《有理數(shù)》數(shù)學(xué)教案
作為一位兢兢業(yè)業(yè)的人民教師,往往需要進行教案編寫工作,教案有助于順利而有效地開展教學(xué)活動。寫教案需要注意哪些格式呢?以下是小編為大家整理的《有理數(shù)》數(shù)學(xué)教案,希望對大家有所幫助。
《有理數(shù)》數(shù)學(xué)教案1
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應(yīng)用加法交換律和結(jié)合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
重點、難點分析
重點:是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。
難點:是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學(xué)生了解法則的合理性。
(2)具體運算時,應(yīng)先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
知識結(jié)構(gòu)
教法建議
1.對于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運算以及正負(fù)數(shù)、相反數(shù)、絕對值等知識。
2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的`行程問題是為了說明加法法則的合理性。
3.應(yīng)強調(diào)加法交換律a+b=b+a中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運算習(xí)慣。不要盲目動手,應(yīng)該先仔細(xì)觀察式子的特點,深刻認(rèn)識加數(shù)間的相互關(guān)系,找到合理的運算步驟,再適當(dāng)運用加法交換律和結(jié)合律可以使加法運算更為簡化。
5.可以給出一些類似兩數(shù)之和必大于任何一個加數(shù)的判斷題,以明確由于負(fù)數(shù)參與加法運算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運算中未必也成立。
6.在探討導(dǎo)出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學(xué)的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學(xué)生更好的理解有理數(shù)運算法則。
《有理數(shù)》數(shù)學(xué)教案2
一、學(xué)情分析:
1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過非負(fù)有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學(xué)會了由運算解決簡單的實際問題,具備了學(xué)習(xí)有理數(shù)乘法的知識技能基礎(chǔ)。
2、學(xué)生的活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過程,具有了合作和探索的意識。
二、 教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
。薄⒔(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;
。、學(xué)會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:
三、教學(xué)過程設(shè)計:
本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):問題情境,引入新課
問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
。ǎ玻┤绻谜柋硎舅簧仙,用負(fù)號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
。ǎ场粒矗剑保,那么下列一組算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:
。ǎ常粒常剑撸撸撸撸;
(-3)×2=_____;
。ǎ常粒保剑撸撸撸撸;
。ǎ常粒埃剑撸撸撸撸摺
。ǎ玻┊(dāng)同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
。ǎ常粒ǎ保剑撸撸撸撸撸
。ǎ常粒ǎ玻剑撸撸撸撸撸
。ǎ常粒ǎ常剑撸撸撸撸;
(-3)×(-4)=_____。
教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的`積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對于這些問題,不能求全責(zé)備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準(zhǔn)確的表述,也不要擔(dān)心時間不足而代替學(xué)生直接表述法則。
。ǎ玻┱故緝山M算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗證明確結(jié)論
問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學(xué)生完成。
。础粒ǎ矗剑撸撸撸撸;
4×(-3)=_____;
4×(-2)=_____;
。础粒ǎ保剑撸撸撸撸撸
。ā矗粒埃剑撸撸撸撸;
。ā矗粒保剑撸撸撸撸;
(—4)×2=_____;
(—4)×(-1)=_____;
。ā矗粒ǎ玻剑撸撸撸撸。
教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習(xí)和熟悉過程。
教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。
。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。
(3)在用乘法法則計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進行絕對值的運算。另外還應(yīng)注意:法則中的“同號得正,異號得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。
第四環(huán)節(jié):運用鞏固,練習(xí)提高
活動內(nèi)容:
。ǎ保。計算:
⑴(-4)×5; ⑵(5-)×(-7);
、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);
。ǎ玻。計算:
、牛ǎ矗粒怠粒ǎ啊#玻担; ⑵(-3÷5)×(-5÷6)×(-2);
3!白h一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?
。ǎ矗┯嬎悖
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運用,練習(xí)和提高.
教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應(yīng)注明理由,運算熟練后,可不要求書寫每一步的理由;
。2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運算結(jié)果觀察分析,用自己的語言表達(dá)所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。
(-1)×2×3×4=_____;
。ǎ保粒ǎ玻粒场粒矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒ǎ常粒矗剑撸撸撸撸;
(-1)×(-2)×(-3)×(-4)=_____;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸。
通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當(dāng)然這段語言,不需要讓學(xué)習(xí)背誦,只要理解會用即可。
第五環(huán)節(jié):感悟反思課堂
問題
1.本節(jié)課大家學(xué)會了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。
教后反思事項:學(xué)生時,可能會有語言表達(dá)障礙或表達(dá)不流暢,但只要不影響運算的正確性,則不必強調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準(zhǔn)確的語言適時的加以點撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。、合理使用多媒體教學(xué)手段可以彌補課堂時間的不足,但絕不能代替必要的板書。
《有理數(shù)》數(shù)學(xué)教案3
教學(xué)目標(biāo):
1.經(jīng)歷具體情境,發(fā)現(xiàn)并提出數(shù)學(xué)問題;
2.借助生活實例認(rèn)識負(fù)數(shù);
3.會判斷一個數(shù)是正數(shù)還是負(fù)數(shù).
