亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2025-04-03 11:10:13 晶敏 初一 我要投稿

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

  上學(xué)的時(shí)候,相信大家一定都接觸過(guò)知識(shí)點(diǎn)吧!知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。還在苦惱沒(méi)有知識(shí)點(diǎn)總結(jié)嗎?下面是小編精心整理的初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀,希望大家能夠喜歡。

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

  一、整式

  單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

  a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。

  b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒(méi)有系數(shù),系數(shù)為1或-1。

  c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)

  a)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù).

  b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個(gè)多項(xiàng)式的項(xiàng)數(shù)就是這個(gè)多項(xiàng)式作為加數(shù)的單項(xiàng)式的個(gè)數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個(gè)多項(xiàng)式的次數(shù),一個(gè)多項(xiàng)式的次數(shù)只有一個(gè),它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).

  a)整式的加減實(shí)質(zhì)上就是去括號(hào)后,合并同類(lèi)項(xiàng),運(yùn)算結(jié)果是一個(gè)多項(xiàng)式或是單項(xiàng)式.

  b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。

  二、同底數(shù)冪的乘法

  (,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):

  a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;

  b) 指數(shù)是1時(shí),不要誤以為沒(méi)有指數(shù);

  c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

  d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中、n、p均為整數(shù));

  e)公式還可以逆用:(、n均為整數(shù))

  a)冪的乘方法則:(,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來(lái)的,但兩者不能混淆。

  b)(,n都為整數(shù))

  c) 底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

  d)底數(shù)有時(shí)形式不同,但可以化成相同。

  e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

  f) 積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數(shù))。

  g) 冪的乘方與積乘方法則均可逆向運(yùn)用。

  三、同底數(shù)冪的除法

  a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0).

  b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):

  1) 法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。

  2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無(wú)意義。

  c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即( a≠0,p是正整數(shù)),而0-1,0-3都是無(wú)意義的;當(dāng)a>0時(shí),a-p的值一定是正的,當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如, d)運(yùn)算要注意運(yùn)算順序。

  四、整式的乘法

  單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

  單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):

  a)積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;

  b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;

  c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;

  d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;

  e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。

  單項(xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;

  b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);

  c) 在混合運(yùn)算時(shí),要注意運(yùn)算順序。

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。

  多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):

  a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒(méi)有合并同類(lèi)項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;

  b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類(lèi)項(xiàng);

  c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(x+a)和(nx+b)相乘可以得到。

  五.平方差公式

  兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。

  其結(jié)構(gòu)特征是:

  a)公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);

  b) 公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。

  六、完全平方公式

  兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;

  口訣:首平方,尾平方,2倍乘積在中央;

  a)公式左邊是二項(xiàng)式的完全平方;

  b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。

  c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。

  七、整式的除法

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。

  平行線具有性質(zhì)

  性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡(jiǎn)單說(shuō)成:兩直線平行,同位角相等。

  性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。簡(jiǎn)單說(shuō)成:兩直線平行,內(nèi)錯(cuò)角相等。

  性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡(jiǎn)單說(shuō)成:兩直線平行,同旁內(nèi)角互補(bǔ)。

  同時(shí)垂直于兩條平行線,并且?jiàn)A在這兩條平行線間的線段的長(zhǎng)度,叫做著兩條平行線的距離。

  判斷一件事情的語(yǔ)句叫做命題。

  圖形初步認(rèn)識(shí)

  概念、定義:

  1、我們把實(shí)物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometricfigure)。

  2、有些幾何圖形(如長(zhǎng)方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內(nèi),它們是立體圖形(solidfigure)。

  3、有些幾何圖形(如線段、角、三角形、長(zhǎng)方形、圓等)的各部分都在同一平面內(nèi),它們是平面圖形(planefigure)。

  4、將由平面圖形圍成的立體圖形表面適當(dāng)剪開(kāi),可以展開(kāi)成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開(kāi)圖(net)。

