亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

教案

《平方根》的教案

時間:2025-04-16 23:28:40 教案 我要投稿

《平方根》的教案

  作為一無名無私奉獻的教育工作者,常常要根據(jù)教學需要編寫教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質量。那么你有了解過教案嗎?以下是小編為大家整理的《平方根》的教案,歡迎閱讀,希望大家能夠喜歡。

《平方根》的教案

  《平方根》的教案 篇1

  一、內容和內容解析

  1、內容

  無限不循環(huán)小數(shù);求算術平方根的更一般的方法——用有理數(shù)估算、用計算器求值。

  2、內容解析

  無限不循環(huán)小數(shù)的引入,教科書是通過用有理數(shù)估計的大小,得到的越來越精確的近似值,進而發(fā)現(xiàn)

  是一個無限不循環(huán)小數(shù)的結論。發(fā)現(xiàn)無限不循環(huán)小數(shù)的過程就是反復運用有理數(shù)估計無理數(shù)的大小的過程。

  用有理數(shù)估計(一個帶算術平方根符號的)無理數(shù)的大致范圍,通常利用與被開方數(shù)比較接近的完全平方數(shù)的算術平方根來估計這個被開方數(shù)的算術平方根的大小,這種估算在生活中經(jīng)常遇到,是學生生活中需要的一種能力。

  使用計算器可以求任何正數(shù)的平方根,但不同品牌的計算器,按鍵順序可能不同,教學中,可以讓學生根據(jù)計算器品牌,參考使用說明書,學習使用計算器求算術平方根的方法。這完全可以讓學生自己完成。

  基于以上分析,確定本節(jié)課的教學重點為:用有理數(shù)估計一個(帶算術平方根符號的)無理數(shù)的大致范圍。

  二、目標和目標解析

  1、教學目標

  (1)通過估算,體驗“無限不循環(huán)小數(shù)”的含義,能用估算求一個數(shù)的算術平方根的近似值。

  (2)會利用計算器求一個正數(shù)的算術平方根;理解被開方數(shù)擴大(或縮。┡c它的算術平方根擴大(或縮小)的規(guī)律。

  2、目標解析

 。1)學生了解“無限不循環(huán)小數(shù)”是指小數(shù)位數(shù)無限,且小數(shù)部分不循環(huán)的小數(shù),感受這是不同于有理數(shù)的一類新數(shù);對于估算,學生要會利用估算比較大小;了解夾逼法,采用不足近似值和過剩近似值來估計一個數(shù)的范圍。

  (2)學生會概述利用計算器求一個正數(shù)的算術平方根的程序(按鍵的順序);明白利用計算器求一個正數(shù)的算術平方根,計算器顯示的結果可能是近似值;會利用作為工具的計算器探究算術平方根的規(guī)律,理解被開方數(shù)小數(shù)點向右或向左移動2位,它的算術平方根就相應地向右或向左移動1位,即被開方數(shù)每擴大(或縮。100倍,它的算術平方根就擴大(或縮。10倍。

  三、教學問題診斷分析

  用有理數(shù)估計一個(帶算術平方根符號的)無理數(shù)的大致范圍,需要學生理解“算術平方根的被開方數(shù)越大,對應的算術平方根也越大”的性質,還要判斷被開方數(shù)在哪兩個相鄰的整數(shù)平方數(shù)之間。為了讓學生體驗“無限不循環(huán)小數(shù)”的含義,還要多次采用“夾逼法”進行估計,即利用其一系列不足近似值和過剩近似值來估計它的大小,這些對學生綜合運用知識的能力有較高的要求。

  基于以上分析,本課的教學難點是:用有理數(shù)估計一個(帶算術平方根符號的)無理數(shù)的大致范圍的過程,體驗“無限不循環(huán)小數(shù)”的含義。

  四、教學過程設計

  1、梳理舊知,引出新課

  問題1

  (1)什么是算術平方根?怎樣表示?

 。2)負數(shù)有算術平方根嗎?

  師生活動 學生回答,教師說明:我們上節(jié)課已經(jīng)能求出一些平方數(shù)的算術平方根了,例如,=4;但實際生活中,我們還會遇到被開方數(shù)不是一個數(shù)的平方數(shù)的情況,這時,它的算術平方根又該怎祥求呢?

  設計意圖:復習與本節(jié)課相關的知識,通過設問,引出本節(jié)課學習內容。

  2、問題探究,學習新知

  問題2 能否用兩個面積為1dm的小正方形拼成一個面積為2dm的大正方形?

  師生活動:學生動手操作,在小組內討論交流,教師展示剪拼方法。

  追問(1) 拼成的這個面積為2dm

  的大正方形的邊長應該是多少呢?

  師生活動:學生自行解答,教師對解答有困難的學生進行指導。

  追問(2) 小正方形的對角線的長是多少呢?