重 點:負(fù)數(shù)的認(rèn)識
難 點:負(fù)數(shù)引入的必要性
教學(xué)設(shè)計:
1.情景創(chuàng)設(shè)
情景(1): 課本第14頁的四個畫面
操作指導(dǎo):可以以幻燈片的形成依此呈現(xiàn)
2.探索活動
根據(jù)課本畫面提供的信息,通過一些有趣的問題,引導(dǎo)學(xué)生觀察和思考.如: 你注意過天氣預(yù)報嗎?在課本中的天氣預(yù)報電視畫面里,哪個城市氣溫最低?
這幾幅圖中有小學(xué)里沒有學(xué)過的數(shù)嗎?你在其他的地方是否還見過這樣的數(shù)?
天氣預(yù)報電視畫面上的"-3℃"表示什么意思?你能說出其它圖中帶有"-"號的數(shù)表示的意思嗎?
3.情境創(chuàng)設(shè)
情境(2): 讓學(xué)生舉一些現(xiàn)實生活中比零小的數(shù)的例子,感受現(xiàn)實生活中存在著小學(xué)里沒有學(xué)過的"新數(shù)"---負(fù)數(shù)
4.探索活動
、 探討情境中各負(fù)數(shù)的合理理解
、 理解正數(shù)、負(fù)數(shù)的概念
5.例題教學(xué)
課本第15頁 例1 該例可以卡片的形式出示,讓學(xué)生回答
6.課堂練習(xí)
課本第15頁 "練一練"
7.小結(jié)
各小組互相討論、總結(jié),得到本節(jié)課的'重要內(nèi)容:負(fù)數(shù)引入的必要性,正、負(fù)數(shù)的概念 ( 理解負(fù)數(shù)的實質(zhì)是"比0小" ).
8.布置作業(yè)
、.課本第17頁習(xí)題 2.1第1、2題
、.學(xué)生調(diào)查:生活中負(fù)數(shù)運用的調(diào)查(可以小組的方式調(diào)查)
③.閱讀:負(fù)數(shù)的發(fā)展史
《有理數(shù)》數(shù)學(xué)教案4
三維目標(biāo)
一、知識與技能
掌握有理數(shù)混合運算的順序,能正確地進行有理數(shù)的加、減、乘、除、乘方的混合運算。
二、過程與方法
通過例題學(xué)習(xí),發(fā)展學(xué)生觀察、歸納、猜想、推理等能力。
三、情感態(tài)度與價值觀
體驗獲得成功的感受、增加學(xué)習(xí)自信心。
教學(xué)重、難點與關(guān)鍵
1.重點:能正確地進行有理數(shù)的加、減、乘、除、乘方的混合運算。
2.難點:靈活應(yīng)用運算律,使計算簡單、準(zhǔn)確。
3.關(guān)鍵:明確題目中各個符號的意義,正確運用運算法則。
四、課堂引入
1.我們已經(jīng)學(xué)習(xí)了哪幾種有理數(shù)的運算?
2.有理數(shù)的乘方法則是什么?
五、新授
下面的算式里有哪幾種運算?
3+5022(-)-1 ①
這個算式里,含有有理數(shù)的加、減、乘、除、乘方五種運算,按怎樣的.順序進行運算?
有理數(shù)的混合運算,應(yīng)按以下運算順序進行:
1.先乘方,再乘除,最后加減;
2.同級運算,從左往右進行;
3.如果有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:計算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清運算順序,先乘方,再做中括號內(nèi)的運算,接著做乘除,最后做加減。計算時,特別注意符號問題。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:觀察下面三行數(shù):
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②、③行數(shù)與第①行數(shù)分別有什么關(guān)系?
