亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

教學(xué)設(shè)計(jì)

高中數(shù)學(xué)教學(xué)設(shè)計(jì)

時(shí)間:2025-02-14 13:01:23 教學(xué)設(shè)計(jì) 我要投稿

高中數(shù)學(xué)教學(xué)設(shè)計(jì)

  作為一無名無私奉獻(xiàn)的教育工作者,時(shí)常需要準(zhǔn)備好教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)把教學(xué)各要素看成一個(gè)系統(tǒng),分析教學(xué)問題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。那么寫教學(xué)設(shè)計(jì)需要注意哪些問題呢?下面是小編精心整理的高中數(shù)學(xué)教學(xué)設(shè)計(jì),歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)

高中數(shù)學(xué)教學(xué)設(shè)計(jì)1

  函數(shù)的奇偶性

  函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化.它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱.這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例.最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的'重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性.

  教學(xué)目標(biāo):

  1.通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力.

  2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.

  3.在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的任務(wù)分析

  這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.

  一、問題情景

  1.觀察如下兩圖,思考并討論以下問題:

  (1)這兩個(gè)函數(shù)圖像有什么共同特征?

  (2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

  對(duì)于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱函數(shù)y=x2為偶函數(shù).

  2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.

  22可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

  二、建立模型

  由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

  1.奇、偶函數(shù)的定義

  如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

  2.提出問題,組織學(xué)生討論

  (1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))

  (2)奇、偶函數(shù)的圖像有什么特征?

  (奇、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)

  三、解釋應(yīng)用[例題]

  1.判斷下列函數(shù)的奇偶性.

  注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].

  2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

  解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

  解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

  任取x1>x2>0,則-x1<-x2<0.

  ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).又f(x)是偶函數(shù),∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函數(shù).

  思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

  [練習(xí)]

  1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

  2. f(x)=-x3|x|的大致圖像可能是()

  3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時(shí),(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

  4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)2

  函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化。它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱。這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析。

  教材首先通過對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義。然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例。最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系。這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性。

  教學(xué)目標(biāo)

  1、通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力。

  2、理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性。

  3、在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的。

  任務(wù)分析

  這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,k≠0,二次函數(shù)y=ax,a≠0,故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解。在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆。

  對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=fx,一定有f0=0既是奇函數(shù),又是偶函數(shù)的函數(shù)有fx=0,x∈R在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù)。關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果。

  教學(xué)設(shè)計(jì)

  一、問題情景

  1、觀察如下兩圖,思考并討論以下問題:

 。1)這兩個(gè)函數(shù)圖像有什么共同特征?

 。2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?

  可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱。

  從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同。

  對(duì)于函數(shù)fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有fx=x2=x2=fx。此時(shí),稱函數(shù)y=x2為偶函數(shù)。

  2、觀察函數(shù)fx=x和fx= 的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征。

  可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱。函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值fx也是一對(duì)相反數(shù),即對(duì)任一x∈R都有fx=fx。此時(shí),稱函數(shù)y=fx為奇函數(shù)。

  二、建立模型

  由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的.定義

  1奇、偶函數(shù)的定義

  如果對(duì)于函數(shù)fx的定義域內(nèi)任意一個(gè)x,都有fx=fx,那么函數(shù)fx就叫作奇函數(shù)。如果對(duì)于函數(shù)fx的定義域內(nèi)任意一個(gè)x,都有fx=fx,那么函數(shù)fx就叫作偶函數(shù)。

  2、提出問題,組織學(xué)生討論

  (1)如果定義在R上的函數(shù)fx滿足f2=f2,那么fx是偶函數(shù)嗎? fx不一定是偶函數(shù)

 。2)奇、偶函數(shù)的圖像有什么特征?

 。ㄆ、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱)

  3奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)

  三、解釋應(yīng)用

  [例 題]

  1、判斷下列函數(shù)的奇偶性。

  注:①規(guī)范解題格式;

  ②對(duì)于5要注意定義域x∈1,1]。

  2、已知:定義在R上的函數(shù)fx是奇函數(shù),當(dāng)x>0時(shí),fx=x1+x,求fx的表達(dá)式。

  解:1任取x<0,則x>0,∴fx=x1x,

  而fx是奇函數(shù),∴fx=fx。∴fx=x1x。

 。2)當(dāng)x=0時(shí),f0=f0,∴f0=f0,故f0=0

  3、已知:函數(shù)f(x是偶函數(shù),且在∞,0上是減函數(shù),判斷fx在0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論。

  解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x在0,+∞)上是增函數(shù),

  證明如下:

  任取x1>x2>0,則x1

  ∵fx在∞,0上是減函數(shù),∴fx1>fx2。 又fx是偶函數(shù),∴fx1>fx2。

  ∴f(x在0,+∞)上是增函數(shù)。

  思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

  [練 習(xí)]

  1、已知:函數(shù)fx是奇函數(shù),在[a,b]上是增函數(shù)b>a>0,問fx在[b,a]上的單調(diào)性如何。

  2fx=x3|x|的大致圖像可能是

  3、函數(shù)fx=ax2+bx+c,a,b,c∈R,當(dāng)a,b,c滿足什么條件時(shí),1函數(shù)fx是偶函數(shù)。2函數(shù)fx是奇函數(shù)。 4設(shè)fx,gx分別是R上的奇函數(shù)和偶函數(shù),并且fx+gx=xx+1,求fx,gx的解析式。

  四、拓展延伸

  1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2設(shè)fx,gx分別是R上的奇函數(shù),偶函數(shù),試研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。

  3、已知a∈R,fx=a ,試確定a的值,使fx是奇函數(shù)。

  4、一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)3

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

  3、了解用平面向量的數(shù)量積可以處理垂直的問題;

  4、掌握向量垂直的條件。

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):平面向量的數(shù)量積定義

  教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

  教學(xué)過程

  1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

  則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

  并規(guī)定0向量與任何向量的數(shù)量積為0。

  ×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

  2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的`積有什么區(qū)別?

