn),體驗(yàn)數(shù)學(xué)活動充滿著探索和創(chuàng)造;利用實(shí)際情境,培養(yǎng)學(xué)生關(guān)注生活,熱愛數(shù)學(xué)的情感,增進(jìn)學(xué)生對數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心。體會“人人學(xué)有價值的數(shù)學(xué),人人都能獲得必須的數(shù)學(xué)”精神。

  三、重點(diǎn)、難點(diǎn)

  學(xué)習(xí)重點(diǎn):本節(jié)通過具體的實(shí)例引入“分式”的概念,再以三個具體的例題訓(xùn)練本節(jié)課的所有內(nèi)容。因此將重點(diǎn)定為:了解分式的形式(A、B都是整式)并理解分式概念中的“一個特點(diǎn)”:分母含有字母;“一個要求”:字母的取值要使分母的值不為零。

  學(xué)習(xí)難點(diǎn):盡管有分?jǐn)?shù)知識為基礎(chǔ),但是當(dāng)分母中帶有字母時,如何確定一個分式有無意義,怎樣使一個分式有意義應(yīng)是本節(jié)課學(xué)習(xí)的難點(diǎn)。

  四、學(xué)生情況分析

  經(jīng)過三個學(xué)期的學(xué)習(xí),八年級下的學(xué)生已經(jīng)養(yǎng)成了良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,同時也有了一定的自主探索、合作交流的數(shù)學(xué)學(xué)習(xí)意識,學(xué)生的表達(dá)能力、概括能力都有了一定的提高。從學(xué)生已有的知識水平來看,學(xué)生已經(jīng)學(xué)習(xí)了整式的運(yùn)算和因式分解內(nèi)容,而分式與整式一樣也是代數(shù)式,因此研究與學(xué)習(xí)的方法與整式相類似,學(xué)生可以通過觀察、類比、歸納、概括等途經(jīng)進(jìn)行分式的學(xué)習(xí)。

  五、教學(xué)設(shè)備或輔助設(shè)備

  多媒體(首先,能夠生動、形象地反映現(xiàn)實(shí)情境,增加課堂的容量,更好地提高課堂教學(xué)效率;另一方面,可以使整節(jié)課主次分明。還可以讓學(xué)生感受科技的魅力)

  六、教學(xué)方法

 。ㄒ唬┙谭ǚ治

  依據(jù)本節(jié)課的特點(diǎn),遵循數(shù)學(xué)中的科學(xué)性和思維性結(jié)合原則、啟發(fā)性原則、循序漸進(jìn)原則和鞏固性原則,引導(dǎo)學(xué)生閱讀、思考,通過類比揭示舊知識與新知識的聯(lián)系和區(qū)別,闡述問題的本質(zhì)特征,重點(diǎn)知識還是應(yīng)該以講解法、談話法和啟發(fā)式教學(xué)和練習(xí)法為主,由淺入深,聯(lián)系實(shí)際引導(dǎo)學(xué)生參與教學(xué)活動;難點(diǎn)知識啟發(fā)引導(dǎo),通過觀察、嘗試、練習(xí)加以突破,幫助學(xué)生通過自主探索、合作交流的活動,主動地獲取知識,并通過類比、歸納、概括等途徑來深化對知識的理解。根據(jù)八年級學(xué)生的認(rèn)知規(guī)律,讓學(xué)生多說、多交流、多練習(xí)、多總結(jié)。整節(jié)課體現(xiàn)教師是學(xué)習(xí)活動的組織者、引導(dǎo)者、參與者的角色,在課堂教學(xué)中,盡量為學(xué)生提供“自主探索、合作交流”的時空,讓學(xué)生真正成為學(xué)習(xí)的主人。

 。ǘ⿲W(xué)法分析

  正確指導(dǎo)學(xué)生閱讀、分析,引導(dǎo)學(xué)生學(xué)習(xí)觀察、類比、概括、歸納等方法,逐步培養(yǎng)學(xué)生會觀察問題、思考問題、分析問題及解決問題。并加強(qiáng)同學(xué)之間的交流合作,形成良好的學(xué)習(xí)習(xí)慣。

  六、教學(xué)程序

  1、創(chuàng)設(shè)問題情境

 。1)兩個數(shù)相除可以把它們的商表示成分?jǐn)?shù)的形式嗎?

  學(xué)生活動:說可以的讓他們舉幾個例子。如等。

 。2)一個分?jǐn)?shù)由什么構(gòu)成?

  學(xué)生活動:一個分?jǐn)?shù)由分子、分母和分?jǐn)?shù)線構(gòu)成。

  (3)追問:分?jǐn)?shù)線有什么功能?

  學(xué)生活動:分?jǐn)?shù)線具有除號和括號的功能。

 。4)分?jǐn)?shù)的分母能不能為零?為什么?

  學(xué)生活動:分?jǐn)?shù)中的分母不能為零,因?yàn)榱悴荒茏龀龜?shù)。

 。5)設(shè)置疑問:如果用字母a和b()分別表示分?jǐn)?shù)的分子和分母,那么可以表示成什么形式?

  設(shè)計(jì)意圖:盡管來自于課本,但在學(xué)生已有的知識基礎(chǔ)之上,提出新的研究問題,出現(xiàn)任知沖突,使學(xué)生產(chǎn)生探究的興趣。

  2、學(xué)習(xí)新課

 。1)板書課題:分式

  學(xué)生活動:齊讀課題2遍

  設(shè)計(jì):感知本節(jié)課要學(xué)習(xí)的內(nèi)容

 。2)學(xué)生閱讀課本第40頁第三、四、五自然段的內(nèi)容。

  “一塊長方形玻璃的面積為2平方米,如果寬是a米,那么這塊玻璃的長是()米,通常用米來表示!

  “小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是(元,通常用元來表示!

  “有兩塊棉田,一塊面積為a公頃產(chǎn)棉花m千克;另一塊面積為b公頃產(chǎn)棉花n千克,這兩塊棉田平均每公頃產(chǎn)棉花千克,通常用千克來表示。”

  設(shè)計(jì)意圖:讓學(xué)生從具體的生活事例中感受分式和整式一樣都是來源于生活,分式的產(chǎn)生也是為解決實(shí)際問題服務(wù)的,同時也是為了提高課本的地位,擯棄離開課本數(shù)學(xué)的'觀念,讓學(xué)生從課本中來,也為到課本中去做好鋪墊。

  (3)你還能結(jié)合生活實(shí)際,再舉出一些類似的例子嗎?

  學(xué)生活動:小組討論后,交流結(jié)果,教師給正確的例子予以肯定。

  設(shè)計(jì)意圖:數(shù)學(xué)學(xué)習(xí)應(yīng)該重視知識的遷移,時刻注意與身邊事物相聯(lián)系,體現(xiàn)生活數(shù)學(xué)的魅力。

 。4)教師引導(dǎo):請同學(xué)們觀察、 、這三個代數(shù)式的特點(diǎn),找出他們的共同特點(diǎn)?

  學(xué)生活動:這三個代數(shù)式都具有分?jǐn)?shù)的形式,并且分母中都帶有字母。

  設(shè)計(jì)意圖:這樣的設(shè)計(jì),主要是為了培養(yǎng)學(xué)生的觀察、總結(jié)和概括能力,為分式概念的提出做好準(zhǔn)備。

  (5)教師帶領(lǐng)學(xué)生回憶整式的概念?

  設(shè)計(jì)意圖:注重抽絲剝繭式的引導(dǎo)過程。

 。6)上面的三個代數(shù)式中的2、a、m、n、m+n、a+b都是整式嗎?

 。7)如果用A分別表示2、n、m+n,B表示a、m、a+b,那么三個問題的結(jié)果都可以表示成什么形式?

  學(xué)生活動:都可以表示成。

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生概括能力,注重同一形式知識的同化。

  (8)A、B表示什么?B中含有字母嗎?B能不能為零?