(3)取每行數(shù)的第10個數(shù),計算這三個數(shù)的和。
分析:(1)第行數(shù),從符號看負(fù)、正相隔,奇數(shù)項為負(fù)數(shù),偶數(shù)項為正數(shù),從絕對值看,它們都是2的乘方。
《有理數(shù)》數(shù)學(xué)教案5
教學(xué)目的:
1。知識目標(biāo) 使學(xué)生了解了負(fù)數(shù)產(chǎn)生的背景,理解正、負(fù)數(shù)及零的意義,掌握正、負(fù)數(shù)的表示方法,會用正、負(fù)數(shù)表示具有相反意義的量。
2.能力目標(biāo) 通過本節(jié)教學(xué),培養(yǎng)學(xué)生的想象能力、理論聯(lián)系實際能力、分析解決問題的能力;并向?qū)W生滲透"對立統(tǒng)一"、"實踐第一"等辯證唯物主義觀點;
3.思想目標(biāo) 對學(xué)生進行愛國主義思想教育;培養(yǎng)學(xué)生良好的個性品質(zhì)和學(xué)習(xí)習(xí)慣。
教學(xué)設(shè)計
本課教材所處位置,是小學(xué)所學(xué)算術(shù)數(shù)之后數(shù)的范圍的第一次擴充,是算術(shù)數(shù)到有理數(shù)的銜接與過渡,并且是以后學(xué)習(xí)數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎(chǔ)。
重點
正、負(fù)數(shù)的意義,
難點
負(fù)數(shù)的意義及0的內(nèi)涵。
教學(xué)方法:
鑒于初一年級學(xué)生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學(xué)法及情感教學(xué),創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生主動思考,用大量的實例和生動的語言激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)節(jié)學(xué)習(xí)情緒。并利用計算機和投影膠片輔助教學(xué),增大教學(xué)密度。
教學(xué)過程的設(shè)計,分為四部分。
一、創(chuàng)設(shè)情境,引入負(fù)數(shù);
二、聯(lián)系對比,突出重點;
三、課堂練習(xí),及時反饋;
四、總結(jié)提高,滲透德育。
在引入部分,我通過介紹數(shù)的產(chǎn)生與發(fā)展,向?qū)W生滲透"實踐第一"的辯證唯物主義觀點:原始社會,從打獵記數(shù)開始,首先出現(xiàn)自然數(shù),經(jīng)過漫長歲月,人們用數(shù)"0"表示沒有,隨著人類的不斷進步,在丈量土地進行分配時,又用小數(shù)使測量結(jié)果更加準(zhǔn)確。使同學(xué)們感到,數(shù)的第一次發(fā)展都是為了滿足社會生產(chǎn)與生活的需要。
隨之提問:同學(xué)們小學(xué)都學(xué)過哪些數(shù)?
為了給下節(jié)課講述有理數(shù)概念及分類作好鋪墊,我把學(xué)生們答出的數(shù)歸類為整數(shù)和分?jǐn)?shù)。
那么小學(xué)學(xué)過的這些數(shù)能否滿足社會生產(chǎn)生活及數(shù)學(xué)自身發(fā)展的需要呢?
為了體現(xiàn)負(fù)數(shù)是從實踐中產(chǎn)生的,我選擇了三個學(xué)生較熟悉的例子,用計算機顯示動畫效果,采取形象化教學(xué)。
。ㄓ嬎銠C)比如零上5°C,它比0°C高5°C,可記作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗瑪峰高出海平面8848米,吐魯番盆地低于海平面155米,怎樣表示二者的海拔高度?又如向東走3米與向西走3米、收入50元與支出50元等等。還可以聯(lián)系抗洪實際,讓學(xué)生思考怎樣用數(shù)學(xué)來區(qū)分高區(qū)警戒水位1米與低于警戒水位1米呢?
通過創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲望讓不同水平的學(xué)生都在教師的引導(dǎo)下進行積極的思維參與,興致勃勃的參與學(xué)習(xí)活動,既體現(xiàn)了教師的主導(dǎo)作用,又突出了學(xué)生的主體地位,師生共同進入角色。
以上實例說明,小學(xué)學(xué)過的那些數(shù)不能滿足實際需要,而且數(shù)的局限也阻礙了數(shù)學(xué)自身向前發(fā)展。如小學(xué)遇到0-2、3-5這類題我們束手無策。以上種種矛盾及不便我們?nèi)绾谓鉀Q呢?
使學(xué)生感到數(shù)的擴充勢在必行,擴充的根源是社會生產(chǎn)生活的需要及數(shù)學(xué)自身發(fā)展的需要。
既然小學(xué)學(xué)過的數(shù)不能滿足需要,我們需要引出新的數(shù)。根據(jù)同學(xué)們的生活經(jīng)驗,零下5°C,比0°C低5°C,那么有沒有比0還上的數(shù)呢?此時,負(fù)數(shù)已到了呼之欲出的地步,學(xué)生順利地接受了這一事實,負(fù)數(shù)自然而然的引出了。
