亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

教案

《平行四邊形的判定》八年級(jí)數(shù)學(xué)教案

時(shí)間:2025-03-31 11:37:13 教案 我要投稿
  • 相關(guān)推薦

《平行四邊形的判定》八年級(jí)數(shù)學(xué)教案

  教學(xué)目標(biāo):

《平行四邊形的判定》八年級(jí)數(shù)學(xué)教案

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

  2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題.

  3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來研究問題.

  重點(diǎn)、難點(diǎn)

  1.重點(diǎn):平行四邊形的判定方法及應(yīng)用.

  2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

  3.難點(diǎn)的突破方法:

  平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說理的良好素材.本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法.在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的.

 。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來證明.

 。2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對角線兩方面進(jìn)行記憶.要注意:

 、俦窘滩臎]有把用角來作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;

 、诒竟(jié)課只介紹前兩個(gè)判定方法.

 。3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問題情境,開展有效的數(shù)學(xué)活動(dòng),如通過欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對平行四邊形的直覺認(rèn)識(shí).并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系.接著提出問題:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們在自主探究與合作交流的過程中,從整體上把握“平行四邊形的判別”的方法.

  然后利用學(xué)生手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件.

  在學(xué)生拼圖的活動(dòng)中,教師可以以問題串的形式展開對平行四邊形判別方法的探討,讓學(xué)生在問題解決中,實(shí)現(xiàn)對平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說理及簡單推理的能力.

 。4)從本節(jié)開始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問題,凡是可以用平行四邊形知識(shí)證明的問題,不要再回到用三角形全等證明.應(yīng)該對學(xué)生提出這個(gè)要求.

  (5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題.例如,求角的度數(shù),線段的長度,證明角相等或線段相等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.

 。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí).

  例題的意圖分析

  本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來,邊拼圖邊說明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說明理由.

  課堂引入

  1.欣賞圖片、提出問題.

  展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

  2.【探究】:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?

  讓學(xué)生利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

  (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

 。2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

 。3)你能說出你的做法及其道理嗎?

 。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

 。5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2 對角線互相平分的四邊形是平行四邊形。

  例習(xí)題分析

  1(教材P96例3)已知:如圖ABCD的對角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF.

  求證:四邊形BFDE是平行四邊形.

  分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明.

 。ㄗC明過程參看教材)

  問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡單.

  2(補(bǔ)充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).

  證明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四邊形ABCB′是平行四邊形.

  ∴ ∠ABC=∠B′(平行四邊形的對角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

  ∴ AB=B′C, AB=A′C(平行四邊形的對邊相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的頂點(diǎn)A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點(diǎn).

  3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形.你能在圖中找出所有的平行四邊形嗎?并說說你的理由.

  解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因?yàn)檎鰽BO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個(gè)同理.

  隨堂練習(xí)

  1.如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,

 。1)若AD=8cm,AB=4cm,那么當(dāng)BC=____cm,CD=____cm時(shí),四邊形ABCD為平行四邊形;

  (2)若AC=10cm,BD=8cm,那么當(dāng)AO=___cm,DO=___cm時(shí),四邊形ABCD為平行四邊形.

  2.已知:如圖,ABCD中,點(diǎn)E、F分別在CD、AB上,DF∥BE,EF交BD于點(diǎn)O.求證:EO=OF.

  3.靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):

 、俚4個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

 。6個(gè))

 、诘8個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

 。20個(gè))

  課后練習(xí)

  1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

 。ˋ)對角線互相垂直 (B)對角線相等

  (C)對角線互相垂直且相等 (D)對角線互相平分

  2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求證:BE=CF

【《平行四邊形的判定》八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

平行四邊形的判定教學(xué)設(shè)計(jì)09-05

《平行四邊形判定》教學(xué)設(shè)計(jì)06-30

切線的判定和性質(zhì)數(shù)學(xué)教案07-29

《平行四邊形的判定》教案設(shè)計(jì)08-13

切線的判定和性質(zhì)數(shù)學(xué)教案設(shè)計(jì)10-22

八年級(jí)數(shù)學(xué)全等三角形的判定數(shù)學(xué)教案10-08

全等三角形的判定數(shù)學(xué)教案07-16

三角形相似的判定數(shù)學(xué)教案10-29

《菱形判定》優(yōu)秀教學(xué)設(shè)計(jì)07-24