  學(xué)生活動:A、B表示整式,且B中含有字母,。

  設(shè)計(jì)意圖:此問題的設(shè)計(jì)實(shí)際是為分式概念的提出以及分式概念中的“一個特點(diǎn)”和“一個要求”做好陳述,具有前瞻意識,也為概念的進(jìn)一步深化做好前呼的基礎(chǔ)。

 。9)教師概括并板書:一般地,如果A、B表示兩個整式,并且B中含有字母,那么代數(shù)式叫做分式,其中A是分式的分子,B是分式的分母。

  概念說明:

  I、整式

  II、B中含有字母

  III、B不等于0

  IV、與分?jǐn)?shù)類似,分式的分?jǐn)?shù)線同時具有除號和括號的雙重功能。

 。10)齊讀概念。

  3、典型例題分析及典型習(xí)題練習(xí)

 。1)例1:下列各式中,哪些是分式,哪些是整式

  設(shè)計(jì)意圖:教師引導(dǎo)學(xué)生判斷,并說出理由。啟發(fā)學(xué)生理解分式概念的關(guān)鍵點(diǎn):形式、分母中含有字母、分母不為零和分?jǐn)?shù)線的功能,鞏固對分式概念的理解。

 。2)及時練習(xí),鞏固新知

 、傧铝懈魇街,哪些是整式,哪些是分式,說明理由。

 、诹写鷶(shù)式,并說明列出的代數(shù)式是否為分式

  I、某校八年級有學(xué)生m人,集合排成方隊(duì),如果恰好排成20排,那么每排有名學(xué)生;如果恰好排成a排,那么每排有名學(xué)生。

  II、30名工人做1800個零件,x小時完成,平均每人每小時加工的零件個數(shù)是。

  III、如果圓的周長為厘米,那么這個圓的半徑為厘米。

  IV、國家規(guī)定存款利息的納稅方法是:利息稅=利息20%,儲戶取款時由銀行代收利息稅,如果小麗存入人民幣a元,存款利息為b元,那么小麗應(yīng)交納利息稅元。

  (3)例2:分式表示什么?

  針對部分學(xué)生對題型可能陌生,教師先要以一兩個具體的解釋引導(dǎo)學(xué)生去說。如:

  解:如果a元表示購買筆記本的錢數(shù),b元表示每本筆記本的售價,那么表示每本降價1元后,用a元可購得筆記本的本數(shù)。

  如果a表示長方形的面積,b表示長方形的寬,那么表示寬減少1個單位長度后,面積仍為a的長方形的長。

  及時練習(xí):你還能對分式的意義做出解釋嗎?

  學(xué)生活動:同桌兩人為一組討論,討論后以小組為單位交流討論結(jié)果。

  設(shè)計(jì)意圖:啟發(fā)學(xué)生聯(lián)系實(shí)際生活,對分式做出合理的解釋。感受分式的產(chǎn)生來自于生活,也是為解決實(shí)際問題而服務(wù)的。并增強(qiáng)同學(xué)們的合作意識。

 。4)過渡:用具體的數(shù)值代替分式中的字母,按照分式中的運(yùn)算關(guān)系計(jì)算,所得的結(jié)果就是分式的值。

 。5)例3:求分式的值。

 、賏=3;②a=

  解:①當(dāng)a=3時,分式的值是;

 、诋(dāng)a=時,分式的值是

 。6)及時練習(xí)

  填表后觀察是如何隨x的變化而變化的。

  x —3 —2 —1 0 1 2

  設(shè)計(jì)意圖:通過練習(xí)鞏固學(xué)生掌握求分式的值的方法,并讓他們感受對分式中的字母,當(dāng)取不同的數(shù)值時,分式的值也會產(chǎn)生變化,并初步感知變化的規(guī)律,滲透函數(shù)思想。

 。7)例4:當(dāng)x取什么值時分式有意義?

  分析引導(dǎo):與分?jǐn)?shù)一樣,分式的分母不能為0。如果分母中字母做取的值使分母的值為0,那么此時分式?jīng)]有意義。

  解:由分母2x—3=0,得x=,所以當(dāng)時,分式有意義。

 。8)及時練習(xí):

  當(dāng)x取什么數(shù)時,下列分式有意義。

 、;②

  學(xué)生活動:指名板演,其他同學(xué)獨(dú)立完成。

  教師活動:I巡視,并指導(dǎo)學(xué)困生解決問題。

  II板演結(jié)束后,讓學(xué)生評點(diǎn)

  設(shè)計(jì)意圖:對教學(xué)中的難點(diǎn)應(yīng)是課堂上教師和學(xué)生交流互動的重點(diǎn),本練習(xí)的設(shè)計(jì)及教師與學(xué)生的互動,主要是針對分式有無意義的分式分母中字母取值問題而設(shè)計(jì)。通過練習(xí)、討論、交流,鞏固學(xué)生對這一知識的理解和掌握。

  4、能力遷移

 。1)當(dāng)x為何值時,下列分式有意義?

 、;②

  學(xué)生活動:以前后桌四人為一小組,討論解決問題。

  設(shè)計(jì)意圖:一是適當(dāng)增加習(xí)題的難度,二是糾正已經(jīng)在學(xué)生頭腦中形成的前面所有習(xí)題的固有印象,認(rèn)為一題就一個數(shù)值符合要求或者一題必有一個符合條件的數(shù)值的錯誤印象,三是增強(qiáng)同學(xué)們的合作精神。

 。2)選擇一個你喜歡的值求下列分式的值

  設(shè)計(jì)意圖:避免出現(xiàn)所取的值使分式無意義。

  (2)回憶:在表格中,填表后觀察是如何隨x的變化而變化的。

  x —3 —2 —1 0 1 2

  這題中當(dāng)x取什么值時,分式的值為0?

  設(shè)計(jì)問題:當(dāng)x為何值時,下列分式的值為零?

 、伲虎

  學(xué)生活動:討論后根據(jù)老師的引導(dǎo)嘗試解決問題。

  教師活動:引導(dǎo)學(xué)生根據(jù)表格中的結(jié)果,理解當(dāng)分式分子A為0的時候,而分式的分母B又不為0的時候,分式的值為0。

  設(shè)計(jì)意圖:通過討論分析到解決問題,使學(xué)生意識到分式的值為0的條件。

  5、小結(jié)與作業(yè)

  1、學(xué)生活動:用自己的語言對本節(jié)課所學(xué)的知識加以表述。

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生的歸納和概括能力。

  2、教師總結(jié):

 、俜质絹碜杂谏,服務(wù)于生活。

 、诜质降囊饬x和分式的值的求法是重點(diǎn)。

 、廴绾问挂粋分式有意義主要是使分式的分母不為0。

  3、回到課本。

  學(xué)生活動:快速掃描課本P40—43的內(nèi)容。

  設(shè)計(jì)意圖:整體感受本節(jié)課的內(nèi)容。

  3、作業(yè):

  課本P43習(xí)題8。1的內(nèi)容。

  設(shè)計(jì)意圖:書面作業(yè)的形式,是課堂的延續(xù),鞏固學(xué)生對新知識的理解和掌握,培養(yǎng)學(xué)生的動腦能力。

  七、評價

  1、本節(jié)課在學(xué)生已有分?jǐn)?shù)知識基礎(chǔ)之上,通過觀察、分析、歸納、練習(xí)、總結(jié)、作業(yè)等多種形式,使學(xué)生獲得新知識。

  2、可能出現(xiàn)的問題及處理方法

  ①分式和分?jǐn)?shù)雖然具有類似之處,但是要使一個分式有意義,必須要做到分式分母中字母的取值使分母不為0?赡軜O少數(shù)學(xué)生對這部分知識掌握得還不夠透徹。

  出現(xiàn)這種情況的原因主要是學(xué)生對一元一次方程的解法掌握不夠理想或者是對一個新知識的感知、理解、掌握需要過程。

  按照新課標(biāo)準(zhǔn),不能將結(jié)果強(qiáng)加給學(xué)生,針對這部分學(xué)生,一是在課堂巡視的時候給予及時指導(dǎo),二是課后的個別輔導(dǎo)。

  ②能力遷移的第(2)題相對復(fù)雜,部分同學(xué)掌握起來可能有難度。

  出現(xiàn)這種情況,主要是考慮的條件更多的原因。

  針對此,教師一是要加強(qiáng)引導(dǎo),二是要培養(yǎng)學(xué)生的互幫互學(xué)意識,形成合力,共同解決問題,建立新知識的模型。

  八、板書設(shè)計(jì)

  8.1分式

  如果A、B表示兩個整式,并且B中含有字母(),那么代數(shù)式叫做分式,其中A是分式的分子,B是分式的分母。

  文檔內(nèi)含有圖片、公式、文本框、特殊符號網(wǎng)頁頁面無法正確顯示,請點(diǎn)擊免費(fèi)下載完整WORD文檔。

分式說課稿9

  下午好。ㄗ晕医榻B略)我說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書北師大版八年級數(shù)學(xué)下冊第三章第二節(jié)分式的乘除法。下面我將從教材、教法、學(xué)法、教學(xué)程序、板書設(shè)計(jì)等方面來進(jìn)行闡述。

  一、說教材

  1、教材內(nèi)容:

  我認(rèn)為可以理解為探索法則——理解法則——應(yīng)用法則,進(jìn)一步體現(xiàn)了新課標(biāo)中“情境引入——數(shù)學(xué)建模——解釋、拓展與應(yīng)用的模式”。分式的乘除法與分?jǐn)?shù)的乘除法類似,所以可通過類比,探索分式的乘除運(yùn)算法則的過程,會進(jìn)行簡單的分式的乘除法運(yùn)算,分式運(yùn)算的結(jié)果要化成最簡分式和整式,也就是分式的約分,要求學(xué)生能解決一些與分式有關(guān)的簡單的實(shí)際問題。

  2、教材地位:

  分式是分?jǐn)?shù)的“代數(shù)化”,與分?jǐn)?shù)的約分、分?jǐn)?shù)的乘除法有密切的聯(lián)系,也為后面學(xué)習(xí)分式的混合運(yùn)算作準(zhǔn)備,為分式方程作鋪墊。

  3、教學(xué)目標(biāo)

  知識目標(biāo):

 。1)、理解分式的乘除運(yùn)算法則

  (2)、會進(jìn)行簡單的分式的乘除法運(yùn)算

  能力目標(biāo):

  (1)、類比分?jǐn)?shù)的'乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。

 。2)、能解決一些與分式有關(guān)的簡單的實(shí)際問題。

  情感目標(biāo):

 。1)、通過師生觀察、歸納、猜想、討論、交流,培養(yǎng)學(xué)生合作探究的意識和能力。

 。2)、培養(yǎng)學(xué)生的創(chuàng)新意識和應(yīng)用意識。

 。ǎ常、讓學(xué)生感悟數(shù)學(xué)知識來源于現(xiàn)實(shí)生活又為現(xiàn)實(shí)生活服務(wù),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和熱情。

  4、教學(xué)重點(diǎn):分式乘除法的法則及應(yīng)用.

  5、教學(xué)難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算。

  二、說教法

  教學(xué)方法是我們實(shí)現(xiàn)教學(xué)目標(biāo)的催化劑,好的教學(xué)方法常常使我們事半功倍。新課程改革中,老師應(yīng)成為學(xué)生學(xué)習(xí)的引導(dǎo)者、合作者、促進(jìn)者,積極探索新的教學(xué)方式,引導(dǎo)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,使學(xué)生成為學(xué)習(xí)的主人。

 。、啟發(fā)式教學(xué)。啟發(fā)性原則是永恒的,在教師的啟發(fā)下,讓學(xué)生成為課堂上行為的主體。

  2、合作式教學(xué),在師生平等的交流中評價學(xué)習(xí)。

  三、說學(xué)法

  學(xué)生在小學(xué)就已經(jīng)會很熟練的進(jìn)行分?jǐn)?shù)的乘除法運(yùn)算,上一章又學(xué)習(xí)的因式分解,本章學(xué)習(xí)的分式的意義,分式的基本性質(zhì)等,都為本節(jié)課的學(xué)習(xí)做好了知識上的鋪墊。

 。、類比學(xué)習(xí)的方法。通過與分?jǐn)?shù)的乘除法運(yùn)算類比。

  2、合作學(xué)習(xí)。

  四、說教學(xué)程序

  1、類比學(xué)習(xí),探索法則。(約3分鐘)

  讓學(xué)生認(rèn)真思考教材上提供的4個分?jǐn)?shù)的乘除法的例子(2個乘法,2個除法)

分式說課稿10

各位評委:

  下午好!今天我說課的題目是《分式的乘除法(第1課時)》,選用是人教版的教材。根據(jù)新課標(biāo)的理念,對于這節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從說教材、說學(xué)情、說教法學(xué)法、說教學(xué)過程、說板書等五個方面加以說明。

  一、 說教材

 。ㄒ唬┙滩牡牡匚缓妥饔

  本節(jié)教材是八年級數(shù)學(xué)第十六章第二節(jié)第一課時的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了分式基本性質(zhì)、分式的約分和因式分解的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)分式的乘除法;另一方面,又為學(xué)習(xí)分式加減法和分式方程等知識奠定了基礎(chǔ)。因此,這節(jié)課在整個的初中數(shù)學(xué)的學(xué)習(xí)中起著承上啟下的過渡作用。

 。ǘ┙虒W(xué)目標(biāo)分析

  根據(jù)新課標(biāo)的要求和這節(jié)課內(nèi)容特點(diǎn),考慮到年級學(xué)生的知識水平,以及對教材的地位與作用的分析,我制定了如下三維教學(xué)目標(biāo):

  1.認(rèn)知目標(biāo):理解并掌握分式的乘除法法則,能進(jìn)行簡單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問題。

  2.技能目標(biāo):經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。

  3.情感目標(biāo):教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗(yàn)。

 。ㄈ┙虒W(xué)重難點(diǎn)

  本著課程標(biāo)準(zhǔn),在充分理解教材的基礎(chǔ)上,我確立了以下的教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。

  教學(xué)難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。

  下面,為了講清重點(diǎn)難點(diǎn),使學(xué)生能達(dá)到這節(jié)課的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>

  二、說學(xué)情

  1.學(xué)生已經(jīng)學(xué)習(xí)分式基本性質(zhì)、分式的約分和因式分解,通過與分?jǐn)?shù)的乘除法類比,促進(jìn)知識的正遷移。

  2.八年級的學(xué)生接受能力、思維能力、自我控制能力都有很大變化和提高,自學(xué)能力較強(qiáng),通過類比學(xué)習(xí)加快知識的學(xué)習(xí)。

  三、說教法學(xué)法

 。ㄒ唬┱f教法

  教學(xué)方式的改變是新課標(biāo)改革的目標(biāo),新課標(biāo)要求把過去單純的老師講,學(xué)生接受的教學(xué)方式,變?yōu)閹熒邮浇虒W(xué)。師生互動式教學(xué)以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師主導(dǎo)、學(xué)生為主體的原則,結(jié)合這節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,這節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,倡導(dǎo)學(xué)生主動參與教學(xué)實(shí)踐活動,以師生互動的形式,在教師的指導(dǎo)下突破難點(diǎn):分式的乘除法運(yùn)算,在例題的引導(dǎo)分析時,教學(xué)中應(yīng)予以簡單明白,深入淺出的分析本課教學(xué)難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。讓學(xué)生在練習(xí)題中鞏固難點(diǎn),從真正意義上完成對知識的自我建構(gòu)。

  另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。

 。ǘ┱f學(xué)法

  從認(rèn)知狀況來說,學(xué)生在此之前對分?jǐn)?shù)乘除法運(yùn)算比較熟悉,加上對本章第一節(jié)分式及其性質(zhì)學(xué)習(xí),抓住初中生具有豐富的想象能力和活躍的思維能力,愛發(fā)表見解,希望得到老師的表揚(yáng)這些心理特征,因此,我認(rèn)為這節(jié)課適合采用學(xué)生自主探索、合作交流的數(shù)學(xué)學(xué)習(xí)方式。一方面運(yùn)用實(shí)際生活中的問題引入,激發(fā)學(xué)生的興趣,使他們在課堂上集中注意力;另一方面,由于分式的乘除法法則與分?jǐn)?shù)的乘除法法則類似,以類比的方法得出分式的乘除法則,易于學(xué)生理解、接受,讓學(xué)生在自主探索、合作交流中加深理解分式的乘除運(yùn)算,充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。不但讓學(xué)生"學(xué)會"還要讓學(xué)生"會學(xué)"

  四、說教學(xué)過程

  新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的`過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),接下來,我再具體談?wù)勥@節(jié)課的教學(xué)過程安排:

  (一)提出問題,引入課題

  俗話說:"好的開端是成功的一半"同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問題:

  問題1求容積的高是 ,(引出分式乘法的學(xué)習(xí)需要)。

  問題2求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。

  從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。

  (二)類比聯(lián)想,探究新知

  從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。

  解后總結(jié)概括:

  (1)式是什么運(yùn)算?依據(jù)是什么?

 。2)式又是什么運(yùn)算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo))

 。▽W(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。

  【分式的乘除法法則 】

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式, 把除式的分子、分母顛倒位置后,與被除式相乘。

  用式子表示為:

  設(shè)計(jì)意圖:由于分式的乘除法法則與分?jǐn)?shù)的乘除法法則類似,故以類比的方法得出分式的乘除法則,易于學(xué)生理解、接受,體現(xiàn)了自主探索,合作學(xué)習(xí)的新理念。

 。ㄈ├}分析,應(yīng)用新知

  師生活動:教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破這節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。

 。ㄋ模┚毩(xí)鞏固,培養(yǎng)能力

  P13練習(xí)第2題的(1)(3)(4)與第3題的(2)

  師生活動:教師 出示問題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。

  (五)課堂小結(jié),回扣目標(biāo)

  引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):

  1.這節(jié)課我們學(xué)習(xí)了哪些知識?