  5、幾何體簡(jiǎn)稱為體(solid)。

  6、包圍著體的是面(surface),面有平的面和曲的面兩種。

  7、面與面相交的地方形成線(line),線和線相交的地方是點(diǎn)(point)。

  8、點(diǎn)動(dòng)成面,面動(dòng)成線,線動(dòng)成體。

  9、經(jīng)過(guò)探究可以得到一個(gè)基本事實(shí):經(jīng)過(guò)兩點(diǎn)有一條直線,并且只有一條直線。

  簡(jiǎn)述為:兩點(diǎn)確定一條直線(公理)。

  10、當(dāng)兩條不同的直線有一個(gè)公共點(diǎn)時(shí),我們就稱這兩條直線相交(intersection),這個(gè)公共點(diǎn)叫做它們的交點(diǎn)(pointofintersection)。

  11、點(diǎn)M把線段AB分成相等的兩條線段AM和MB,點(diǎn)M叫做線段AB的中點(diǎn)(center)。

  12、經(jīng)過(guò)比較,我們可以得到一個(gè)關(guān)于線段的基本事實(shí):兩點(diǎn)的所有連線中,線段最短。簡(jiǎn)單說(shuō)成:兩點(diǎn)之間,線段最短。(公理)

  13、連接兩點(diǎn)間的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離(distance)。

  14、角∠(angle)也是一種基本的幾何圖形。

  15、把一個(gè)周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

  16、從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線,叫做這個(gè)角的平分線(angularbisector)。

  17、如果兩個(gè)角的和等于90°(直角),就是說(shuō)這兩個(gè)叫互為余角(complementary

  angle),即其中的每一個(gè)角是另一個(gè)角的余角。

  18、如果兩個(gè)角的和等于180°(平角),就說(shuō)這兩個(gè)角互為補(bǔ)角(supplementary

  angle),即其中一個(gè)角是另一個(gè)角的補(bǔ)角

  19、等角的補(bǔ)角相等,等角的余角相等。

  相交線與平行線

  1.同一平面內(nèi),兩直線不平行就相交。

  2.兩條直線相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。

  3.垂直定義:兩條直線相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。

  4.垂直三要素:垂直關(guān)系,垂直記號(hào),垂足

  5.垂直公理:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

  6.垂線段最短;

  7.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度。

  8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側(cè)),內(nèi)錯(cuò)角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))。

  9.平行公理:過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行。

  10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題

  11.平行線的判定。

  結(jié)論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質(zhì):1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。

  知識(shí)點(diǎn)、概念總結(jié)

  1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2.不等式分類(lèi):不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來(lái),例如:x-1≤2的解集是x≤3

  (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來(lái),形象地說(shuō)明不等式有無(wú)限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)F(x)同解。

  (2)如果不等式F(x)

  (3)如果不等式F(x)0,那么不等式F(x)

  7.不等式的性質(zhì):

  (1)如果x>y,那么yy;(對(duì)稱性)

  (2)如果x>y,y>z;那么x>z;(傳遞性)

  (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般順序:

  (1)去分母(運(yùn)用不等式性質(zhì)2、3)

  (2)去括號(hào)

  (3)移項(xiàng)(運(yùn)用不等式性質(zhì)1)

  (4)合并同類(lèi)項(xiàng)

  (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3)

  (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10.一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。

  11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成

  了一個(gè)一元一次不等式組。

  12.解一元一次不等式組的步驟:

  (1)求出每個(gè)不等式的解集;

  (2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3)用代數(shù)符號(hào)語(yǔ)言來(lái)表示公共部分。(也可以說(shuō)成是下結(jié)論)

  13.解不等式的訣竅

  (1)大于大于取大的(大大大);

  例如:X>-1,X>2,不等式組的解集是X>2

  (2)小于小于取小的(小小小);

  例如:X<-4,X<-6,不等式組的解集是X<-6

  (3)大于小于交叉取中間;

  (4)無(wú)公共部分分開(kāi)無(wú)解了;

  14.解不等式組的口訣

  (1)同大取大

  例如,x>2,x>3,不等式組的解集是X>3

  (2)同小取小

  例如,x<2,x<3,不等式組的解集是X<2

  (3)大小小大中間找

  例如,x<2,x>1,不等式組的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式組無(wú)解

  15.應(yīng)用不等式組解決實(shí)際問(wèn)題的步驟

  (1)審清題意

  (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

  (3)解不等式組

  (4)由不等式組的解確立實(shí)際問(wèn)題的解

  (5)作答

  16.用不等式組解決實(shí)際問(wèn)題:其公共解不一定就為實(shí)際問(wèn)題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

  二元一次方程組

  1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說(shuō)二元一次方程有無(wú)數(shù)個(gè)解.