接下來講解正、負(fù)數(shù)的定義及本節(jié)課的重點、難點,我采取聯(lián)系對比的方法,始終不脫離小學(xué)所學(xué)知識。在給出正、負(fù)數(shù)的定義時,我采取比較輕松的態(tài)度,盡量避免使概念復(fù)雜化:小學(xué)學(xué)過的大于零的數(shù)就是正數(shù),負(fù)數(shù)就是在正數(shù)前面加上一個"-"號。讓學(xué)生覺得數(shù)學(xué)并不難學(xué)。在講述正、負(fù)數(shù)的表示法、讀法后,強調(diào)這里的"+""-"是性質(zhì)符號,雖然與表示運算符號的加號、減號涵義不同,但又能完全統(tǒng)一,因此形式上是一樣的。在學(xué)運算時會有更深刻的理解。
從溫度計上觀察0°C以上的溫度用正數(shù)表示,0°C以下的溫度用負(fù)數(shù)表表示,說明正數(shù)都大于0,負(fù)數(shù)都小于0,0是正數(shù)與負(fù)數(shù)的界限。因此,0既不是正數(shù)也不是負(fù)數(shù)。0是非正非負(fù)的中性數(shù)。對于0的認(rèn)識,我們小學(xué)知道,0表示沒有,又知道0的一些性質(zhì):0不能作除數(shù)、0乘以任何數(shù)都得0等。其實,0不僅僅表示沒有:比如:0°C并不是沒有溫度,水位線定為0米并不是沒有高度。在實際意義中,0是用來表示基準(zhǔn)的數(shù),比如海平面、警戒水位等。因此,0是一個實際存在的數(shù)量,它比所有正數(shù)都小,又比所有負(fù)數(shù)都大。當(dāng)然,0的內(nèi)涵還很豐富,我們將在以后陸續(xù)學(xué)到。
以上對數(shù)0表示量的意義的分析,實際上能夠幫助學(xué)生加深對負(fù)數(shù)的認(rèn)識和理解。正數(shù)、0、負(fù)數(shù)的大上關(guān)系在學(xué)生的頭腦中初步形成,也為下一節(jié)課講述有理數(shù)分類打下基礎(chǔ)。
在此選取課本練習(xí)1讓學(xué)生口答,鞏固對正、負(fù)數(shù)的'認(rèn)識。并把課本例1作為練習(xí)給出。目的是使學(xué)生熟悉正、負(fù)數(shù)的特征,會判斷一個數(shù)是正數(shù)還是負(fù)數(shù)。
為了突出正、負(fù)數(shù)的意義這一重點,就要突出它的實踐性。那么,與引入部分呼應(yīng),有了負(fù)數(shù)以后,那些不能解決的問題就迎刃而解了。零上5°C可記作5°C或+5°C,零下5°C可記作-5°C;珠穆朗瑪峰海拔8848米,吐魯番盆地海拔-155米;收入50元記作+50元,支出50元記作-50元等等。同學(xué)們觀察、正、負(fù)數(shù)所表示的兩個意義正好相反的量,叫做具有相反意義的量。有趣的是,在千世界中,有上就有下,有升就有降,有收入就有支出,有贏就有虧損。因此,上仍相反意義的量是普遍存在的。正、負(fù)數(shù)的一個重要應(yīng)用就是能表示兩個具有相反意義的量。為了加深學(xué)生對具有相反意義的量的理解,請學(xué)生再舉一些日常生活中的例子,總結(jié)出具有相反意義的量的特征:
。1)意義相反 (2)同一種量
并解釋相反與相異的區(qū)別。比如向東走3米向北走3米就不是具有相反意義的量。并通過以下練習(xí)加以鞏固。
由于用負(fù)數(shù)表示實際問題對學(xué)生來說很不習(xí)慣,是理解上的難點,如何講解難點呢?在此要向?qū)W生滲透相反意義所隱含的辯證關(guān)系。
"+""-"作為性質(zhì)符號有著更深層的涵義:
"+"表示與問題中給出意義的相同意義,
"-"表示與問題中給出意義的相反意義,
如:前進+5米,表示真正前進5米,
前進-5米,表示后退5米,
那么,后退-5米就表示前進5米。并通過課本例2加以鞏固。
為了加深對正、負(fù)數(shù)的意義及對具有相反意義的量的理解,我安排了這樣一個練習(xí):
圖中所示是一個零件的剖面圖。用φ30±0。07表示軸直徑的誤差范圍,說明±0。07的意義。
因為學(xué)生第一次見到這種標(biāo)注誤差的方法,很難回答。我采取鋪墊式啟發(fā),先講解;"這是一個直徑為30mm的軸,在制作過程當(dāng)中允許產(chǎn)生尺寸上的誤差,既可以大些也可以小些,但不許超過一定的范圍,如此標(biāo)準(zhǔn)誰能說出它的意義?"這時,學(xué)生就會根據(jù)正、負(fù)數(shù)可以表示具有相反意義的量這一特點回答出+0。07表示比30mm大0。07mm,-0。07表示比30mm小0。07mm。這樣使學(xué)生把正、負(fù)數(shù)與實際問題聯(lián)系起來,加深了對正、負(fù)數(shù)意義內(nèi)涵的理解。
接下來是課堂練習(xí)。讓更多的學(xué)生參與進來,通過練習(xí)鞏固知識發(fā)現(xiàn)不足,教師及時得到反饋,檢查教學(xué)效果,采取相應(yīng)措施。在練習(xí)過程當(dāng)中培養(yǎng)學(xué)生養(yǎng)成用所學(xué)知識去思考問題,判斷問題,解決問題的好習(xí)慣。學(xué)生的練習(xí)分出了梯度,讓不同水平的學(xué)生都有所提高,有助于貫徹因材施教的教學(xué)原則。各組練習(xí)在進行中,進行后,都要掌握學(xué)生的完成情況,讓學(xué)生舉手,加以統(tǒng)計,及時糾錯及再講解,根據(jù)學(xué)生的接受情況,調(diào)整練習(xí)題目的多少與難易。在學(xué)生回答問題時,我通過語言、目光、動作給予鼓勵與告訴,發(fā)揮評價的增益效應(yīng)。