 。1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定。

 。2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分。符號(hào)“· ”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替。

 。3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0。因?yàn)槠渲衏osq有可能為0。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)4

  教學(xué)目標(biāo)

 。1)理解四種命題的概念;

 。2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

 。4)初步掌握反證法的概念及反證法證題的基本步驟;

  (5)通過對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

 。6)通過對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;

  (7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運(yùn)用.

  教學(xué)過程設(shè)計(jì)

  第一課時(shí):四種命題

  一、導(dǎo)入新課

  【練習(xí)】1.把下列命題改寫成“若p則q”的形式:

 。╨)同位角相等,兩直線平行;

  (2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.

  如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題.

  上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對(duì)的.我們也可以把逆命題當(dāng)成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:

 。1)若同位角相等,則兩直線平行;

 。2)若一個(gè)四邊形是正方形,則它的'四條邊相等.

  設(shè)計(jì)意圖:

  通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

  二、新課

  【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

  【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個(gè)命題叫原命題的否命題.

  【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.

  【板書】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問】原命題真,否命題一定真嗎?舉例說明?

  學(xué)生活動(dòng):

  講論后回答:

  原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

  原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設(shè)計(jì)意圖:

  通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.

  教師活動(dòng):

  【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

  學(xué)生活動(dòng):

  討論后回答

  【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題.

  教師活動(dòng):

  【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形的四條邊不相等,則不是正方形.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題.

  原命題是“若p則q”,則逆否命題為“若┐q則┐p.

  【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真.

  教師活動(dòng):

  【提問】原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說明?

  【總結(jié)】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設(shè)計(jì)意圖:

  通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性.

  教師活動(dòng):

  三、課堂練習(xí)

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請(qǐng)寫在方框內(nèi)?

  學(xué)生活動(dòng):筆答

  教師活動(dòng):

  2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?

  學(xué)生活動(dòng):討論后回答

  設(shè)計(jì)意圖:

  通過學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

  教師活動(dòng):

  略。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)5

  一、教材分析

  數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)證明方法,在高中數(shù)學(xué)內(nèi)容中占有重要的地位,其中體現(xiàn)的數(shù)學(xué)思想方法對(duì)學(xué)生進(jìn)一步學(xué)習(xí)數(shù)學(xué)、領(lǐng)悟數(shù)學(xué)思想至關(guān)重要。本課是數(shù)學(xué)歸納法的第一節(jié)課,前面學(xué)生對(duì)等差數(shù)列、數(shù)列求和、二項(xiàng)式定理等知識(shí)有較全面的把握和較深入的理解,初步掌握了由有限多個(gè)特殊事例得出一般結(jié)論的推理方法,即不完全歸納法,這是研究數(shù)學(xué)問題,猜想或發(fā)現(xiàn)數(shù)學(xué)規(guī)律的重要手段。但是,由有限多個(gè)特殊事例得出的結(jié)論不一定正確,這種推理方法不能作為一種論證方法。因此,在不完全歸納法的基礎(chǔ)上,必須進(jìn)一步學(xué)習(xí)嚴(yán)謹(jǐn)?shù)目茖W(xué)的論證方法——數(shù)學(xué)歸納法,這是促進(jìn)學(xué)生從有限思維發(fā)展到無限思維的一個(gè)重要環(huán)節(jié),同時(shí)本節(jié)內(nèi)容又是培養(yǎng)學(xué)生嚴(yán)密的推理能力、訓(xùn)練學(xué)生的抽象思維能力、體驗(yàn)數(shù)學(xué)內(nèi)在美的好素材。

  二、教學(xué)目標(biāo)

  學(xué)生通過數(shù)列等相關(guān)知識(shí)的學(xué)習(xí),已經(jīng)基本掌握了不完全歸納法,已經(jīng)由一定的觀察、歸納、猜想能力。

  根據(jù)教學(xué)內(nèi)容特點(diǎn)和教學(xué)大綱,結(jié)合學(xué)生實(shí)際而制定以下教學(xué)目標(biāo):

  1.知識(shí)目標(biāo)

 。1)了解由有限多個(gè)特殊事例得出的一般結(jié)論不一定正確。

 。2)初步理解數(shù)學(xué)歸納法原理。

 。3)能以遞推思想為指導(dǎo),理解數(shù)學(xué)歸納法證明數(shù)學(xué)命題的兩個(gè)步驟一個(gè)結(jié)論。

 。4)會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)相關(guān)的簡(jiǎn)單的恒等式。

  2.能力目標(biāo)

 。1)通過對(duì)數(shù)學(xué)歸納法的學(xué)習(xí),使學(xué)生初步掌握觀察、歸納、猜想、分析能力和嚴(yán)密的邏輯推理能力。

 。2)在學(xué)習(xí)中培養(yǎng)學(xué)生大膽猜想,小心求證的辨證思維素質(zhì)以及發(fā)現(xiàn)問題、提出問題的意識(shí)和數(shù)學(xué)交流的能力。

  3.情感目標(biāo)

 。1)通過對(duì)數(shù)學(xué)歸納法原理的探究,親歷知識(shí)的構(gòu)建過程,領(lǐng)悟其中所蘊(yùn)含的數(shù)學(xué)思想和辨正唯物主義觀點(diǎn)。

 。2)體驗(yàn)探索中挫折的艱辛和成功的快樂,感悟數(shù)學(xué)的內(nèi)在美,激發(fā)學(xué)生學(xué)習(xí)熱情,使學(xué)生喜歡數(shù)學(xué)。

 。3)學(xué)生通過置疑與探究,初步形成正確的數(shù)學(xué)觀,創(chuàng)新意識(shí)和嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  1.教學(xué)重點(diǎn)