  師生活動:學生根據(jù)圖形,不難回答,小正方形的對角線的長就是大正方形的邊長dm。

  設計意圖:通過實際問題的操作探究,說明實際生活中確實存在被開方數(shù)不是一個數(shù)的平方數(shù)的情況,激發(fā)學生學習積極性,追問(2)主要為后面介紹用數(shù)軸上的點表示作準備。

  問題3

  有多大呢?為了弄清這個問題,請同學們探究“

  在哪兩個整數(shù)之間呢?”

  師生活動:先讓學生思考討論并估計大概有多大,由直觀可知大于1而小于2,教師引導學生利用“被開方數(shù)越大,對應的算術平方根也越大”說明理由,教師板書推理過程。

  追問(1) 那么

  是1點幾呢?你能不能得到

  的更精確的范圍?

  師生活動:學生用試驗的方法可得到平方數(shù)小于2且最接近的1位小數(shù)是1.4,而平方數(shù)大于2且最接近的1位小數(shù)是1.5,所以大于1.4而小于1.5……在此基礎上教師按教科書上的推理進行講解并板書。說明是一個無限不循環(huán)小數(shù),以及什么是無限不循環(huán)小數(shù)。并要求學生回憶以前學過的數(shù),進行比較。

  追問(2) 實際上,許多正有理數(shù)的算術平方根,如等都是無限不循環(huán)小數(shù)。根據(jù)估計的大小的方法,請你估計的整數(shù)部分是多少?

  設計意圖:通過對大小的估計,初步掌握利用的一系列不足近似值和過剩近似值來估計它的大小的方法,并從中體會是一個無限不循環(huán)小數(shù)。讓學生回憶以前學過的數(shù),通過比較,了解無限不循環(huán)小數(shù)的特征,為后面學習無理數(shù)打下基礎。追問(2)主要為及時鞏固估算方法

  3、用計算器,求算術根

  例1 用計算器求下列各式的值:

  師生活動:教師指導學生操作,獲得問題答案。解答完(2)后,讓學生與上面所估計的大小進行比較,體會夾逼法的可行性。說明用計算器可以求出任意一個正數(shù)的算術平方根,但不同品牌的計算器,按鍵順序可能有所不同。用計算器求出的`算術平方根,有的是準確值,如題(1),有的是近似值,如題(2)。

  設計意圖:使學生會使用計算器求算術平方根。

  練習 教科書第44頁練習1。

  師生活動:學生獨立完成后交流。

  設計意圖:鞏固計算器求算術平方根。

  4、綜合應用,鞏固所學

  現(xiàn)在我們來解決本章引言中的問題。

  問題4 (1)你會表示

  (2)用計算器求(用科學記數(shù)法把結果寫成的形式,其中保留小數(shù)點后一位)

  師生活動:學生理解題意,根據(jù)公式,可得,代入,利用計算器求出

  設計意圖:讓學生體會計算器在解決實際問題中的應用。

  問題5 利用計算器計算下表中的算術平方根,并將計算結果填在表中。

  師生活動:學生計算填表。

  追問(1) 你發(fā)現(xiàn)了什么規(guī)律?

  師生活動:學生思考、討論,教師歸納:被開方數(shù)的小數(shù)點向右或向左移動2位,它的算術平方根的小數(shù)點就相應地向右或向左移動1位。

  追問(2) 你能說出其中的道理嗎?

  師生活動:學生討論,交流,教師引導學生從被開方數(shù)擴大的倍數(shù)與其算術平方根擴大的倍數(shù)思考回答。即當被開方數(shù)擴大(或縮。100倍,10000倍…時,其算術平方根相應地擴大(或縮。10倍,100倍……

  追問(3) 用計算器計算

  (精確到0.001),并利用剛才的得到規(guī)律說出的近似值。

  師生活動:學生計算,并根據(jù)所獲規(guī)律回答。

  追問(4) 你能根據(jù)的值說出是多少嗎?

  師生活動:學生回答,因為被開方數(shù)30與3不符合上述規(guī)律,所以無法由的值說出是多少。

  設計意圖:鞏固用計算器求算術平方根以及其在探究規(guī)律中的應用。

  例2 小麗想用一塊面積為400cm

  的長方形紙片,沿著邊的方向剪出一塊面積為300cm

  的長方形紙片,使它的長寬之比為3:2。她不知能否裁得出來,正在發(fā)愁。小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片!蹦阃庑∶鞯恼f法嗎?小麗能用這塊紙片裁出符合要求的紙片嗎?

  師生活動:教師出示問題,學生理解題意,學生可能會和小明有同樣的想法,此時教師進行如下引導:

 。1)你能將這個問題轉化為數(shù)學問題嗎?

 。2)如何求出長方形的長和寬?