在整個教學(xué)過程中,教師的一言一行、語氣、神態(tài)都會對學(xué)生的學(xué)習(xí)過程產(chǎn)生影響。因此,教師要對學(xué)生在聽課過程當(dāng)中通過有形的精神狀態(tài)如眼神等所表現(xiàn)出來的無形思維狀態(tài)加以感知,隨時捕捉反饋信息,對自己的講課進程作出相應(yīng)的調(diào)整,快、慢、停、轉(zhuǎn)應(yīng)用自如。
在本節(jié)課的小結(jié)部分,首先小結(jié)本課重點與難點,然后向?qū)W生提問:你知道是哪個國家最早使用負(fù)數(shù)嗎?負(fù)數(shù)最早記載于中國的《九章算術(shù)》中,比國外早一千多年。借此向?qū)W生進行愛國主義思想教育。并布置思考題及作業(yè),目的是把正、負(fù)數(shù)與第一章所學(xué)代數(shù)式聯(lián)系起來,加深對正、負(fù)數(shù)的意義的理解。
通過教學(xué)實踐取得了良好的效果,使我認(rèn)識到教師在教學(xué)過程中,不僅要教會學(xué)生知識,還要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)的學(xué)習(xí)習(xí)慣,更要重視教學(xué)生做人,才能真正講出一堂好課,真正成為一名好教師。
《有理數(shù)》數(shù)學(xué)教案6
教學(xué)目標(biāo):
知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能把給出的有理數(shù)按要求分類。
過程與方法:經(jīng)歷本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生分類討論的觀點和正確進行分類的能力。
情感態(tài)度與價值觀:通過本課的學(xué)習(xí),體驗成功的`喜悅,保持學(xué)好數(shù)學(xué)的信心。
教學(xué)重點:
掌握有理數(shù)的兩種分類方法
教學(xué)難點:
會把所給的各數(shù)填入它所屬于的集合里
教學(xué)方法:
問題引導(dǎo)法
學(xué)習(xí)方法:
自主探究法
一、情境誘導(dǎo)
在小學(xué)我們學(xué)習(xí)了整數(shù)、分?jǐn)?shù),上一節(jié)課我們又學(xué)習(xí)了正數(shù)、負(fù)數(shù),誰能很快的做出下面的題目。
1.有下面這些數(shù):15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將上面的數(shù)填入下面兩個集合:正整數(shù)集合{},負(fù)整數(shù)集合{},填完了嗎?
(2)將上面的數(shù)填入下面兩個集合:整數(shù)集合{},分?jǐn)?shù)集合{},填完了嗎?
把整數(shù)和分?jǐn)?shù)起個名字叫有理數(shù)。(點題并板書課題)
二、自學(xué)指導(dǎo)
學(xué)生自學(xué)課本,對照課本找自學(xué)提綱中問題的答案;老師先做必要的板書準(zhǔn)備,再到學(xué)生中巡視指導(dǎo),并了解掌握學(xué)生自學(xué)情況,為展示歸納作準(zhǔn)備。
附:自學(xué)提綱:
1.xxxxxxxxxxx、xxxx、xxxxxxx統(tǒng)稱為整數(shù),
2.xxxxxxx和xxxxxxxxx統(tǒng)稱為分?jǐn)?shù)
3.xxxxxxxxxx統(tǒng)稱為有理數(shù),
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù):、分?jǐn)?shù):;正整數(shù):、負(fù)整數(shù):、正分?jǐn)?shù):、負(fù)分?jǐn)?shù):.
三、展示歸納
1、找有問題的學(xué)生逐題展示自學(xué)提綱中的問題答案,學(xué)生說,老師板書;
2、發(fā)動學(xué)生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的講解和強調(diào);
3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關(guān)鍵點予以強調(diào)。
四、變式練習(xí)
逐題出示,先讓學(xué)生獨立完成,再請有問題的學(xué)生匯報結(jié)果,老師板書,并發(fā)動其他學(xué)生評價、補充并完善,最后老師根據(jù)需要進行重點強調(diào)。
1.整數(shù)可分為:xxxxx、xxxxxx和xxxxxxx,分?jǐn)?shù)可分為:xxxxxxx和xxxxxxxxx.有理數(shù)按符號不同可分為正有理數(shù),xxxxxxx和xxxxxxxx.
2.判斷下列說法是否正確,并說明理由。
(1)有理數(shù)包括有整數(shù)和分?jǐn)?shù).
(2)0.3不是有理數(shù).
(3)0不是有理數(shù).
(4)一個有理數(shù)不是正數(shù)就是負(fù)數(shù).