  借助具體實(shí)例了解數(shù)學(xué)歸納法的基本思想,掌握它的基本步驟,運(yùn)用它證明一些與正整數(shù)有關(guān)的簡(jiǎn)單恒等式,特別要注意遞推步驟中歸納假設(shè)的運(yùn)用和恒等變換的運(yùn)用。

  2.教學(xué)難點(diǎn)

  (1)如何理解數(shù)學(xué)歸納法證題的嚴(yán)密性和有效性。

 。2)遞推步驟中如何利用歸納假設(shè),即如何利用假設(shè)證明當(dāng)時(shí)結(jié)論正確。

  四、教學(xué)方法

  本節(jié)課采用交往性教學(xué)方法,以學(xué)生及其發(fā)展為本,一切從學(xué)生出發(fā)。在教師組織啟發(fā)下,通過創(chuàng)設(shè)問題情境,激發(fā)學(xué)習(xí)欲望。師生之間、學(xué)生之間共同探究多米諾骨牌倒下的原理,并類比多米諾骨牌倒下的原理,探究數(shù)學(xué)歸納法的原理、步驟;培養(yǎng)學(xué)生歸納、類比推理的能力,進(jìn)而應(yīng)用數(shù)學(xué)歸納法,證明一些與正整數(shù)n有關(guān)的簡(jiǎn)單數(shù)學(xué)命題;提高學(xué)生的應(yīng)用能力,分析問題、解決問題的能力。既重視教師的組織引導(dǎo),又強(qiáng)調(diào)學(xué)生的主體性、主動(dòng)性、交流性和合作性。

  五、教學(xué)過程

  (一)創(chuàng)設(shè)情境,提出問題

  情境一:根據(jù)觀察某學(xué)校第一個(gè)到校的女同學(xué),第二個(gè)到校的也是女同學(xué),第三個(gè)到校的還是女同學(xué),于是得出:這所學(xué)校的學(xué)生全部是女同學(xué)。

  情境二:平面內(nèi)三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,于是得出:凸邊形內(nèi)角和是。

  情境三:數(shù)列的通項(xiàng)公式為,可以求得,,,,于是猜想出數(shù)列的通項(xiàng)公式為。

  結(jié)論:運(yùn)用有限多個(gè)特殊事例得出的一般性結(jié)論,即不完全歸納法不一定正確。因此它不

  能作為一種論證的方法。

  提出問題:如何尋找一個(gè)科學(xué)有效的`方法證明結(jié)論的正確性呢?我們本節(jié)課所要學(xué)習(xí)的數(shù)

  學(xué)歸納法就是解決這一問題的方法之一。

 。ǘ⿲(shí)驗(yàn)演示,探索解決問題的方法

  1.幾何畫板演示動(dòng)畫多米諾骨牌游戲,師生共同探討:要讓這些骨牌全部倒下,必

  須具備那些條件呢?(學(xué)生可以討論,加以教師點(diǎn)撥)

 、俚谝粔K骨牌必須倒下。

  ②兩塊連續(xù)的骨牌,當(dāng)前一塊倒下,后面一塊必須倒下。

  (啟發(fā)學(xué)生轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言:當(dāng)?shù)趬K倒下,則第塊必須倒下)

  教師總結(jié):數(shù)學(xué)歸納法的原理就如同多米諾骨牌一樣。

  2.學(xué)生類比多米諾骨牌原理,探究出證明有關(guān)正整數(shù)命題的方法,從而導(dǎo)出本課的重心:數(shù)學(xué)歸納法的原理及其證明的兩個(gè)步驟。(給學(xué)生思考的時(shí)間,教師提問,學(xué)生回答,教師補(bǔ)充完善,對(duì)學(xué)生的回答給予肯定和鼓勵(lì))

  數(shù)學(xué)歸納法公理:(板書)

 。1)(遞推基礎(chǔ))當(dāng)取第一個(gè)值(例如等)結(jié)論正確;

 。2)(遞推歸納)假設(shè)當(dāng)時(shí)結(jié)論正確;(歸納假設(shè))

  證明當(dāng)時(shí)結(jié)論也正確。(歸納證明)

  那么,命題對(duì)于從開始的所有正整數(shù)都成立。

  教師總結(jié):步驟(1)是數(shù)學(xué)歸納法的基礎(chǔ),步驟(2)建立了遞推過程,兩者缺一不

  可,這就是數(shù)學(xué)歸納法。

 。ㄈ┻w移應(yīng)用,理解升華

  例1:用數(shù)學(xué)歸納法證明:等差數(shù)列中,為首項(xiàng),為公差,則通項(xiàng)公式為.①

  選題意圖:讓學(xué)生注意:①數(shù)學(xué)歸納法是一種完全歸納的證明方法,它適用于與正整數(shù)有關(guān)的問題;

 、趦蓚(gè)步驟,一個(gè)結(jié)論缺一不可,否則結(jié)論不成立;

  ③在證明遞推步驟時(shí),必須使用歸納假設(shè),必須進(jìn)行恒等變換。

  此時(shí)學(xué)生心中已有一個(gè)初步的證明模式,教師應(yīng)該規(guī)范板書,給學(xué)生提供一個(gè)示范。

  證明:(1)當(dāng)時(shí),等式左邊,等式右邊,等式①成立.