  2.在知識應(yīng)用過程中需要注意什么?

  3.你有什么收獲呢?

  師生活動:學(xué)生反思,提出疑問,集體交流。

  設(shè)計(jì)意圖:學(xué)習(xí)結(jié)果讓學(xué)生作為反饋,讓他們體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的快樂,在交流中與全班同學(xué)分享,從而加深對知識的理解記憶。

 。┎贾米鳂I(yè)

  教科書習(xí)題6.2 第1、2(必做) 練習(xí)冊P (選做),我設(shè)計(jì)了必做題和選做題,必做題是對這節(jié)課內(nèi)容的一個反饋,選做題是對這節(jié)課知識的一個延伸?偟脑O(shè)計(jì)意圖是反饋教學(xué),鞏固提高。

  五、說板書設(shè)計(jì)

  在這節(jié)課中我將采用提綱式的板書設(shè)計(jì),因?yàn)樘峋V式-條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶。

分式說課稿11

  下午好!(自我介紹略)我說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書北師大版八年級數(shù)學(xué)下冊第三章第二節(jié)分式的乘除法。下面我將從教材、教法、學(xué)法、教學(xué)程序、板書設(shè)計(jì)等方面來進(jìn)行闡述。

  一、說教材

 。、 教材內(nèi)容:我認(rèn)為可以理解為探索法則——理解法則——應(yīng)用法則,進(jìn)一步體現(xiàn)了新課標(biāo)中“情境引入——數(shù)學(xué)建模——解釋、拓展與應(yīng)用的模式”。分式的乘除法與分?jǐn)?shù)的乘除法類似,所以可通過類比,探索分式的乘除運(yùn)算法則的過程,會進(jìn)行簡單的分式的乘除法運(yùn)算,分式運(yùn)算的結(jié)果要化成最簡分式和整式,也就是分式的約分,要求學(xué)生能解決一些與分式有關(guān)的簡單的實(shí)際問題。

 。病 教材地位:分式是分?jǐn)?shù)的“代數(shù)化”,與分?jǐn)?shù)的約分、分?jǐn)?shù)的乘除法有密切的聯(lián)系,也為后面學(xué)習(xí)分式的混合運(yùn)算作準(zhǔn)備,為分式方程作鋪墊。

 。、 教學(xué)目標(biāo)

  知識目標(biāo):(1)、理解分式的乘除運(yùn)算法則

 。2)、會進(jìn)行簡單的分式的乘除法運(yùn)算

  能力目標(biāo):(1)、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。

  (2)、能解決一些與分式有關(guān)的簡單的實(shí)際問題。

  情感目標(biāo):(1)、通過師生觀察、歸納、猜想、討論、交流,培養(yǎng)學(xué)生合作探究的意識和能力。

 。2)、培養(yǎng)學(xué)生的創(chuàng)新意識和應(yīng)用意識。

 。ǎ常、讓學(xué)生感悟數(shù)學(xué)知識來源于現(xiàn)實(shí)生活又為現(xiàn)實(shí)生活服務(wù),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和熱情。

  4、教學(xué)重點(diǎn):分式乘除法的法則及應(yīng)用.

  5、教學(xué)難點(diǎn):分子、分母是多項(xiàng)式的'分式的乘除法的運(yùn)算。

  二、說教法

  教學(xué)方法是我們實(shí)現(xiàn)教學(xué)目標(biāo)的催化劑,好的教學(xué)方法常常使我們事半功倍。新課程改革中,老師應(yīng)成為學(xué)生學(xué)習(xí)的引導(dǎo)者、合作者、促進(jìn)者,積極探索新的教學(xué)方式,引導(dǎo)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,使學(xué)生成為學(xué)習(xí)的主人。

  1、啟發(fā)式教學(xué)。啟發(fā)性原則是永恒的,在教師的啟發(fā)下,讓學(xué)生成為課堂上行為的主體。

 。病⒑献魇浇虒W(xué),在師生平等的交流中評價學(xué)習(xí)。

  三、說學(xué)法

  學(xué)生在小學(xué)就已經(jīng)會很熟練的進(jìn)行分?jǐn)?shù)的乘除法運(yùn)算,上一章又學(xué)習(xí)的因式分解,本章學(xué)習(xí)的分式的意義,分式的基本性質(zhì)等,都為本節(jié)課的學(xué)習(xí)做好了知識上的鋪墊。

 。、類比學(xué)習(xí)的方法。通過與分?jǐn)?shù)的乘除法運(yùn)算類比。

  2、合作學(xué)習(xí)。

  四、說教學(xué)程序

 。、類比學(xué)習(xí),探索法則。(約3分鐘)

  讓學(xué)生認(rèn)真思考教材上提供的4個分?jǐn)?shù)的乘除法的例子(2個乘法,2個除法)

  復(fù)習(xí):分?jǐn)?shù)的乘除法法則(抽一學(xué)生口答)

  猜一猜:

 。

  (a、b、c、d表示整數(shù)且在第一個式子中a、c不等于零,在第二個式子中a、c、d不等于零)

  類比:得出分式的乘除法法則(a、b、c、d表示整式且在第一個式子中a、c不等于零,在第二個式子中a、c、d不等于零,a、c中含有字母)

  活動目的:

  讓學(xué)生觀察、計(jì)算、小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。

  教學(xué)效果:

  通過類比分?jǐn)?shù)的乘除法的法則,學(xué)生明白字母代表數(shù)、代表式,這樣很順利的得出分式的乘除法的法則。

  2、理解法則:(約2分鐘)(1)文字?jǐn)⑹觯簝蓚分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;

  兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.

 。2)符號表述

  ×

  =

  ;

  ÷

  =

  ×

  =

  .

  活動目的:

  兩種形式鞏固對法則的理解。

  教學(xué)效果:

  理解法則,進(jìn)一步發(fā)展學(xué)生的符號感。

  3、應(yīng)用:(約20分鐘)

  (1)牛刀小試

  教材74頁到76頁的例1、做一做、例2.我準(zhǔn)備把例1和例2先學(xué)習(xí)了。再學(xué)習(xí)做一做。

  例1 計(jì)算

  (1)

  ·

  ;

 。2)

  ·

  活動目的:

  抓住學(xué)生剛學(xué)習(xí)了法則,躍躍欲試的學(xué)習(xí)激情,抽2名同學(xué)上黑板演算,其他學(xué)生在課堂作業(yè)本上演算。老師巡查,予以輔導(dǎo),反復(fù)提醒學(xué)生像分?jǐn)?shù)乘法一樣來學(xué)習(xí)分式乘法(即類比)。

  教學(xué)效果:

  有的學(xué)生可能沒有注意把結(jié)果化為最簡分式,要提醒注意,有的學(xué)生可能一邊計(jì)算一邊就分解因式進(jìn)行約分(化簡)了的,說明已經(jīng)很好地與分?jǐn)?shù)的乘法進(jìn)行類比學(xué)習(xí)了(分?jǐn)?shù)是分解因數(shù)),應(yīng)該予以表揚(yáng),讓全班學(xué)生認(rèn)真學(xué)習(xí)、領(lǐng)會。講評時還應(yīng)該讓學(xué)生理解一步的算理。

  例2.計(jì)算:

 。1)3xy2÷

  ;

 。2)

  ÷

  活動目的:

  讓學(xué)生進(jìn)一步理解類比的學(xué)習(xí)方法,分式的除法先轉(zhuǎn)化為乘法。

  教學(xué)效果:

  因式分解在分式約分中起到重要作用,對于分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算時,一般先分解因式,并在運(yùn)算過程中約分,可以使運(yùn)算簡化。

 。2)“西瓜問題”

  活動目的:

  能解決一些與分式有關(guān)的簡單的實(shí)際問題。能有條理的進(jìn)行表達(dá)。

  教學(xué)效果:

  通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運(yùn)算步驟(當(dāng)分式的分子與分母都是單項(xiàng)式時和當(dāng)分式的分子、分母中有多項(xiàng)式兩種情況)

  4、隨堂練習(xí)。(約5分鐘)

  76頁第一題,共3個小題。

  教學(xué)效果:

  在總結(jié)出分式乘除法的運(yùn)算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運(yùn)算結(jié)果要化成最簡形式,老師要及時提醒學(xué)生。分解因式的知識沒掌握好,將會影響到分式的運(yùn)算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識。

  5、數(shù)學(xué)理解(約5分鐘)

  教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。

  補(bǔ)充例3 計(jì)算(xy-x2)÷

  教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運(yùn)算的方法。提醒學(xué)生,負(fù)號要提到分式前面去。

  6、課堂小結(jié)(約3分鐘)