  2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.

  3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說(shuō)二元一次方程組只有唯一解(即公共解).4.二元一次方程組的解法:(1)代入消元法;(2)加減消元法;(3)注意:判斷如何解簡(jiǎn)單是關(guān)鍵.※5.一次方程組的應(yīng)用:

 。1)對(duì)于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列

  易解”;

 。2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;

  (3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知

  數(shù)的關(guān)系.

  一元一次不等式(組)

  1.不等式:用不等號(hào)“>”“<”“≤”“≥”“≠”,把兩個(gè)代數(shù)式連接起來(lái)的式子叫不等式.2.不等式的基本性質(zhì):

  不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.

  3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不

  博源教育曾老師1378780036612

  等式的解集.

  4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b>0或ax+b<0,(a≠0).

  5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類(lèi)似,但一定要注意不等式性質(zhì)

  3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).

  6.一元一次不等式組:含有相同未知數(shù)的幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組;

  注意:ab>0

  abab0a0b0或a0b0;

  amamab<0

  0a0b0或a0b0;ab=0a=0或b=0;a=m.

  7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個(gè)一元一次不等式組的解集;解一元一次不等式時(shí),應(yīng)分別求出這個(gè)不等式組中各個(gè)不等式的解集,再利用數(shù)軸確定這個(gè)不等式組的解集.

  8.一元一次不等式組的解集的四種類(lèi)型:設(shè)a>b

  xaxb不等式組的解集xaxb是xa不等式的組解集是xbba>ba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數(shù)xy0ba>,

  9.幾個(gè)重要的判斷:,

  xy0x、y是負(fù)數(shù)xy0xy0x、y異號(hào)且正數(shù)絕對(duì)值大,xy0-2-

  xy0x、y異號(hào)且負(fù)數(shù)絕對(duì)值大xy0.博源教育曾老師1378780036613

  整式的乘除

  1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加.

  2.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項(xiàng)式的乘法:系數(shù)相乘,相同字母相乘,只在一個(gè)因式中含有的字母,連同指數(shù)寫(xiě)在積里.4.單項(xiàng)式與多項(xiàng)式的乘法:m(a+b+c)=ma+mb+mc,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.5.多項(xiàng)式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.6.乘法公式:

 。1)平方差公式:(a+b)(a-b)=a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;(2)完全平方公式:

 、(a+b)=a+2ab+b,兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

  p(1)若二次三項(xiàng)式x+px+q是完全平方式,則有關(guān)系式:22

  222

  2q;

 。2)二次三項(xiàng)式ax2+bx+c經(jīng)過(guò)配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號(hào);②當(dāng)x=h時(shí),可求出ax+bx+c的最大(或最。┲祂.(3)注意:x22

  21x21xx22.

  8.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減.9.零指數(shù)與負(fù)指數(shù)公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0).注意:00,0-2無(wú)意義;

  博源教育曾老師1378780036614

 。2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5.

  10.單項(xiàng)式除以單項(xiàng)式:系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個(gè)因式.

  11.多項(xiàng)式除以單項(xiàng)式:先用多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.

  ※12.多項(xiàng)式除以多項(xiàng)式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運(yùn)算:先乘方,后乘除,最后加減,有括號(hào)先算括號(hào)內(nèi).線段、角、相交線與平行線

  幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)

  1.角平分線的定義:一條射線把一個(gè)角分成兩個(gè)相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達(dá)式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點(diǎn)的定義:幾何表達(dá)式舉例:(1)∵C是AB中點(diǎn)∴AC=BCCB點(diǎn)C把線段AB分成兩條相等的線段,點(diǎn)C叫線段中點(diǎn).(如圖)A(2)∵AC=BC∴C是AB中點(diǎn)3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達(dá)式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

  博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達(dá)式舉例:∵a=cb=c∴a=b5.補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.(如圖)13幾何表達(dá)式舉例:∵a=cb=d又∵c=d∴a=b幾何表達(dá)式舉例:∵a=c+db=c+d∴a=b幾何表達(dá)式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質(zhì):同角或等角的余角相等.(如圖)幾何表達(dá)式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對(duì)頂角性質(zhì)定理:對(duì)頂角相等.(如圖)CAOBD幾何表達(dá)式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個(gè)角,有一個(gè)角是直角,這兩條直線互相垂直.(如圖)AC幾何表達(dá)式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達(dá)式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內(nèi)錯(cuò)角相等,兩條直線平行;(如圖)