 。2)假設(shè)當(dāng)時(shí)等式①成立,即有

  那么,當(dāng)時(shí),有所以當(dāng)時(shí)等式①也成立。

  根據(jù)(1)和(2),可知對(duì)任何,等式①都成立。

  例2:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

  選題意圖:通過師生共同活動(dòng),使學(xué)生進(jìn)一步熟悉數(shù)學(xué)歸納法證題的兩個(gè)步驟和一個(gè)結(jié)論。

  例3:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

  選題意圖:①進(jìn)一步讓學(xué)生理解數(shù)學(xué)歸納法的嚴(yán)密性和合理性,從而從感性認(rèn)識(shí)上升為理性認(rèn)識(shí);

 、谡莆諒牡綍r(shí)等式左邊的變化情況,合理的進(jìn)行添項(xiàng)、拆項(xiàng)、合并項(xiàng)等。

  (四)反饋練習(xí),鞏固提高

  課堂練習(xí):用數(shù)學(xué)歸納法證明:當(dāng)時(shí)

  (練習(xí)讓學(xué)生獨(dú)立完成,上黑板板演,要求書寫工整,步驟完整,表述清楚,如果發(fā)現(xiàn)學(xué)

  生證明過程中的錯(cuò)誤,教師及時(shí)糾正、剖析,同時(shí)對(duì)學(xué)生板演好的方面予以肯定和鼓勵(lì)。)

  教師總結(jié):利用數(shù)學(xué)歸納法證明和正整數(shù)相關(guān)的命題時(shí),要注意以下三句話:遞推基礎(chǔ)不

  可少,歸納假設(shè)要用到,結(jié)論寫明莫忘掉。

 。ㄎ澹┓此伎偨Y(jié)

  學(xué)生思考后,教師提問,讓同學(xué)相互補(bǔ)充完善,教師最后總結(jié),這一環(huán)節(jié)可以培養(yǎng)學(xué)

  生抽象、歸納、概括、總結(jié)的能力,同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便彌補(bǔ)和及時(shí)調(diào)整下節(jié)課的教學(xué)方向。

  小結(jié):(1)歸納法是一種由特殊到一般的推理方法,分完全歸納法和不完全歸納法兩種,

  而不完全歸納法得出的結(jié)論不具有可靠性,必須用數(shù)學(xué)歸納法進(jìn)行嚴(yán)格證明;

 。2)數(shù)學(xué)歸納法作為一種證明方法,用于證明一些與正整數(shù)n有關(guān)數(shù)學(xué)命題,它的基本思想是遞推思想,它的證明過程必須是兩步,最后還有結(jié)論,缺一不可;

 。3)遞推歸納時(shí)從到,必須用到歸納假設(shè),并進(jìn)行適當(dāng)?shù)暮愕茸儞Q。

 。┳鳂I(yè)布置

  選修2-2習(xí)題2.3第1題第2題

高中數(shù)學(xué)教學(xué)設(shè)計(jì)6

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  解三角形及應(yīng)用舉例

  教學(xué)重難點(diǎn)

  解三角形及應(yīng)用舉例

  教學(xué)過程

  一.基礎(chǔ)知識(shí)精講

  掌握三角形有關(guān)的定理

  利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

  二.問題討論

  思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論.

  思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).

  例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的東偏南方向300 km的'海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲。

  一. 小結(jié):

  1.利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

  2.利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3.邊角互化是解三角形問題常用的手段.

  三.作業(yè):P80闖關(guān)訓(xùn)練

高中數(shù)學(xué)教學(xué)設(shè)計(jì)7

  一、單元教學(xué)內(nèi)容

 。ǎ保┧惴ǖ幕靖拍

 。ǎ玻┧惴ǖ幕窘Y(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問題的過程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念 3課時(shí)

  2、程序框圖與算法的基本結(jié)構(gòu) 5課時(shí)

  3、算法的基本語句 2課時(shí)

  四、單元教學(xué)目標(biāo)分析

 。、通過對(duì)解決具體問題過程與步驟的分析體會(huì)算法的思想,了解算法的含義

 。病⑼ㄟ^模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

 。、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的`過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。

 。础⑼ㄟ^閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

 。、重點(diǎn)

 。ǎ保├斫馑惴ǖ暮x (2)掌握算法的基本結(jié)構(gòu) (3)會(huì)用算法語句解決簡(jiǎn)單的實(shí)際問題

  2、難點(diǎn)

  (1)程序框圖 (2)變量與賦值 (3)循環(huán)結(jié)構(gòu) (4)算法設(shè)計(jì)

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  七、單元展開方式與特點(diǎn)

  1、展開方式

  自然語言→程序框圖→算法語句

 。、特點(diǎn)

 。ǎ保┞菪仙 分層遞進(jìn) (2)整合滲透 前呼后應(yīng) (3)三線合

  一 橫向貫通 (4)彈性處理 多樣選擇

  八、單元教學(xué)過程分析

  1. 算法基本概念教學(xué)過程分析

  對(duì)生活中的實(shí)際問題通過對(duì)解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會(huì)算法的思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學(xué)過程分析

  對(duì)生活中的實(shí)際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)流程圖表達(dá)解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。

  3. 基本算法語句教學(xué)過程分析

  經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。能用自然語言、流程圖和基本算法語句表達(dá)算法,

  4. 通過閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評(píng)價(jià)設(shè)想

  1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評(píng)價(jià)

  關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對(duì)用集合語言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會(huì)集合語言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力。

  2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

高中數(shù)學(xué)教學(xué)設(shè)計(jì)8

  一、課題:

  人教版全日制普通高級(jí)中學(xué)教科書數(shù)學(xué)第一冊(cè)(上)《2.7對(duì)數(shù)》

  二、指導(dǎo)思想與理論依據(jù):

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實(shí)際背景和應(yīng)用價(jià)值,開展“數(shù)學(xué)建!钡膶W(xué)習(xí)活動(dòng),把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個(gè)數(shù)學(xué)概念的引入,總有它的現(xiàn)實(shí)或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強(qiáng)調(diào)它的現(xiàn)實(shí)背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識(shí)的發(fā)展水到渠成而不是強(qiáng)加于人,從而有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)內(nèi)容的實(shí)際背景和應(yīng)用的價(jià)值。在教學(xué)設(shè)計(jì)時(shí),既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價(jià)值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,發(fā)展能力。在課程實(shí)施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會(huì)進(jìn)步、人類文化建設(shè)中的作用,同時(shí)反映社會(huì)發(fā)展對(duì)數(shù)學(xué)發(fā)展的促進(jìn)作用。