(5)一個有理數(shù)不是整數(shù)就是分?jǐn)?shù)
3.所有的正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合,依次類推有正數(shù)集合、負(fù)數(shù)集合、整數(shù)集合、分?jǐn)?shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內(nèi),將各數(shù)用逗號分開):
楊桂花:1.2.1有理數(shù)教學(xué)設(shè)計
正數(shù)集合:{…}負(fù)數(shù)集合:{…}
正整數(shù)集合:{…}負(fù)分?jǐn)?shù)集合:{…}
4.下列說法正確的是()
A.0是最小的正整數(shù)
B.0是最小的有理數(shù)
C.0既不是整數(shù)也不是分?jǐn)?shù)
D.0既不是正數(shù)也不是負(fù)數(shù)
5、下列說法正確的有()
(1)整數(shù)就是正整數(shù)和負(fù)整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分?jǐn)?shù)包括正分?jǐn)?shù)和負(fù)分?jǐn)?shù)(4)正數(shù)和負(fù)數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分?jǐn)?shù)
五、總結(jié)與反思:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
六、作業(yè):必做題:課本14頁:1、9題
《有理數(shù)》數(shù)學(xué)教案7
教學(xué)目標(biāo):
1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;
2、能體會引進負(fù)數(shù)的必要性和意義,建立正數(shù)和負(fù)數(shù)的數(shù)感。
重點:
通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進正數(shù)和負(fù)數(shù),要求學(xué)生理解正數(shù)和負(fù)數(shù)的意義,為以后通過實例引進有理數(shù)的大小比較、加法和乘法法則打基礎(chǔ)。難點:對負(fù)數(shù)的意義的理解。
教學(xué)過程:
一、知識導(dǎo)向:本節(jié)課是一個從小學(xué)過渡的知識點,主要是要抓緊在數(shù)范圍上擴充,對引進“負(fù)數(shù)”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學(xué)中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學(xué)中的“數(shù)”是為了滿足生產(chǎn)和生活的需要而產(chǎn)生發(fā)展起來的。如:0,1,2,3,…,,
2、能讓學(xué)生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的.對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學(xué)過的數(shù)很難區(qū)分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學(xué)過的數(shù)表示;把與它意義相反的量規(guī)定為負(fù)的,用過去學(xué)過的數(shù)(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負(fù)”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負(fù)數(shù),如:-3,-45,…過去學(xué)過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負(fù)數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負(fù)數(shù),1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓(xùn)練:P18練習(xí):1,2,3,4。
四、知識小結(jié):
從本節(jié)課所學(xué)的內(nèi)容中,應(yīng)能從數(shù)的角度來區(qū)分小學(xué)與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進“負(fù)數(shù)”的必要性及其意義。
五、作業(yè)鞏固:
1、每個同學(xué)分別舉出5個生活中表示相反意義量的的例子;并用正、負(fù)數(shù)來表示;2、分別舉出幾個正數(shù)與負(fù)數(shù)(最少6個)。3、P20習(xí)題2.1:1題。
《有理數(shù)》數(shù)學(xué)教案8
教學(xué)目標(biāo)
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3。三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4。通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5。本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
。ㄒ唬┲攸c、難點分析
重點:
是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
難點:
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的'符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
。ǘ┲R結(jié)構(gòu)
(三)教法建議
1。有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2。兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”。絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3;A(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4。幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5。小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6。如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計示例
有理數(shù)的乘法(第一課時)
教學(xué)目標(biāo)
1。使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2。通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;
3。通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1。計算(—2)+(—2)+(—2)。
2。有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負(fù)數(shù))
3。有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)[
4。根據(jù)有理數(shù)加減運算中引出的新問題主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(—2)=?(—3)×(—2)=?(學(xué)生答)
把3×(—2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”。
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值。
三、運用舉例,變式練習(xí)
例某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。
。1)t小時后溫度是多少?
。2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:
①a=3,t=2;②a=—3,t=2;
、赼=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際。
課堂練習(xí)
1?诖穑
(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
。4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
。7)(—6)×0;(8)0×(—6);
2?诖穑
。1)1×(—5);(2)(—1)×(—5);(3)+(—5);
。4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;—a未必是負(fù)數(shù),也可以是正數(shù)或0。
3。填空:
(1)1×(—6)=______;(2)1+(—6)=_______;
。3)(—1)×6=________;(4)(—1)+6=______;
。5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
。9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
。1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”。
五、作業(yè)
1。計算:
。1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
。4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號連接):
。1)如果a<0,b<0,那么ab________0;
。2)如果a<0,b<0,那么ab_______0;
。3)如果a>0時,那么a____________2a;
。4)如果a<0時,那么a__________2a。
探究活動
問題:桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。
《有理數(shù)》數(shù)學(xué)教案9
教學(xué)目標(biāo)
1. 會把有理數(shù)的加減法混合運算統(tǒng)一為加法運算;
2. 會把省略加號和括號的有理數(shù)加減混合運算看成幾個有理數(shù)的加法運算;
3.進一步感悟“轉(zhuǎn)化”的思想.