  先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。

  7、作業(yè)布置,凝固新知。(約2分鐘)

  教材77頁到78頁,習(xí)題3.1,1、2、4.并補(bǔ)充一題(分式乘除法混合運(yùn)算的)

  五.說板書設(shè)計(jì)

  主板書采用綱要式,一目了然。

  一、 分式的基本性質(zhì)

  1、 文字?jǐn)⑹?/p>

 。、 符號表述

  二、應(yīng)用

  最后,談?wù)勎业捏w會。課堂上平等對話,讓學(xué)生自主掌握數(shù)學(xué),發(fā)現(xiàn)問題,及時改正。教學(xué)是讓學(xué)生豐富認(rèn)識。

分式說課稿12

  一、說教材:

  本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運(yùn)算,整數(shù)指數(shù)冪的概念及運(yùn)算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

  全章共包括三節(jié):

  16.1 分式

  16.2 分式的運(yùn)算

  16.3 分式方程

  其中,16.1 節(jié)引進(jìn)分式的概念,討論分式的基本性質(zhì)及約分、通分等分式變形,是全章的理論基礎(chǔ)部分。16.2節(jié)討論分式的四則運(yùn)算法則,這是全章的一個重點(diǎn)內(nèi)容,分式的四則混合運(yùn)算也是本章教學(xué)中的一個難點(diǎn),克服這一難點(diǎn)的關(guān)鍵是通過必要的練習(xí)掌握分式的各種運(yùn)算法則及運(yùn)算順序。在這一節(jié)中對指數(shù)概念的限制從正整數(shù)擴(kuò)大到全體整數(shù),這給運(yùn)算帶來便利。16.3節(jié)討論分式方程的概念,主要涉及可以化為一元一次方程的分式方程。解方程中要應(yīng)用分式的基本性質(zhì),并且出現(xiàn)了必須檢驗(yàn)(驗(yàn)根)的環(huán)節(jié),這是不同于解以前學(xué)習(xí)的方程的新問題。根據(jù)實(shí)際問題列出分式方程,是本章教學(xué)中的另一個難點(diǎn),克服它的關(guān)鍵是提高分析問題中數(shù)量關(guān)系的能力。

  分式是不同于整式的另一類有理式,是代數(shù)式中重要的基本概念;相應(yīng)地,分式方程是一類有理方程,解分式方程的過程比解整式方程更復(fù)雜些。然而,分式或分式方程更適合作為某些類型的問題的數(shù)學(xué)模型,它們具有整式或整式方程不可替代的特殊作用。

  借助對分?jǐn)?shù)的認(rèn)識學(xué)習(xí)分式的內(nèi)容,是一種類比的認(rèn)識方法,這在本章學(xué)習(xí)中經(jīng)常使用。解分式方程時,化歸思想很有用,分式方程一般要先化為整式方程再求解,并且要注意檢驗(yàn)是必不可少的步驟。

  二、說教學(xué)目標(biāo):

  1.進(jìn)一步掌握分式的有關(guān)概念,相關(guān)性質(zhì)及運(yùn)算法則,分式方程的解法。

  2.會利用分式方程解決實(shí)際問題,培養(yǎng)分析問題,解決問題的能力和應(yīng)用意識。

  三、說教學(xué)重難點(diǎn)

  重點(diǎn):

  1、能熟練的進(jìn)行分式的約分、通分和分式的運(yùn)算。

  2、會解可化為一元一次方程的分式方程,了解產(chǎn)生增根的原因。

  3、會用分式方程解決實(shí)際問題。

  難點(diǎn):用分式方程解決實(shí)際問題。

  四、說教法學(xué)法

  閱讀教材,歸納知識點(diǎn),疑難問題小組合作探究。

  五、說教學(xué)過程:

  學(xué)生在自主梳理課本內(nèi)容的基礎(chǔ)上,課堂上展示交流以下問題:

  概念部分:

  舉例說明什么是分式、分式方程、分式的約分、通分和最簡分式

  分式:

  分式方程:

  分式的約分:

  分式的通分:

  最簡分式:

  性質(zhì)部分

  (1) 什么是分式的基本性質(zhì)?本章哪些內(nèi)容用到了分式的基本性質(zhì)?

  (2) 整數(shù)指數(shù)冪的運(yùn)算性質(zhì)有哪些?

  3法則部分

  用自己的.語言敘述分式的加法、減法、乘法、除法及乘方的運(yùn)算法則(各舉一例說明這些法則) 。

  這部分內(nèi)容由每個小組完成。目的是培養(yǎng)學(xué)生梳理知識的能力,同時也能更好的掌握本章的基礎(chǔ)知識,學(xué)生完全可獨(dú)立完成。這些基礎(chǔ)知識也為分式的運(yùn)算、化簡、解方程奠定基礎(chǔ)的所以學(xué)生必須學(xué)會這部分內(nèi)容。為此讓學(xué)生舉例說明就更有必要了。

  鞏固訓(xùn)練,提升能力:

  1.在式子,,,,·,中

  整式有 ; 分式有 。

  2.若分式:有意義,則,x ;若分式無意義,則x ;若分式的值為零,則x= 。

  3.解分式方程的基本思想是把分式方程轉(zhuǎn)化為 方程,其步驟為:

  (1)去分母在方程兩邊都 ,把分式方程轉(zhuǎn)化為 方程。

  (2)解這個 方程。

  (3)檢驗(yàn),檢驗(yàn)的方法是 。

  4.約分= , 5.將5.62×

  5 、10用小數(shù)表示為( )

  A.0.000 000 00562 B.0.000 000 0562

  C.0.000 000562 D.0.000 000 000562

  6.下列式子從左到右變形一定正確的是( )

  A. B. C. D. =

  7.下列變形正確的是( )

  A.3a= B. C. D.

  8.通分(1) , (2)

  9.(1)計(jì)算 (2) 解方程

  10.計(jì)算

  11.先化簡:÷。再任選一個適當(dāng)?shù)膞值代入求值 。 .

  12已知:,試求A、B的值。

  13.已知:求的值.

  14.已知,求的值.

  15.若關(guān)于x的分式方程有增根,求m的值.

  16某工程隊(duì)承接了3000米的修路任務(wù),在修好600米后,引進(jìn)了新設(shè)備,工作效率是原來的2倍,一共用30天完成了任務(wù),求引進(jìn)新設(shè)備前平均每天修路多少米?

  17.學(xué)校要舉行跳遺繩比賽,同學(xué)們都積極練習(xí),甲同學(xué)跳180個所用時間,乙同學(xué)可以跳240個,又知甲每分鐘比乙少跳5個,求每人每分鐘各跳多少個?

  18.探究題:探索規(guī)律:,個位數(shù)字是3;,個位數(shù)字是9;個位數(shù)字是7;,個位數(shù)字是1;,個位數(shù)字是3 ;,個位數(shù)字是9;的個位數(shù)字是 ;的個位數(shù)字是 。

  19.根據(jù)所給方程,聯(lián)系生活實(shí)際編寫一道應(yīng)用題(要求:題目完整,題意清楚,不要求解方程.)

  這部分編寫的目的是運(yùn)用基礎(chǔ)知識解決實(shí)際問題從而達(dá)到解決問題的目的,提綱下發(fā)全體學(xué)生都做,然后針對檢查情況把典型題寫在黑板上然后由學(xué)生講解,教師適時補(bǔ)充。最后19題是開放試題但教師要總結(jié)規(guī)律和方法,工程問題怎樣編,行程問題怎樣編,教給學(xué)生方法是關(guān)鍵。

  六、教學(xué)反思:

  自從實(shí)行學(xué)、教、測教學(xué)模式以來學(xué)生的能力得到真正的提高。在本章的教學(xué)中我主要是采用類比的教學(xué)方法,通過類比分?jǐn)?shù)來學(xué)習(xí)分式效果非常好。本節(jié)復(fù)習(xí)課讓學(xué)生歸納知識體系真正培養(yǎng)了學(xué)生的歸納整理知識的能力。復(fù)習(xí)課注重習(xí)題方法的探究。學(xué)生思維能力的培養(yǎng)。類型題的規(guī)律的探究。在本節(jié)課中體現(xiàn)的還可以如果時間允許的話效果還能好一些。值得我們思考的是在今后的備課中還應(yīng)注意時間的分配和重點(diǎn)問題的處理。同時數(shù)學(xué)課上應(yīng)該多交給學(xué)生解題方法、解題技巧、規(guī)律探索、思維能力的訓(xùn)練等。