  三、教材分析:

  本節(jié)內(nèi)容主要學(xué)習(xí)對(duì)數(shù)的概念及其對(duì)數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識(shí)。而對(duì)數(shù)的概念是對(duì)數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的.始終。通過對(duì)數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問題,以及對(duì)數(shù)函數(shù)的相關(guān)問題。

  四、學(xué)情分析:

  在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認(rèn)知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)的概念是水到渠成的事。

  五、教學(xué)目標(biāo):

  (一)教學(xué)知識(shí)點(diǎn):

  1.對(duì)數(shù)的概念。

  2.對(duì)數(shù)式與指數(shù)式的互化。

  (二)能力目標(biāo):

  1.理解對(duì)數(shù)的概念。

  2.能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化。

  (三)德育滲透目標(biāo):

  1.認(rèn)識(shí)事物之間的相互聯(lián)系與相互轉(zhuǎn)化,

  2.用聯(lián)系的觀點(diǎn)看問題。

  六、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn)是對(duì)數(shù)定義,難點(diǎn)是對(duì)數(shù)概念的理解。

  七、教學(xué)方法:

  講練結(jié)合法八、教學(xué)流程:

  問題情景(復(fù)習(xí)引入)——實(shí)例分析、形成概念(導(dǎo)入新課)——深刻認(rèn)識(shí)概念(對(duì)數(shù)式與指數(shù)式的互化)——變式分析、深化認(rèn)識(shí)(對(duì)數(shù)的性質(zhì)、對(duì)數(shù)恒等式,介紹自然對(duì)數(shù)及常用對(duì)數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))

  八、教學(xué)反思:

  對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。

  對(duì)于本教學(xué)設(shè)計(jì),時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)9

  一、教學(xué)內(nèi)容分析:

  本節(jié)教材選自人教a版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點(diǎn)、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點(diǎn),結(jié)合有關(guān)的實(shí)物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對(duì)培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對(duì)線線平行、面面平行的判定的學(xué)習(xí)作用重大。

  二、學(xué)生學(xué)習(xí)情況分析:

  任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對(duì)不足,學(xué)習(xí)方面有一定困難。

  三、設(shè)計(jì)思想

  本節(jié)課的設(shè)計(jì)遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會(huì)數(shù)學(xué)的思想方法,養(yǎng)成積極主動(dòng)、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。

  四、教學(xué)目標(biāo)

  通過直觀感知——觀察——操作確認(rèn)的認(rèn)識(shí)方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號(hào)語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗(yàn)學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。

  六、教學(xué)過程設(shè)計(jì)

  (一)知識(shí)準(zhǔn)備、新課引入

  提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??

  提問2:根據(jù)直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶ǎ⒅赋鍪欠裼袆e的判定途徑。

  [設(shè)計(jì)意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]

  (二)判定定理的探求過程

  1、直觀感知

  提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?

  生1:例舉日光燈與天花板,樹立的電線桿與墻面。

  生2:門轉(zhuǎn)動(dòng)到離開門框的任何位置時(shí),門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動(dòng)畫演示。

  [學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]

  2、動(dòng)手實(shí)踐

  教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺(tái)桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺(tái),則大家會(huì)感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺(tái)桌上作上述情形的演示)。

  [設(shè)計(jì)意圖:設(shè)置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內(nèi)心中,學(xué)自己身邊的`數(shù)學(xué),領(lǐng)悟空間觀念與空間圖形性質(zhì)。]

  3、探究思考

  (1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號(hào)表示為平面內(nèi)一條直線③這兩條直線平行

  (2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?

  4、歸納確認(rèn):(多媒體幻燈片演示)

  直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個(gè)平面平行。

  簡(jiǎn)單概括:(內(nèi)外)線線平行?線面平行a符號(hào)表示:ba||? a||b??

  溫馨提示:

  作用:判定或證明線面平行。

  關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。

  思想:空間問題轉(zhuǎn)化為平面問題

  (三)定理運(yùn)用,問題探究(多媒體幻燈片演示)

  1、想一想:

  (1)判斷下列命題的真假?說明理由:

 、偃绻粭l直線不在平面內(nèi),則這條直線就與平面平行()

  ②過直線外一點(diǎn)可以作無數(shù)個(gè)平面與這條直線平行( )

 、垡恢本上有二個(gè)點(diǎn)到平面的距離相等,則這條直線與平面平行( )

  (2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預(yù)設(shè):設(shè)計(jì)這組問題目的是強(qiáng)調(diào)定理中三個(gè)條件的重要性,同時(shí)預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時(shí)教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個(gè)別學(xué)生進(jìn)行演示。]

  2、作一作:

  設(shè)a、b是二異面直線,則過a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請(qǐng)畫出平面,不存在說明理由?