  -6-

  幾何表達(dá)式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內(nèi)角互補(bǔ),兩條直線平行.(如圖)11.平行線性質(zhì)定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達(dá)式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)

  一基本概念:

  直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補(bǔ)角、互為余角、鄰補(bǔ)角、兩點(diǎn)間的距離、相交線、平行線、垂線段、垂足、對(duì)頂角、延長(zhǎng)線與反向延長(zhǎng)線、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、點(diǎn)到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理:

  1.直線公理:過(guò)兩點(diǎn)有且只有一條直線.2.線段公理:兩點(diǎn)之間線段最短.

  3.有關(guān)垂線的定理:

  (1)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;

 。2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.4.平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行.

  博源教育曾老師1378780036618

  三公式:

  直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識(shí):

  1.定義有雙向性,定理沒(méi)有.

  2.直線不能延長(zhǎng);射線不能正向延長(zhǎng),但能反向延長(zhǎng);線段能雙向延長(zhǎng).

  3.命題可以寫(xiě)為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結(jié)論.

  4.幾何畫(huà)圖要畫(huà)一般圖形,以免給題目附加沒(méi)有的條件,造成誤解.5.?dāng)?shù)射線、線段、角的個(gè)數(shù)時(shí),應(yīng)該按順序數(shù),或分類(lèi)數(shù).

  6.幾何論證題可以運(yùn)用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角:

  有理數(shù)

  1.1正數(shù)和負(fù)數(shù)

  以前學(xué)過(guò)的0以外的數(shù)前面加上負(fù)號(hào)“—”的書(shū)叫做負(fù)數(shù)。

  以前學(xué)過(guò)的0以外的數(shù)叫做正數(shù)。

  數(shù)0既不是正數(shù)也不是負(fù)數(shù),0是正數(shù)與負(fù)數(shù)的分界。

  在同一個(gè)問(wèn)題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義

  1.2有理數(shù)

  1.2.1有理數(shù)

  正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。

  整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

  1.2.2數(shù)軸

  規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸。

  數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表達(dá)。

  注意事項(xiàng):

 、艛(shù)軸的原點(diǎn)、正方向、單位長(zhǎng)度三要素,缺一不可。

 、仆桓鶖(shù)軸,單位長(zhǎng)度不能改變。

  一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度;表示數(shù)—a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度。

  1.2.3相反數(shù)

  只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

  數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

  在任意一個(gè)數(shù)前面添上“—”號(hào),新的數(shù)就表示原數(shù)的相反數(shù)。

  1.2.4絕對(duì)值

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。

  一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。

  在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

  比較有理數(shù)的大。

  ⑴正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

 、苾蓚(gè)負(fù)數(shù),絕對(duì)值大的反而小。

  1.3有理數(shù)的加減法

  1.3.1有理數(shù)的加法

  有理數(shù)的加法法則:

  ⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

 、平^對(duì)值不相等的餓異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;橄喾磾(shù)的兩個(gè)數(shù)相加得0。

 、且粋(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

  兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。

  加法交換律:a+b.b+a

  三個(gè)數(shù)相加,先把前面兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。

  加法結(jié)合律:(a+b)+c.a+(b+c)

  1.3.2有理數(shù)的減法

  有理數(shù)的減法可以轉(zhuǎn)化為加法來(lái)進(jìn)行。

  有理數(shù)減法法則:

  減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。

  a—b.a+(—b)

  1.4有理數(shù)的乘除法

  1.4.1有理數(shù)的乘法

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

  任何數(shù)同0相乘,都得0。

  乘積是1的兩個(gè)數(shù)互為倒數(shù)。

  幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。

  兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。

  ab.ba

  三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。(ab)c.a(bc)

  一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。 a(b+c).ab+ac

  數(shù)字與字母相乘的書(shū)寫(xiě)規(guī)范:

  ⑴數(shù)字與字母相乘,乘號(hào)要省略,或用“”