教學(xué)重點
把有理數(shù)的加減法混合運算統(tǒng)一為加法運算.
教學(xué)難點
省略負(fù)數(shù)前面的加號的有理數(shù)加法,運用運算律交換加數(shù)位置時,符號不變.
教學(xué)過程
根據(jù)有理數(shù)的`減法法則,有理數(shù)的加減速混合運算可以統(tǒng)一為加法運算.
1.完成下列計算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
歸納: 根據(jù)有理數(shù)的減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為 運算;
(2)式統(tǒng)一成加法是________________________________;
省略負(fù)數(shù)前面的加號和( )后的形式是______________________;
讀作____________________ 或 _______________________.
展示交流
1.把下列運算統(tǒng)一成加法運算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
。2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
。4) 14-(-12)+(-25)-17=_____________________________________.
2. 將下列有理數(shù)加法運算中,加號省略:
。1)12+(-8)=________________;
。2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.將下列運算先統(tǒng)一成加法,再省略加號:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列計算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道員沿東西方向的鐵路巡視維護,從住地出發(fā),他先向東巡視了6km,休息之后,繼續(xù)向東維護了4km;然后折返向西巡視了12.5 km,此時他在住地的什么方向?與駐地的距離是多少?
盤點收獲
個案補充
課堂反饋
1.計算:
2.早晨6:00的氣溫為 ℃,到中午2:00氣溫上升了8℃,到晚上10:00氣溫又下降了9℃.晚上10:00的氣溫是多少?
遷移創(chuàng)新
一架飛機做特技表演,它起飛后的高度變化情況為:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此時飛機比起飛點高了多少千米?
課堂作業(yè)
本P39 習(xí)題2 .5第6題(1)、 (3)、(5), 第7題 .
《有理數(shù)》數(shù)學(xué)教案10
教學(xué)目的:
經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進行有理數(shù)加法運算。
教學(xué)重點:
有理數(shù)的加法法則
教學(xué)難點:
異號兩數(shù)相加的法則
教學(xué)教程:
一、復(fù)習(xí)提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向
提問:這題有幾種情況?
小結(jié):有以下四種情況
。1)兩次都向東走,
(2)兩次都向西走
。3)先向東走,再向西走
。4)先向西走,再向東走
根據(jù)小結(jié),我們再分析每一種情況:
。1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
。ǎ常┫认驏|走5米,再向西走3米,兩次一共向東走了多少米?
+3+5(+5)+(-3)=2
。ǎ矗┫认蛭髯5米,再向東走3米,兩次一共向東走了多少米?
。担常ǎ担ǎ常剑
下面再看兩種特殊情況:
。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米
-5+5(+5)+(-5)=0
。ǎ叮┫蛭髯撸得,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結(jié):總結(jié)前的`六種情況:
同號兩數(shù)相加:(+5)+(+3)=+8
(-5)+(-3)=-8
異號兩數(shù)相加:(+5)+(-3)=2
。ǎ担ǎ常剑
(+5)+(-5)=0
一數(shù)與零相加:(-5)+0=-5
得出結(jié)論:有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得零
3、一個數(shù)與零相加,仍得這個數(shù)
例如:
。ǎ4)+(-5)(同號兩數(shù)相加)
解:=-()(取相同的符號)
。剑梗ú呀^對值相加)
(-2)+(+6)(絕對值不等的異號兩數(shù)相加)
解:=+()(取絕對值較大的符號)
。剑矗ㄓ幂^大的絕對值減去較小的絕對值)
練習(xí):
口答:
1、(-15)+(-32)=
。、(+10)+(-4)=
。场ⅲ罚ǎ矗
。、4+(-4)=
。怠ⅲ梗ǎ玻
。丁ⅲǎ0.5)+4.4=
。、(-9)+0=
8、0+(-3)=
計算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習(xí):
。1)15+(-22)=
(2)(-13)+(-8)=
。3)(-0·9)+1·5=
。4)2·7+(-3·5)=
(5)1/2+(-2/3)=
。6)(-1/4)+(-1/3)=
練習(xí)三:
1、填空:
。1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
。5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結(jié):
1、掌握有理數(shù)的加法法則,正確地進
行加法運算。
2、兩個有理數(shù)相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
作業(yè):課本第38頁2、3
第40頁1、2
《有理數(shù)》數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、知識與技能:(1)通過學(xué)生熟悉的問題情景,以過探索有理數(shù)減法法則得出的過程,理解有理數(shù)減法法則的合理性。
(2)能熟練進行有理數(shù)的減法法則。
2、過程與方法
通過實例,歸納出有理數(shù)的減法法則,培養(yǎng)學(xué)生的邏輯思維能力和運算能力,通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會人歸的數(shù)學(xué)思想。
重點、難點
1、重點:有理數(shù)減法法則及其應(yīng)用。
2、難點:有理數(shù)減法法則的應(yīng)用符號的改變。
教學(xué)過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、有理數(shù)加法運算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的.某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導(dǎo)語:可見,有理數(shù)的減法運算在現(xiàn)實生活中也有著很廣泛的應(yīng)用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發(fā)現(xiàn)減法運算與加法運算的關(guān)系嗎?