  先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動(dòng)畫過程。

  [設(shè)計(jì)意圖:這是一道動(dòng)手操作的問題,不僅是為了拓展加深對(duì)定理的認(rèn)識(shí),更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。]

  3、證一證:

  例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。

  變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

  [設(shè)計(jì)意圖:設(shè)計(jì)二個(gè)變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時(shí)鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識(shí)圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平

  面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。

  思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。

  思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。

  [知識(shí)鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]

  4、練一練:

  練習(xí)1:見課本6頁練習(xí)1、2

  練習(xí)2:將兩個(gè)全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。

  變式:若將練習(xí)2中m、n改為ac、bf分點(diǎn)且am = fn,試問結(jié)論仍成立嗎?試證之。

  [設(shè)計(jì)意圖:設(shè)計(jì)這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識(shí)圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]

  (四)總結(jié)

  先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):

  1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個(gè)平面平行。

  2、定理的符號(hào)表示:ba||? a||b??簡(jiǎn)述:(內(nèi)外)線線平行則線面平行

  3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。

  七、教學(xué)反思

  本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對(duì)發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。

  本節(jié)課的設(shè)計(jì)遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識(shí)過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認(rèn)識(shí)直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識(shí)和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),發(fā)展合情推理、發(fā)展空間觀念與推理能力。

  本節(jié)課的設(shè)計(jì)注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號(hào)語言、文字語言及圖形語言,加強(qiáng)各種語言的互譯。比如上課開始時(shí)的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動(dòng)手實(shí)踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對(duì)例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。

  本節(jié)課對(duì)定理的探求與認(rèn)識(shí)過程的設(shè)計(jì)始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗(yàn)數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會(huì)舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動(dòng)的門等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)10

  前言

  為了更好地貫徹落實(shí)和科課程標(biāo)準(zhǔn)有關(guān)要求,促進(jìn)廣大教師學(xué)習(xí)現(xiàn)代教學(xué)理論,進(jìn)一步激發(fā)廣大教師課堂教學(xué)的創(chuàng)新意識(shí),切實(shí)轉(zhuǎn)變教學(xué)觀念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實(shí)踐中存在的問題,促進(jìn)課堂教學(xué)質(zhì)量的全面提高,在20xx年由福建省普通教育教學(xué)研究室組織,舉辦了一次教學(xué)設(shè)計(jì)大賽活動(dòng)。這次活動(dòng)數(shù)學(xué)學(xué)科高中組共收到有49篇教學(xué)設(shè)計(jì)文章。獲獎(jiǎng)文章推薦評(píng)審專家組本著公平、公正的原則,經(jīng)過認(rèn)真的評(píng)審,全部作品均評(píng)出了相應(yīng)的獎(jiǎng)項(xiàng);專家組還為獲得一、二等獎(jiǎng)的作品撰寫了點(diǎn)評(píng)。本稿收錄的作品全部是參加此次福建省教學(xué)設(shè)計(jì)競(jìng)賽獲獎(jiǎng)作者的文章。按照征文的規(guī)則,我們對(duì)入選作品的格式作了一些修飾,并經(jīng)過適當(dāng)?shù)恼,以饗讀者。

  在此還需要說明的是,為了方便閱讀,獲獎(jiǎng)文章的排序原則,并非按照獲獎(jiǎng)名次的前后順序,而是按照高中數(shù)學(xué)新課程必修1—5的內(nèi)容順序,進(jìn)行編排的。部分體現(xiàn)大綱教材內(nèi)容的文章則排在后面。

  不管你獲得的是哪個(gè)級(jí)別的獎(jiǎng)項(xiàng),你們都可以有成就感,因?yàn)槟鞘悄銈冇眯、用汗(jié)补喑龅墓麑?shí),它記錄了你們奉獻(xiàn)于數(shù)學(xué)教育事業(yè)的心路歷程.書中每一篇的教學(xué)設(shè)計(jì)都耐人尋味,都能帶給我們?cè)S多遐想和啟迪.你們是優(yōu)秀的,在你們未來悠遠(yuǎn)的職業(yè)里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!

  1、集合與函數(shù)概念實(shí)習(xí)作業(yè)

  一、教學(xué)內(nèi)容分析

  《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的`過程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。

  二、學(xué)生學(xué)習(xí)情況分析

  該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績(jī)的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。

  三、設(shè)計(jì)思想

  《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。

  四、教學(xué)目標(biāo)

  1.了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過程中起重大作用的歷史事件和人物;

  2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;

  3.在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。

  五、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;

  難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。

  六、教學(xué)過程設(shè)計(jì)

  【課堂準(zhǔn)備】

  1.分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長(zhǎng)。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。

  2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)11

  一、探究式教學(xué)模式概述

  1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來展開學(xué)習(xí)活動(dòng),通過自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神?梢,探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過程和探究知識(shí)的過程統(tǒng)一起來,充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。

  2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過類似科學(xué)家科學(xué)探究的過程來理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說,它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來展開的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過探究自己發(fā)現(xiàn)規(guī)律。

  3、探究式教學(xué)模式的特征。

 。1)問題性。問題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問題,使學(xué)生產(chǎn)生問題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯栴}會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過程和科學(xué)家的探索過程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問題、分析問題、解決問題的過程。”所以培養(yǎng)學(xué)生的問題意識(shí)是探究式教學(xué)的重要使命。

 。2)過程性。過程性是探究式教學(xué)模式的重點(diǎn)。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動(dòng)過程,也就很難達(dá)到清楚、全面理解的境界!碧骄渴浇虒W(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。

 。3)開放性。開放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長(zhǎng)處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開放性的問題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學(xué)生的學(xué)帶來了機(jī)遇與挑戰(zhàn)。

  二、教學(xué)設(shè)計(jì)案例

  1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。

  2、教學(xué)目標(biāo)。

 。1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。

  (2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。

 。3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過程。

  3、教學(xué)方法:談話探究法,討論探究法。

  4、教學(xué)過程。

  (1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問題占有重要位置。我們?cè)?jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?

  (2)提出問題。

  問題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

  A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)

  問題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

  (3)探究思考。點(diǎn)評(píng):乍一看問題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問題的途徑。

  教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?

  學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。

  教師:此結(jié)論的正確性如何?

  學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?