 、茢(shù)字與字母相乘,當(dāng)系數(shù)是1或—1時(shí),1要省略不寫(xiě)。

 、菐Х?jǐn)?shù)與字母相乘,帶分?jǐn)?shù)應(yīng)當(dāng)化成假分?jǐn)?shù)。

  用字母x表示任意一個(gè)有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個(gè)式子的項(xiàng),2和3分別是著兩項(xiàng)的系數(shù)。

  一般地,合并含有相同字母因數(shù)的式子時(shí),只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即

  ax+bx.(a+b)x

  上式中x是字母因數(shù),a與b分別是ax與bx這兩項(xiàng)的系數(shù)。

  去括號(hào)法則:

  括號(hào)前是“+”,把括號(hào)和括號(hào)前的“+”去掉,括號(hào)里各項(xiàng)都不改變符號(hào)。括號(hào)前是“—”,把括號(hào)和括號(hào)前的“—”去掉,括號(hào)里各項(xiàng)都改變符號(hào)。括號(hào)外的因數(shù)是正數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。

  1.4.2有理數(shù)的除法

  有理數(shù)除法法則:

  除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。

  a÷b.a〃1

  b(b≠0)

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于

  0的數(shù),都得0。

  因?yàn)橛欣頂?shù)的除法可以化為乘法,所以可以利用乘法的運(yùn)算性質(zhì)簡(jiǎn)化運(yùn)算。乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號(hào),最后求出結(jié)果。

  1.5有理數(shù)的乘方

  1.5.1乘方

  求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當(dāng)an看作a的n次方的結(jié)果時(shí),也可以讀作a的n次冪。

  負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

  正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  有理數(shù)混合運(yùn)算的運(yùn)算順序:

 、畔瘸朔剑俪顺,最后加減;

 、仆瑯O運(yùn)算,從左到右進(jìn)行;

 、侨缬欣ㄌ(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行

  1.5.2科學(xué)記數(shù)法

  把一個(gè)大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。

  用科學(xué)記數(shù)法表示一個(gè)n位整數(shù),其中10的指數(shù)是n—1。

  1.5.3近似數(shù)和有效數(shù)字

  接近實(shí)際數(shù)目,但與實(shí)際數(shù)目還有差別的數(shù)叫做近似數(shù)。

  精確度:一個(gè)近似數(shù)四舍五入到哪一位,就說(shuō)精確到哪一位。

  從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字。

  對(duì)于用科學(xué)記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

  整式加減

  一、代數(shù)式與有理式

  1、用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。 2、整式和分式統(tǒng)稱為有理式。

  3、含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。

  二、整式和分式

  1、沒(méi)有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。

  2、有除法運(yùn)算并且除式中含有字母的有理式叫做分式。

  三、單項(xiàng)式與多項(xiàng)式

  1、沒(méi)有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積———包括單獨(dú)的一個(gè)數(shù)或字母)

  2、幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  說(shuō)明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開(kāi);根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開(kāi)。②進(jìn)行代數(shù)式分類(lèi)時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類(lèi)別時(shí),是從外形來(lái)看。

  單項(xiàng)式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。

  2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。

  3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。

  4、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。

  5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。

  6、單獨(dú)的一個(gè)數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。

  7、單獨(dú)的一個(gè)非零常數(shù)的次數(shù)是0。

  8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。

  9、單項(xiàng)式的系數(shù)包括它前面的符號(hào)。

  10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時(shí),應(yīng)化成假分?jǐn)?shù)。

  11、單項(xiàng)式的系數(shù)是1或―1時(shí),通常省略數(shù)字“1”。

  12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無(wú)關(guān)。

  多項(xiàng)式

  1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

  2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

  3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

  5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。

  6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  整式

  1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  2、單項(xiàng)式或多項(xiàng)式都是整式。

  3、整式不一定是單項(xiàng)式。

  4、整式不一定是多項(xiàng)式。

  5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

  四、整式的加減

  1、整式加減的理論根據(jù)是:去括號(hào)法則,合并同類(lèi)項(xiàng)法則,以及乘法分配率。

  去括號(hào)法則:如果括號(hào)前是“十”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不變符號(hào);如果括號(hào)前是“一”號(hào),把括號(hào)和它前面的“一”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

  2、同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類(lèi)項(xiàng)。合并同類(lèi)項(xiàng):

  1).合并同類(lèi)項(xiàng)的概念:

  把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng)。

  2).合并同類(lèi)項(xiàng)的法則:

  同類(lèi)項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  3).合并同類(lèi)項(xiàng)步驟:

  a.準(zhǔn)確的找出同類(lèi)項(xiàng)。

  b.逆用分配律,把同類(lèi)項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變。

  c.寫(xiě)出合并后的結(jié)果。

  4).在掌握合并同類(lèi)項(xiàng)時(shí)注意:

  a.如果兩個(gè)同類(lèi)項(xiàng)的系數(shù)互為相反數(shù),合并同類(lèi)項(xiàng)后,結(jié)果為0.

  b.不要漏掉不能合并的項(xiàng)。

  c.只要不再有同類(lèi)項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。說(shuō)明:合并同類(lèi)項(xiàng)的關(guān)鍵是正確判斷同類(lèi)項(xiàng)。

  3、幾個(gè)整式相加減的一般步驟:

  1)列出代數(shù)式:用括號(hào)把每個(gè)整式括起來(lái),再用加減號(hào)連接。

  2)按去括號(hào)法則去括號(hào)。 3)合并同類(lèi)項(xiàng)。

  4、代數(shù)式求值的一般步驟:

  (1)代數(shù)式化簡(jiǎn)

 。2)代入計(jì)算

  (3)對(duì)于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。

  一元一次方程

  2.1從算式到方程2.1.1一元一次方程

  含有未知數(shù)的等式叫做方程。只含有一個(gè)未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

  分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實(shí)際問(wèn)題的一種方法。

  解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。

  2.1.2等式的性質(zhì)

  等式的性質(zhì)1等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。等式的性質(zhì)2等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。

  2.2從古老的代數(shù)書(shū)說(shuō)起——一元一次方程的討論⑴

  把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

  2.3從“買(mǎi)布問(wèn)題”說(shuō)起——一元一次方程的討論⑵

  方程中有帶括號(hào)的式子時(shí),去括號(hào)的方法與有理數(shù)運(yùn)算中括號(hào)類(lèi)似。解方程就是要求出其中的未知數(shù)(例如x),通過(guò)去分母、去括號(hào)、移項(xiàng)、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x.a的形式轉(zhuǎn)化,這個(gè)過(guò)程主要依據(jù)等式的性質(zhì)和運(yùn)算律等。

  去分母:

 、啪唧w做法:方程兩邊都乘各分母的最小公倍數(shù)⑵依據(jù):等式性質(zhì)2

  ⑶注意事項(xiàng):

 、俜肿哟蛏侠ㄌ(hào)

 、诓缓帜傅捻(xiàng)也要乘

  2.4再探實(shí)際問(wèn)題與一元一次方程

  2.5列方程解應(yīng)用題的常用公式:

  (1)行程問(wèn)題:距離.速度時(shí)間速度

 。2)工程問(wèn)題:工作量.工效工時(shí)工效

  距離時(shí)間

  時(shí)間

  距離速度

  工作量工時(shí)

  工時(shí)

  工作量工效

  (3)比率問(wèn)題:部分.全體比率比率

  部分全體

  全體

  部分比率

 。4)順逆流問(wèn)題:順流速度.靜水速度+水流速度,逆流速度.靜水速度—水流速度;

  (5)商品價(jià)格問(wèn)題:售價(jià).定價(jià)折1,利潤(rùn).售價(jià)—成本,10利潤(rùn)率

  成本售價(jià)

  成本

  100%

 。6)周長(zhǎng)、面積、體積問(wèn)題:C圓.2πR,S圓.πR2,C長(zhǎng)方形.2(a+b),S長(zhǎng)方形.ab,C正方形.4a,S正方形.a2,S環(huán)形.π(R2—r2),V長(zhǎng)方體.abc,V正方體.a3,V圓柱.πR2h,V圓錐.1πR2h.