(學(xué)生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的減法法則)
減去一個數(shù)等于加上這個數(shù)的相反數(shù)
教師提問、啟發(fā):(1)法則中的“減去一個數(shù)”,這個數(shù)指的是哪個數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?
三、應(yīng)用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內(nèi)練習(xí):P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數(shù)減法運算游戲(每人27張牌,黑牌點數(shù)為正數(shù),紅牌點數(shù)為負(fù)數(shù),王牌點數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點數(shù)之差者獲勝,直至其中一人手中無牌為止)。
四、總結(jié)反思
(1) 有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
(2) 有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號,最后按有理數(shù)加法法則計算。
五、作業(yè)
P.27習(xí)題1.4A組1、2、5、6
備選題
填空:比2小-9的數(shù)是 。
а比а+2小 。
若а小于0,е是非負(fù)數(shù),則2а-3е 0。
《有理數(shù)》數(shù)學(xué)教案12
一、知識與技能
(1)正確理解乘方、冪、指數(shù)、底數(shù)等概念。
(2)會進行有理數(shù)乘方的運算。
二、過程與方法
通過對乘方意義的理解,培養(yǎng)學(xué)生觀察比較、分析、歸納概括的能力,滲透轉(zhuǎn)化思想。
三、情感態(tài)度與價值觀
培養(yǎng)探索精神,體驗小組交流、合作學(xué)習(xí)的重要性。
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解乘方的意義,掌握乘方運算法則。
2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算。
3.關(guān)鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義。
四、課堂引入
1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的?
幾個不等于零的.有理數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)確定,當(dāng)負(fù)因數(shù)的個數(shù)為奇數(shù)時,積為負(fù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正。
2.正方形的邊長為2,則面積是多少?棱長為2的正方體,則體積為多少?
五、新授
邊長為a的正方形的面積是aa,棱長為a的正方體的體積是aaa.
aa簡記作a2,讀作a的平方(或二次方)。
aaa簡記作a3,讀作a的立方(或三次方)。
一般地,幾個相同的因數(shù)a相乘,記作an.即aaa. 這種求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。
在an中,a叫底數(shù),n叫做指數(shù),當(dāng)an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
《有理數(shù)》數(shù)學(xué)教案13
一、教學(xué)目標(biāo)
1.使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2.培養(yǎng)學(xué)生觀察、歸納、概括及運算能力
3 使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
二、教學(xué)重點和難點
重點:有理數(shù)乘法的運算.
難點:有理數(shù)乘法中的符號法則.
三.教學(xué)手段
現(xiàn)代課堂教學(xué)手段
四.教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過程
(一)、研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解①32=6
答:上升了6厘米.
問題2 水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)
把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的`積6的相反數(shù)-6,即3(-2)=-6.
把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積-6的相反數(shù)6,即(-3)(-2)=6.
《有理數(shù)》數(shù)學(xué)教案14
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程
探索新知
在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),”。
按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的`常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會
練一練
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號:。
思考:
問題1:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
創(chuàng)新探究
問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結(jié)與作業(yè)
到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
《有理數(shù)》數(shù)學(xué)教案15
教學(xué)目標(biāo)
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
本節(jié)的教學(xué)重點是能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
(二)知識結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.
5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)目標(biāo)
1.使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的'合理性;
2.通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;
3.通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.計算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負(fù)數(shù))
3.有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)
4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)
把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”.
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.
三、運用舉例,變式練習(xí)
例1 計算:
例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.
(1)t小時后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a=-3,t=2;
、赼=3,t=-2;④a=-3,t=-2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際.
課堂練習(xí)
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù)數(shù),也可以是正數(shù)或0.
3.當(dāng)a,b是下列各數(shù)值時,填寫空格中計算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。
5.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”.
五、作業(yè)
1.計算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).
2.計算:
3.填空(用“>”或“<”號連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時,那么a ____________2a;
(4)如果a<0時,那么a __________2a.
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.
【《有理數(shù)》數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案有理數(shù)的乘法08-24
有理數(shù)的乘法數(shù)學(xué)教案08-10
有理數(shù)小學(xué)數(shù)學(xué)教案設(shè)計07-05
初一數(shù)學(xué)教案:有理數(shù)的減法09-24
初一數(shù)學(xué)教案設(shè)計:有理數(shù)的乘法07-03
七年級數(shù)學(xué)教案有理數(shù)的乘方10-07
有理數(shù)的除法教案10-21
有理數(shù)的加法教案介紹08-30