  教師:好。

  學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。

  設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

  則n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可證定理的后半部分。

  教師:看來上述結(jié)論正確。所以得到如下定理。

  定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。

  教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請(qǐng)同學(xué)們先解答問題1。

  學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教師:?jiǎn)l(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問學(xué)生。

  學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的.四個(gè)數(shù)字之和都不是9的倍數(shù)。

  教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。

  學(xué)生:3+4+5+6=18是9的倍數(shù)。

  教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。

  故應(yīng)選D。

 。4)學(xué)以致用。

  問題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

  教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問題2有何想法?

  學(xué)生討論:

  學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

  學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類:一類是5個(gè)數(shù)字中無0,另一類是5個(gè)數(shù)字中有0(但不含3)。

  學(xué)生3:第一類:5個(gè)數(shù)字中無0的五位偶數(shù)有。

  第二類:5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。

  學(xué)生4:由分類計(jì)數(shù)原理得:能被6整除的無重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。

 。5)概括強(qiáng)化。

  重點(diǎn):了解數(shù)字排列問題的特點(diǎn),理解掌握數(shù)字排列中3、9問題的規(guī)律。

  難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。

  關(guān)鍵:證明的思路以及定理的得出。

  新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。

 。6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類問題的目的。

  總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來的,新課程改革強(qiáng)調(diào)改變課程過于注重知識(shí)的傳授和過于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)12

  一.教材分析。

  ( 1)教材的地位與作用:《等比數(shù)列的前n項(xiàng)和》選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書·數(shù)學(xué)

  ( 5),是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思

  想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

  (2)從知識(shí)的體系來看:“等比數(shù)列的前n項(xiàng)和”是“等差數(shù)列及其前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對(duì)函數(shù)思想的理解,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊

  二.學(xué)情分析。

  ( 1)學(xué)生的已有的知識(shí)結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式和求和公式與方法,等比數(shù)列的概念與通項(xiàng)公式。

  ( 2)教學(xué)對(duì)象:高二理科班的學(xué)生,學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強(qiáng),邏輯思維能力也初步形成,具有一定的分析問題和解決問題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴(yán)謹(jǐn)。

  (3)從學(xué)生的認(rèn)知角度來看:學(xué)生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。

  三.教學(xué)目標(biāo)。

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和本班學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:(1)知識(shí)技能目標(biāo)————理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問題。

  (2)過程與方法目標(biāo)————通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  (3)情感,態(tài)度與價(jià)值觀————培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗(yàn),感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對(duì)稱美、形式的簡(jiǎn)潔美。

  四.重點(diǎn),難點(diǎn)分析。

  教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。

  教學(xué)難點(diǎn):公式的推導(dǎo)方法及公式應(yīng)用中q與1的關(guān)系。

  五.教法與學(xué)法分析.

  培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的!边@個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不是通過教師傳授得到的,而是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的`幫助下)協(xié)作,主動(dòng)建構(gòu)而

  獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學(xué)方法,讓老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。一句話:還課堂以生命力,還學(xué)生以活力。

  六.課堂設(shè)計(jì)

  (一)創(chuàng)設(shè)情境,提出問題。(時(shí)間設(shè)定:3分鐘)

  [利用投影展示]在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說:我可以滿足你的任何要求。西薩說:請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國(guó)王大吃一驚。為什么呢?

  [設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)]

  提出問題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)13

  我先來介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強(qiáng)校長(zhǎng),這邊這位是蘇州中學(xué)的劉華老師,那邊那位是大家熟悉的首都師范大學(xué)數(shù)學(xué)系博士生導(dǎo)師王尚志教授。歡迎大家來到我們研討的現(xiàn)場(chǎng)!

  老師們都知道,素質(zhì)教育要落實(shí)在課堂上,課堂是我們實(shí)行數(shù)學(xué)新課程的主戰(zhàn)場(chǎng),做好教學(xué)設(shè)計(jì)是我們整個(gè)高中數(shù)學(xué)新課程推進(jìn)的一個(gè)關(guān)鍵點(diǎn)。那么,怎樣才能做好數(shù)學(xué)的教學(xué)設(shè)計(jì)呢?我們問過一些老師,大家感覺有些疑惑,比如說有的老師們認(rèn)為:教學(xué)設(shè)計(jì)是不是就是備備課,寫好一個(gè)教案、做一個(gè)課件,是不是這樣?我們想聽聽來自江蘇的老師怎么看這個(gè)問題?

  羅強(qiáng):我來談?wù)勛约簩?duì)教學(xué)設(shè)計(jì)理論的學(xué)習(xí)和實(shí)踐過程中的一些體會(huì)。以前我們?cè)诮虒W(xué)實(shí)踐中往往把教學(xué)設(shè)計(jì)變成一種簡(jiǎn)單的教案設(shè)計(jì),但實(shí)際上這只是一種經(jīng)驗(yàn)型的教學(xué)設(shè)計(jì),沒有上升為科學(xué)型的教學(xué)設(shè)計(jì)。其實(shí),國(guó)際上對(duì)教學(xué)設(shè)計(jì)的研究已經(jīng)進(jìn)行多年,提出了許多思想、理論、案例,教學(xué)設(shè)計(jì)已經(jīng)成為一個(gè)獨(dú)立的研究領(lǐng)域。

  教學(xué)設(shè)計(jì)理論的發(fā)展基本上經(jīng)歷了兩個(gè)階段:第一個(gè)階段是突出以“教的傳遞策略”為中心來進(jìn)行教學(xué)設(shè)計(jì)的傳統(tǒng)教學(xué)設(shè)計(jì)理論,它更接近工程學(xué),遵循設(shè)計(jì)的規(guī)則和程序,強(qiáng)調(diào)目標(biāo)遞進(jìn)和按部就班的系統(tǒng)操作過程,其特點(diǎn)是注重目標(biāo)細(xì)化,注重分層要求,注重教學(xué)內(nèi)容各要素的協(xié)調(diào)。就好像我們要造一幢房子,先要把這幢房子的圖紙?jiān)O(shè)計(jì)出來,然后再設(shè)計(jì)一個(gè)施工的藍(lán)圖,教學(xué)就是按照這樣的設(shè)計(jì)來進(jìn)行實(shí)施的一個(gè)過程。