  圖形認(rèn)識(shí)初步

  3.1多姿多彩的圖形

  現(xiàn)實(shí)生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

  3.1.1立體圖形與平面圖形

  長(zhǎng)方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見(jiàn)的立體圖形。

  長(zhǎng)方形、正方形、三角形、圓等都是平面圖形。

  許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_(kāi),就可以展開(kāi)成平面圖形。

  3.1.2點(diǎn)、線、面、體

  幾何體也簡(jiǎn)稱體。長(zhǎng)方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。

  包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線。線和線相交的地方是點(diǎn)。

  幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)是構(gòu)成圖形的基本元素。

  3.2直線、射線、線段

  經(jīng)過(guò)兩點(diǎn)有一條直線,并且只有一條直線。兩點(diǎn)確定一條直線。

  點(diǎn)C線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。類(lèi)似的還有線段的三等分點(diǎn)、四等分點(diǎn)等。

  直線桑一點(diǎn)和它一旁的部分叫做射線。

  兩點(diǎn)的所有連線中,線段最短。簡(jiǎn)單說(shuō)成:兩點(diǎn)之間,線段最短。

  3.3角的度量

  角也是一種基本的幾何圖形。

  度、分、秒是常用的角的度量單位。

  把一個(gè)周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

  3.4角的比較與運(yùn)算

  3.4.1角的比較

  從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線,叫做這個(gè)角的平分線。類(lèi)似的,還有叫的三等分線。

  3.4.2余角和補(bǔ)角

  如果兩個(gè)角的和等于90(直角),就說(shuō)這兩個(gè)角互為余角。如果兩個(gè)角的和等于180(平角),就說(shuō)這兩個(gè)角互為補(bǔ)角。等角的補(bǔ)角相等。等角的余角相等。本章知識(shí)結(jié)構(gòu)圖

  從不同方向看立體圖形立體圖形展開(kāi)立體圖形幾何圖形平面圖形角的度量角角的大小比較余角和補(bǔ)角角的平分線等角的補(bǔ)角相等等角的余角相等平面圖形直線、射線、線段

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+ bx+ c.0(a、 b、 c屬于R,a≠0)根的判別,. b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。

  數(shù)學(xué)經(jīng)常遇到的問(wèn)題解答

  1、要提高數(shù)學(xué)成績(jī)首先要做什么

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺(jué)得基礎(chǔ)知識(shí)過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺(jué)良好”其實(shí)是一種錯(cuò)覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)

  對(duì)于基礎(chǔ)差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。

  4、做題總是粗心怎么辦

  很多學(xué)生成績(jī)不好,會(huì)說(shuō)自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒(méi)有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒(méi)有“粗心”只有“不用心”。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門(mén)普及度極廣的學(xué)科,數(shù)學(xué)在人類(lèi)文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無(wú)味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥?lái)的職業(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過(guò)程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過(guò)長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問(wèn)題時(shí)更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒(méi)有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過(guò)程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語(yǔ)言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語(yǔ)言來(lái)描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專(zhuān)業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專(zhuān)業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。

  學(xué)好數(shù)學(xué)要重視“四個(gè)依據(jù)”是什么

  讀好一本教科書(shū)——它是教學(xué)、考試的主要依據(jù);

  記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;

  做好一本習(xí)題集——它是知識(shí)的拓寬;

  記好一本心得筆記——它是你自己的知識(shí)。

  同底數(shù)冪的乘法

  (m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):

  a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;

  b)指數(shù)是1時(shí),不要誤以為沒(méi)有指數(shù);

  c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

  冪的乘方與積的乘方

  同底數(shù)冪的除法

  (1)運(yùn)用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則

  (2)底數(shù)可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式

  (3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負(fù)

  整式的乘法

  1、單項(xiàng)式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),所有字母指數(shù)和叫單項(xiàng)式的次數(shù)。

  如:bca22-的系數(shù)為2-,次數(shù)為4,單獨(dú)的一個(gè)非零數(shù)的次數(shù)是0。

  2、多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

  平方差公式

  表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式

  公式運(yùn)用

  可用于某些分母含有根號(hào)的分式:

  1/(3-4倍根號(hào)2)化簡(jiǎn):

  完全平方公式

  完全平方公式中常見(jiàn)錯(cuò)誤有:

 、俾┫铝艘淮雾(xiàng)

 、诨煜

 、圻\(yùn)算結(jié)果中符號(hào)錯(cuò)誤

  ④變式應(yīng)用難于掌握。

【初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)08-07

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納12-17

【精選】初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總07-30

[精]初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)08-11

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯總07-19

初一下冊(cè)數(shù)學(xué)考試知識(shí)點(diǎn)06-27

初一語(yǔ)文下冊(cè)知識(shí)點(diǎn)10-18

數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)07-04

初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)匯編(15篇)08-10

(集合)初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15篇08-11