分式說課稿13

  一、教材分析

  1、教材的地位及作用

  “分式的基本性質(zhì)”是人教版八年級上冊第十一章第一節(jié)“分式”的重點(diǎn)內(nèi)容之一,它是后面分式變形、通分、約分及四則運(yùn)算的理論基礎(chǔ),掌握本節(jié)內(nèi)容對于學(xué)好本章及以后學(xué)習(xí)方程、函數(shù)等問題具有關(guān)鍵作用。

  2、教學(xué)重點(diǎn)、難點(diǎn)分析:

  教學(xué)重點(diǎn):理解并掌握分式的基本性質(zhì)

  教學(xué)難點(diǎn):靈活運(yùn)用分式的基本性質(zhì)進(jìn)行分式化簡、變形

  3教材的處理

  學(xué)習(xí)是學(xué)生主動構(gòu)建知識的過程。學(xué)生不是簡單被動的接受信息,而是對外部信息進(jìn)行主動的選擇、加工和處理,從而獲得知識的意義。學(xué)習(xí)的過程是自我生成的過程,是由內(nèi)向外的生長,其基礎(chǔ)是學(xué)生原有知識與經(jīng)驗(yàn)。本節(jié)課中,學(xué)生原有的知識是分?jǐn)?shù)的基本性質(zhì),因此我首先引導(dǎo)學(xué)生通過分?jǐn)?shù)的基本性質(zhì),這就激活了學(xué)生原有的知識,然后引導(dǎo)學(xué)生通過分?jǐn)?shù)的基本性質(zhì)用類比的方法得出分式的基本性質(zhì)。讓學(xué)生自我構(gòu)建新知識。通過例題的講解,讓學(xué)生初步理解“性質(zhì)”的運(yùn)用,再通過不同類型的練習(xí),使其掌握“性質(zhì)”的運(yùn)用. 最后引導(dǎo)學(xué)生對本節(jié)課進(jìn)行小結(jié),使學(xué)生的知識結(jié)構(gòu)更合理、更完善。

  二、目標(biāo)分析:

  數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程。教學(xué)的目的就是應(yīng)從實(shí)際出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)的問題情境,引導(dǎo)學(xué)生通過思考、探索、交流獲得知識,形成技能,發(fā)展思維,學(xué)會學(xué)習(xí),使學(xué)生生動活潑地、主動地、富有個性的'學(xué)習(xí),促進(jìn)學(xué)生全面、持續(xù)、和諧地發(fā)展。為此,我從知識技能、數(shù)學(xué)思考解決問題、情感態(tài)度四個方面確定了教學(xué)目標(biāo):

  1、知識技能:1)了解分式的基本性質(zhì)

  2)能靈活運(yùn)用分式的基本性質(zhì)進(jìn)行分式變形

  2、數(shù)學(xué)思考:通過類比分?jǐn)?shù)的基本性質(zhì),探索分式的基本性質(zhì),初步掌握類比的思想方法。

  3、解決問題:通過探索分?jǐn)?shù)的基本性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗(yàn)。

  4、情感態(tài)度:通過研究解決問題的過程,培養(yǎng)學(xué)生合作交流意識與探索精神。

  三、教法分析

  1、教學(xué)方法

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。在新課程理念下,獲得數(shù)學(xué)知識的過程比獲得知識更為重要;诒竟(jié)課的特點(diǎn),課堂教學(xué)采用了“問題—觀察—思考—提高”的步驟,使學(xué)生初步體驗(yàn)到數(shù)學(xué)是一個充滿著觀察、思考、歸納、類比和猜測的探索過程。

  2、學(xué)法指導(dǎo)

  現(xiàn)代新教育理念認(rèn)為,學(xué)習(xí)數(shù)學(xué)不應(yīng)只是單調(diào)刻板,簡單模仿,機(jī)械背誦與操練,而應(yīng)該采用設(shè)置現(xiàn)實(shí)問題情境,有意義富有挑戰(zhàn)性的學(xué)習(xí)內(nèi)容來引發(fā)學(xué)習(xí)者的興趣。,本節(jié)課采用學(xué)生小組合作,討論交流,觀察發(fā)現(xiàn),師生互動的學(xué)習(xí)方式。學(xué)生通過小組合作學(xué)會主動探究,主動總結(jié),主動提高,突出學(xué)生是學(xué)習(xí)主體,他們在感知識知識的過程中無疑提高了探索、發(fā)現(xiàn)、實(shí)踐、總結(jié)的能力。

  3、教學(xué)手段

  我所采用的教學(xué)手段是多媒體輔助教學(xué)法。

  四、程序分析

  活動1 創(chuàng)設(shè)情境,引入課題

  教師提出問題,下列分?jǐn)?shù)是否相等?可以進(jìn)行變形的依據(jù)是什么?需要注意的是什么?類比分?jǐn)?shù)的基本性質(zhì),你能猜想出分工有什么性質(zhì)嗎?學(xué)生思考、交流,回答問題。在活動中教師要關(guān)注:(1)學(xué)生對學(xué)過的知識是否掌握得較好;(2)學(xué)生對新知識的探索是否有深厚的興趣。

  設(shè)計(jì)意圖:通過具體例子,引導(dǎo)學(xué)生回憶分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。這樣安排,首先激活了學(xué)生原有的知識,為學(xué)習(xí)分式的基本性質(zhì)做好鋪墊。體現(xiàn)了學(xué)生的學(xué)習(xí)是在原有知識上自我生成的過程。

  活動2 類比聯(lián)想,探究交流

  教師提出問題:如何用語言和式子表示分式的基本性質(zhì)?學(xué)生獨(dú)立思考、分組討論、全班交流。

  設(shè)計(jì)意圖:教師引導(dǎo)學(xué)生用語言和式子表示分式的基本性質(zhì),體現(xiàn)了學(xué)生的學(xué)習(xí)是在原有知識上自我生成的過程。這樣安排,學(xué)生的知識不是從老師那里直接復(fù)制或灌輸?shù)筋^腦中來的,而是讓學(xué)生自己去類比發(fā)現(xiàn)、過程讓學(xué)生自己去感受、結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)了學(xué)生主動參與、探究新知的目的。

  活動3 例題分析 運(yùn)用新知

  教師提出問題進(jìn)行分式變形。學(xué)生先獨(dú)立思考問題,然后分小組討論。教師參與并指導(dǎo)學(xué)生的數(shù)學(xué)活動,鼓勵學(xué)生勇于探索、實(shí)踐,靈活運(yùn)用分式基本性質(zhì)進(jìn)行分式的恒等變形。在活動中教師要關(guān)注:(1)學(xué)生能否緊扣“性質(zhì)”進(jìn)行分析思考;(2)學(xué)生能否逐步領(lǐng)會分式的恒等變形依據(jù)。(3)學(xué)生是否能認(rèn)真聽取他人的意見。

  活動4 練習(xí)鞏固 拓展訓(xùn)練

  教師出示問題訓(xùn)練單。學(xué)生先獨(dú)立思考完成,并安排三名同學(xué)板演。教師巡視,注意對學(xué)習(xí)有困難的學(xué)生進(jìn)行個別輔導(dǎo)。在活動中教師要關(guān)注:(1)大部分學(xué)生能否準(zhǔn)確、熟練完成任務(wù);(2)學(xué)生能否用數(shù)學(xué)語言表述發(fā)現(xiàn)的規(guī)律;(3)學(xué)生在運(yùn)算中表現(xiàn)出來的情感與態(tài)度是否積極。

  設(shè)計(jì)意圖:通過思考問題,鼓勵學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極地參與到對數(shù)學(xué)問題的討論中來,勇于發(fā)表自己的觀點(diǎn),善于理解他人的見解,在交流中獲益。第二個問題指明了分式的變號法則。

  活動5 小結(jié)評價 布置作業(yè)

  學(xué)生思考在教師的引導(dǎo)下整理知識、理順?biāo)季S。在活動中教師要關(guān)注:(1)學(xué)生對本節(jié)課的學(xué)習(xí)內(nèi)容是否理解;(2)學(xué)生能否從獲取新知的過程中領(lǐng)悟到其中的數(shù)學(xué)方法。

  設(shè)計(jì)意圖:學(xué)生對學(xué)習(xí)情況進(jìn)行反思,主要包括:對自己的思考過程進(jìn)行反思;對學(xué)習(xí)活動涉及的思想方法進(jìn)行反思;對解題思路、過程和語言表述進(jìn)行反思;等等。幫助學(xué)生獲得成功的體驗(yàn)和失敗的感受,積累學(xué)習(xí)經(jīng)驗(yàn)。對所學(xué)內(nèi)容進(jìn)一步系統(tǒng)化,使學(xué)生的知識結(jié)構(gòu)更合理,更完善。

分式說課稿14

  一、 說教材作用:

  本節(jié)內(nèi)容從以前所學(xué)過的分式方程的概念出發(fā),介紹分式方程的求解方法。跟這部分內(nèi)容有關(guān)聯(lián)的是后面列方程解應(yīng)用題,學(xué)好這一節(jié)課,將為下節(jié)課的學(xué)習(xí)打下基礎(chǔ)。

  二、說教學(xué)目標(biāo)

  1.讓學(xué)生理解分式方程的意義。

  2.掌握可化為一元一次方程的分式方程的一般解法。

  3.了解解分式方程時可能產(chǎn)生增根的原因,并掌握解分式方程的驗(yàn)根方法。

  4.在學(xué)生掌握了分式方程的一般解法和分式方程驗(yàn)根方法的基礎(chǔ)上,使學(xué)生進(jìn)一步掌握可化為一元一次方程的分式方程的解法,使學(xué)生熟練掌握解分式方程的技巧。

  5.通過學(xué)習(xí)分式方程的解法,使學(xué)生理解解分式方程的基本思想是把分式方程轉(zhuǎn)化成整式方程,把未知問題轉(zhuǎn)化成已知問題,從而滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  三、說重難點(diǎn)

  本節(jié)重點(diǎn)是可化為一元一次方程的分式方程求解中的轉(zhuǎn)化。解分式方程的基本思想是:設(shè)法去掉分式方程的分母,把分式方程轉(zhuǎn)化為整式方程,這是分式方程求解的關(guān)鍵,因此轉(zhuǎn)化過程中主要是找方程兩邊的最簡公分母。難點(diǎn)分析:解分式方程學(xué)生容易出錯,關(guān)鍵不能理解在方程變形的過程中產(chǎn)生增根的原因,對于七年級學(xué)生理解有一定的困難,亦可以結(jié)合實(shí)例讓學(xué)生了解方程兩邊同乘的是整式,整式可能為零不能滿足方程同解變換的原則,因此求解分式方程一定要驗(yàn)根。

  四、說教學(xué)方法:

  本節(jié)內(nèi)容從以前所學(xué)過的分式方程的概念出發(fā),介紹分式方程的求解方法。而再加上數(shù)學(xué)學(xué)科的特點(diǎn),所以本節(jié)課采用了啟發(fā)式、引導(dǎo)式教學(xué)方法。特別注重"精講多練",真正體現(xiàn)以學(xué)生為主體。上知識點(diǎn)復(fù)習(xí)課時采用了啟發(fā)、引導(dǎo)式的同時,而針對學(xué)生的回答所出現(xiàn)的一些問題給出及時的糾正,在做練習(xí)時,這除了讓盡可能多的學(xué)生上黑板以外,自己還在下面及時的發(fā)現(xiàn)學(xué)生所出現(xiàn)的問題,比較典型的則全班講評,個別小問題,個別解決。

  五、說教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)

  (1) 復(fù)習(xí)什么叫分式方程?

  設(shè)計(jì)意圖:主要讓學(xué)生區(qū)分整式方程與分式方程的區(qū)別,能夠使學(xué)生能積極投入到下面環(huán)節(jié)的學(xué)習(xí)。

  (2)解分式方程

 、賹W(xué)生回憶解分式方程的基本思路和解分式方程的一般步驟,講解例題:

  解:原方程可化為:

  方程兩邊同乘 ,約去分母,得

 。▁+3)-8x=x2-9-x(x+3)

  解這個整式方程,得

  檢驗(yàn):把x=3代入最簡公分母 (x+3)(x-3)=0

  ∴x=3是原方程的增根

  ∴原方程無解

  設(shè)計(jì)意圖;在此環(huán)節(jié),教師鼓勵同學(xué)們親自體驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情。在鞏固解分式方程的基礎(chǔ)上發(fā)展學(xué)生的'歸納能力、張揚(yáng)學(xué)生的個性。使教師真正成為學(xué)生學(xué)習(xí)的促進(jìn)者。

 、趯W(xué)習(xí)例題交流討論,找兩組同學(xué)到黑板上嘗試解題。

  設(shè)計(jì)意圖:通過學(xué)生對例題的合作研究,使每個學(xué)生對分式方程的解法進(jìn)一步的認(rèn)識,在此環(huán)節(jié),鼓勵同學(xué)大膽交流、發(fā)表自己的見解,同時學(xué)會聆聽。培養(yǎng)同學(xué)們的合作意識。教師在此時對學(xué)生的問題要做出適當(dāng)?shù)脑u價,給同學(xué)以鼓勵和引導(dǎo)。

 、畚疫設(shè)計(jì)了幾個小題讓同學(xué)們思考分式方程解的情況

  設(shè)計(jì)意圖:讓學(xué)生理解在知道分式方程的根的情況下求式中字母的值

  教師小結(jié):

  在方程變形時,有時可能產(chǎn)生不適合原方程的根,這種根叫做原方程的增根

 。ǘ┐箫@身手

  設(shè)計(jì)意圖:鞏固

  六、課內(nèi)小結(jié)

  1、這節(jié)課我們學(xué)習(xí)了什么?

  2、提一個問題

分式說課稿15

  一、教材分析

  1.地位和作用

  “分式的意義”是九年制義務(wù)教育課本中七年級第二學(xué)期第十五章的第一節(jié)內(nèi)容,是中學(xué)知識體系的重要組成部分。分式的概念與整式是緊密相聯(lián)的,是前面知識的延伸,同時也是對前面知識的進(jìn)一步運(yùn)用和鞏固。學(xué)生掌握了分式的意義后,為進(jìn)一步學(xué)習(xí)分式、函數(shù)、方程等知識作好鋪墊;有助于培養(yǎng)學(xué)生的分析、歸納、概括的能力。

  2.學(xué)情分析

  我任教班級學(xué)生基礎(chǔ)不是很扎實(shí),學(xué)習(xí)能力不夠高.通過分?jǐn)?shù)的學(xué)習(xí),學(xué)生可能會用分?jǐn)?shù)的定義去理解分式.但是在分式中,它的分母不是具體的數(shù),而是含有字母的整式。為了讓學(xué)生能切實(shí)掌握所學(xué)知識,提高學(xué)生的能力,在教學(xué)中對于教材中的例題和練習(xí)題,作了適當(dāng)?shù)难由焱卣购妥兪教幚怼?/p>

  3.教學(xué)目標(biāo) (1) 知識目標(biāo):理解分式的概念,并能判斷一個有理式是不是分式。

  (2) 技能目標(biāo):掌握“如果分式的分母的值為零,則分式?jīng)]有意義”;“如果分式的分子為零,而分母不為零時,分式的值為零”,會推斷分式的分母中所含字母的取值范圍。

  (3) 能力目標(biāo):初步掌握整式和分式的思想方法,培養(yǎng)學(xué)生分析、歸納、概括的能力。

  (4) 情感目標(biāo):通過學(xué)習(xí)分式的意義,培養(yǎng)學(xué)生的逆向思維能力和學(xué)生的辯證唯物主義觀點(diǎn)。

  4.教學(xué)重點(diǎn)與難點(diǎn)

  本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  (1)重點(diǎn):分式的意義:分式與除法的關(guān)系;

  (2)難點(diǎn):掌握“如果分式的分母的值為零,則分式?jīng)]有意義”;“如果分式的分子為零,而分母不為零時,分式的值為零”。

  二、教學(xué)方法與學(xué)法

  本節(jié)課教師將以引路的形式,運(yùn)用啟發(fā)式的教學(xué)方法,帶著學(xué)生去發(fā)現(xiàn)和探究新知識,教師在實(shí)施教學(xué)的過程中注意學(xué)生的觀察能力和語言表達(dá)能力的培養(yǎng),分析、歸納、概括,通過不斷的實(shí)踐和認(rèn)識,讓學(xué)生全面地掌握分式的意義,讓學(xué)生體會到數(shù)學(xué)不是一門枯燥的學(xué)科,對學(xué)習(xí)數(shù)學(xué)充滿信心。

  三、教學(xué)過程

  本節(jié)課的教學(xué)我主要分下面這樣幾個環(huán)節(jié)

  1.設(shè)問激疑,以舊探新,類比聯(lián)想,形成概念

  教師先問學(xué)生兩個問題,幫助學(xué)生回憶分?jǐn)?shù)。

  思考:請各位同學(xué)將下列各題用一個恰當(dāng)?shù)姆謹(jǐn)?shù)來表示:

  1. 一段繩子長3米,把它平均分成4份,則每份長是多少?

  2. 甲地到乙地的路程是180千米,一輛汽車行駛7小時,從甲地到達(dá)乙地,這輛汽車平均每小時的速度是多少?

  然后教師再請學(xué)生看以下兩個問題。

  思考:1.一段繩子長3米,把它平均分成份,則每份長是多少?