 。3)長方形的長和寬與正方形的邊長之間的大小關系是什么?

  最后給出完整的解答過程。

  設計意圖:讓學生體驗估算的實際應用。

  5、歸納小結:

  師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

 。1)利用夾逼法來求算術平方根的近似值的依據(jù)是什么?

  (2)利用計算器可以求出任意正數(shù)的算術平方根或近似值嗎?

 。3)被開方數(shù)擴大(或縮。┡c它的算術平方根擴大(或縮。┑囊(guī)律是怎樣的呢?

 。4)怎樣的數(shù)是無限不循環(huán)小數(shù)?

  設計意圖:讓學生對本節(jié)課知識進行梳理,同時也幫助學生養(yǎng)成良好的習慣。

  6、布置作業(yè):

  教科書習題6。1第6、9、10題。

  五、目標檢測設計

  1、求

  的整數(shù)部分。

  【設計意圖】主要考查學生的估算能力。

  2、比較下列各組數(shù)的大小。

  【設計意圖】主要考查學生的估算和比較大小的能力。

  【設計意圖】主要考查學生對算術平方根概念以及有關規(guī)律的理解。

  3、國際比賽的足球場的長在100m到110m之間, 寬在64m到75m之間, 現(xiàn)有一個長方形的足球場其長是寬的1.5倍, 面積為7560m, 問:這個足球場能用作國際比賽嗎?

  【設計意圖】主要考查學生運用算術平方根解決實際問題的能力。

  《平方根》的教案 篇2

  教學目標:

  了解數(shù)的算術平方根及平方根的概念,并會用符號表示;理解平方與開方之間是互為逆運算的關系,會用計算器求一些正數(shù)的算術平方根。

  教學重點:

  了解數(shù)的算術平方根及平方根的概念,會求某些非負數(shù)的平方根,會用根號表示一個數(shù)的平方根。

  教學難點:

  對 大小的估算及如何理解 是非負數(shù)以及被開方數(shù) 是非負數(shù);正確區(qū)分算術平方根與平方根。

  第1課時

  一、創(chuàng)設情景,導入新課

  請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?

  這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題(引入新課)

  二、合作交流,解讀探究

  討論:1、什么樣的運算是平方運算?

  2、你還記得1~20之間整數(shù)的平方嗎?

  自主探索:讓學生獨立看書,自學教材

  總結:一般地,如果一個正數(shù) 的平方為 ,即 ,那么正數(shù) 叫做 的算術平方根,記為 ,讀作根號 ,其中 叫做被開方數(shù)。 另外:0的算術平方根是0

  探究:怎樣用兩個面積為1的正方形拼成一個面積為2的大正方形

  把兩個小正方形沿對角剪開,將所得的四個直角形拼在一起,就的到一個面積為2的大正方形。

  設大正方形的邊長為 ,則 ; 由算術平方根的意義,

  即大正方形的邊長為 。 討論: 有多大呢?

  思考:你能舉些象 這樣的無限不循環(huán)小數(shù)嗎?

  三、應用遷移,鞏固提高

  例1 求下列各數(shù)的算術平方根

 、100 ⑵ ⑶0.0001 ⑷0 ⑸

  點撥:由一個數(shù)的算術平方根的定義出發(fā)來解決問題

  思考:-4有算術平方根嗎?

  備選例題:要使代數(shù)式 有意義,則 的取值范圍是( )

  A. B. C. D.

  四、總結反思,拓展升華

  小結:1、算術平方根的定義和性質;

  2、用計算器求一個正數(shù)的算術平方根

  拓展:已知 的算術平方根是3, 的算術平方根是4, 是 的整數(shù)部分,求 的算術平方根

  五、課堂跟蹤反饋

  1、 非負數(shù) 的算術平方根表示為___,225的算術平方根是____,0的算術平方根是____

  2、

  3、 的`算術平方根是_____, 的算術平方根____

  4、 若 是49的算術平方根,則 =( )

  A. 7 B. -7 C. 49 D.-49

  5、 若 ,則 的算術平方根是( )

  A. 49 B. 53 C.7 D .

  6、 若 ,求 的值。

  7、 若 是 的整數(shù)部分, 是 的小數(shù)部分,試確定 、 的值。

  8、 一個自然數(shù)的算術平方根為 ,那么與這個自然數(shù)相鄰的下一個自然數(shù)的算術平方根是_______

【《平方根》的教案】相關文章:

平方根優(yōu)秀教案設計09-19

初中數(shù)學《平方根》教案(精選11篇)04-11

平方根同步練習浙教版10-29

《平方根1》 教學設計05-10

八年級數(shù)學積、商的算術平方根同步練習09-25

高中教案教案01-25

教案小班教案小魚美術教案10-07

回聲教案教學教案08-18

師說教案教案10-14