  2.甲地到乙地的路程是180千米,一輛汽車行駛 小時,從甲地到乙地,這輛汽車平均每小時的速度是多少?

  學(xué)生通過運(yùn)算、比較,可以發(fā)現(xiàn) 、 是一種新的代數(shù)式。教師介紹這種新的代數(shù)式,我們稱它為“分式”,從而引出課題“分式的意義”。

  接著,教師在此基礎(chǔ)上引導(dǎo)學(xué)生類比聯(lián)想,給出分式的概念。即

  兩個數(shù) , 相除可以用“ ”或“ ”來表示,如果兩個代數(shù)式A,B相除我們也可以用“A÷B” 或“ ”來表示。

  分式的概念:兩個整式A,B相除時,可以表示為的形式,如果分母B中含有字母,那么 叫做分式。如:分母中都含有字母,都是分式。

  (這樣的安排可以刺激學(xué)生復(fù)習(xí)和回憶前面所學(xué)的知識,選擇能作為新知識的生長點(diǎn)的舊知識,將新知識的各因素聯(lián)系起來,并以組織好的方式呈現(xiàn)給學(xué)生,使學(xué)生看到了知識的發(fā)展過程的同時,也學(xué)到了新的知識。通過比較概括,是新舊知識相聯(lián)系,通過啟發(fā),激活學(xué)生頭腦中的舊知識,調(diào)動學(xué)生主動學(xué)習(xí)的心理傾向。使他們對分式的概念先有一個粗略的總體認(rèn)識,為下一步的教學(xué)作好鋪墊,使學(xué)生對反映新知識內(nèi)容的文字、符號先有一個表層的認(rèn)識。)

  在教師與學(xué)生共同得到分式的概念后,緊接著教師給出:

  例1:現(xiàn)有以下各式:2, , , , , , ,請同學(xué)們?nèi)稳蓚進(jìn)行組合,使組合后的代數(shù)式為分式。

  在這里我們可以發(fā)現(xiàn)答案并不唯一,通過對分式的概念的理解,讓學(xué)生親自動手,親身體驗(yàn),展開想象的翅膀,組合成的代數(shù)式將一個個的呈現(xiàn)在我們眼前,激發(fā)學(xué)生興趣,調(diào)動學(xué)生學(xué)習(xí)的主動性。然后教師通過學(xué)生所給出的答案加以分析,指出類似 這種形式的,雖然也有分母,但分母中不含有字母,所以不是分式,而是整式。指出判斷一個代數(shù)式是不是分式,不是決定于這個式子里是否含分?jǐn)?shù)線,關(guān)鍵要看分母中是否含有字母。最后指出“整式和分式統(tǒng)稱為有理式”。

  根據(jù)分式的概念,我們還可以看到分?jǐn)?shù)線具有雙重意義:(1)表示括號;(2)表示除號。所以為了讓學(xué)生體會到這一點(diǎn),教師給出:

  例2:用分式表示下列各式:

  (1) ; (2) ; (3) ; (4) ;

  2.觀察感知,啟發(fā)引導(dǎo),指導(dǎo)運(yùn)用,鞏固概念

  在掌握了分式的概念以后,教師通過“要分?jǐn)?shù)有意義,只要使分母不為零”讓學(xué)生很自然得過渡到“要分式有意義,也只要使分母不為零”即可的思想。

  教師抓住這一契機(jī),給出:

  例3:當(dāng) 取什么值時,分式: 有意義?

  學(xué)生根據(jù)之前的結(jié)論,得出只要分母 ,即 時,這個分式有意義。

  教師順?biāo)浦,再給出以下分式,讓學(xué)生討論,這時當(dāng)x取什么值時,分式有意義?

  (1) ; (2) ; (3) ; (4)

  講到這里,教師又乘勝追擊,問學(xué)生:

  例4:那么以上各分式,當(dāng) 取什么值時,分式無意義?

  那么我們說只要分母為零時,這個分式就無意義。請學(xué)生給出每一題的正確結(jié)論。

  3、變式訓(xùn)練,討論辨析,揭示內(nèi)涵,深化概念

  在掌握了如何求當(dāng)未知數(shù)取什么值時,分式是有意義還是無意義以后,教師將帶領(lǐng)學(xué)生進(jìn)入本節(jié)課的另一個難點(diǎn),對學(xué)生來講思維又將象每個跳動的音符一樣活躍起來了。

  教師問學(xué)生:

  例5:同樣的,以上各分式,當(dāng) 取什么值時,分式的值為零?

  由于學(xué)生對新概念的理解在本質(zhì)方面還是膚淺的,很多學(xué)生只會考慮滿足分子為零即可,所以教師給學(xué)生幾分鐘的'討論時間,這時就有考慮問題較周到的學(xué)生通過(3)(4)兩個題發(fā)現(xiàn)問題并不是那么簡單,找出了癥結(jié)。這樣教師就能及時得對癥下藥,指出“分式的值為零必須在分式有意義的前提下進(jìn)行的。因此,分式的值為零必須滿足兩個條件:

  (1)分子的值為零;(2)同時分母的值不等于零。

  4.反思小結(jié),自主評價,培養(yǎng)能力,激勵奮進(jìn)

  一節(jié)課已進(jìn)入尾聲,教師指導(dǎo)學(xué)生反思:我們是如何得到分式概念的?分式和我們以前學(xué)過的什么知識有聯(lián)系?我們用了哪些方法進(jìn)一步揭示了分式意義的本質(zhì)?在以上的學(xué)習(xí)過程中你的收獲有哪些?

  教師整理學(xué)生的發(fā)言,歸納小結(jié):

  (1)整式和分式統(tǒng)稱為有理式

  (2)分式的概念:兩個整式A,B相除時,可以表示為 的形式,如果分母B中含有字母,那么叫做分式。

  (3)要分式有意義,也只要使分母不為零

  (4)當(dāng)分母為零時,分式就無意義

  (5)分式的值為零必須滿足兩個條件:(1)分子的值為零;(2)同時分母的值不等于零。

  (6) 是圓周率,它代表的是一個常數(shù)。

  (7)在開放題中,強(qiáng)調(diào)根據(jù)整式、分式的定義進(jìn)行編制。

  5. 分層作業(yè)

  (1)練習(xí)冊15.1

  (2) 取何值時,分式 的值為負(fù)數(shù)?

  四.評價分析

  1.學(xué)生在學(xué)習(xí)新的數(shù)學(xué)概念時,新的信息對學(xué)生來講基本上是陌生的,零碎的和彼此孤立的,在課堂教學(xué)中,教師的任務(wù)就是為學(xué)生的發(fā)現(xiàn)、創(chuàng)造提供自由廣闊的天地,就是在于引導(dǎo)學(xué)生探索獲得知識、技能的途徑和方法。因此,利用舊知探索新知,逐步深入,引發(fā)學(xué)生思維沖突,將學(xué)生帶入發(fā)現(xiàn)概念的最近發(fā)展區(qū)。

  2.在教學(xué)過程中,很多學(xué)生誤認(rèn)為由舊知識獲得新知識后,對新知識的理解就已經(jīng)到位了,這時需要教師引導(dǎo)學(xué)生探求新舊知識間的深層聯(lián)系和實(shí)質(zhì)區(qū)別,去揭示這種內(nèi)在的或隱藏的聯(lián)系與區(qū)別,糾正其對概念的表面性和片面性的理解,在頭腦中獲得新的痕跡。

  3.小結(jié)部分通過師生共同反思,目的是為了更好地促進(jìn)新舊知識之間的聯(lián)系,使新知識與學(xué)生頭腦中原有的舊知識建立邏輯性的穩(wěn)固聯(lián)系,從而形成新的認(rèn)知結(jié)構(gòu)。同時,體現(xiàn)在學(xué)習(xí)策略的選擇、實(shí)施、調(diào)整等方面,從整體上也提高了學(xué)生的認(rèn)知水平。學(xué)生通過反思,不僅可以梳理在學(xué)習(xí)過程中對概念的理解程度,還可以評價自己在認(rèn)知加工過程中所閃爍出的思維火花,領(lǐng)悟其中的數(shù)學(xué)思想和方法,對提高數(shù)學(xué)思維能力起到了積極的作用。

【分式說課稿】相關(guān)文章:

關(guān)于分式的說課稿09-19

分式方程說課稿07-14

《分式加減》教學(xué)反思02-15

《分式方程》教學(xué)反思07-02

分式和方程教學(xué)反思08-20

《分式的基本性質(zhì)》教學(xué)反思01-25

蠟燭說課稿05-28

《荔枝》說課稿05-23

麻雀說課稿01-18