  第二個(gè)階段是突出以“學(xué)的組織方式”為中心來進(jìn)行教學(xué)設(shè)計(jì)的現(xiàn)代教學(xué)設(shè)計(jì)理論,它的基礎(chǔ)是信息加工理論與建構(gòu)主義的學(xué)習(xí)理論,現(xiàn)代教學(xué)設(shè)計(jì)理論強(qiáng)調(diào)依據(jù)學(xué)習(xí)任務(wù)類型(如認(rèn)知、情感與心理動(dòng)作等)來選擇教學(xué)策略,強(qiáng)調(diào)以問題為中心,營(yíng)造一個(gè)能激活學(xué)生原有知識(shí)經(jīng)驗(yàn),有利于新知識(shí)建構(gòu)的學(xué)習(xí)環(huán)境。其特點(diǎn)是問題與環(huán)境,強(qiáng)調(diào)創(chuàng)設(shè)情境,提出問題,營(yíng)造問題解決的環(huán)境,突出學(xué)生的自主學(xué)習(xí)和自主探究。

  按照新的教學(xué)設(shè)計(jì)的理論,我們應(yīng)該以學(xué)為中心來進(jìn)行教學(xué)設(shè)計(jì),簡(jiǎn)單的說就是——為學(xué)習(xí)而設(shè)計(jì)教學(xué)!打個(gè)比喻,就是說我們教師好比是導(dǎo)游,帶著學(xué)生去一個(gè)新的景點(diǎn)旅游,那么在這個(gè)過程中間,教學(xué)設(shè)計(jì)就是設(shè)計(jì)這么一個(gè)導(dǎo)游圖,讓學(xué)生在參觀各個(gè)景點(diǎn)的過程中,經(jīng)歷學(xué)習(xí)這些知識(shí)的一種過程。

  按照為學(xué)習(xí)而設(shè)計(jì)教學(xué)的理念,我覺得在教學(xué)設(shè)計(jì)時(shí)要考慮三條線索,這樣實(shí)際上也就構(gòu)成了教學(xué)設(shè)計(jì)的一種三維結(jié)構(gòu)。第一條線索就是一種數(shù)學(xué)知識(shí)線索。因?yàn)榻處熯M(jìn)行的是學(xué)科教學(xué);第二個(gè)線索是學(xué)生的認(rèn)知線索。因?yàn)閷W(xué)習(xí)的主體是學(xué)生;第三個(gè)線索就是教師的教學(xué)組織線索,因?yàn)榻虒W(xué)過程是通過教師的組織來實(shí)現(xiàn)的。比如第一條線索——數(shù)學(xué)知識(shí),我覺得數(shù)學(xué)知識(shí)實(shí)際有三個(gè)形態(tài):一是自然形態(tài),它既存在于客觀世界中間,實(shí)際上也存在于學(xué)生的頭腦中間;二是學(xué)術(shù)形態(tài),它是作為數(shù)學(xué)學(xué)科的一種知識(shí)體系而存在。那么,我們的教學(xué)就是要在數(shù)學(xué)的自然形態(tài)和學(xué)術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數(shù)學(xué)的教育形態(tài)。因此,我覺得教學(xué)設(shè)計(jì)的本質(zhì)就是設(shè)計(jì)好數(shù)學(xué)的教育形態(tài),教學(xué)設(shè)計(jì)的過程實(shí)際上就是構(gòu)建數(shù)學(xué)教育形態(tài)的一個(gè)過程。

  通過對(duì)教學(xué)設(shè)計(jì)理論的學(xué)習(xí),并在實(shí)踐中反思和總結(jié),我的體會(huì)很深。有一位美國(guó)學(xué)者蘭達(dá)曾經(jīng)說過:教學(xué)設(shè)計(jì)是使天才能夠做到的事一般人也能去做。我想對(duì)教學(xué)設(shè)計(jì)理論的學(xué)習(xí)是一個(gè)大家都要努力的目標(biāo)。

  張思明:剛才羅強(qiáng)老師從理論上分析了什么是教學(xué)設(shè)計(jì)?教學(xué)設(shè)計(jì)應(yīng)該關(guān)注哪些問題?下面我們請(qǐng)劉華老師幫我們分析一下:在你們實(shí)驗(yàn)區(qū)和老師接觸的實(shí)踐中,你感覺到老師們?cè)诮虒W(xué)設(shè)計(jì)中存在著哪些主要問題?

  劉華:我想解剖一個(gè)由職初教師,就是剛剛工作的青年教師所提供的一個(gè)教學(xué)案例。

  我先簡(jiǎn)單介紹一下他的教學(xué)設(shè)計(jì)。這是高一函數(shù)單調(diào)性的一節(jié)起始課,在教學(xué)設(shè)計(jì)中,這個(gè)職初教師首先明確了這節(jié)課的三維目標(biāo),然后他提出了兩個(gè)生活中的情境,一個(gè)情境是生活中的`氣溫圖;第二個(gè)情境是股票的價(jià)格走勢(shì)圖,然后引入新課。接著把函數(shù)單調(diào)性的概念介紹給學(xué)生,緊接著進(jìn)入了例題講解階段,最后是有兩個(gè)思考題。

  我覺得這個(gè)教學(xué)設(shè)計(jì)大致存在這樣四點(diǎn)比較普遍的問題:

  第一個(gè)問題就是這位教師在確定課程目標(biāo)的時(shí)候,比較機(jī)械地套用了新課程的理念,按照“知識(shí)技能,方法與過程,情感、態(tài)度、價(jià)值觀”這樣的三維目標(biāo)來敘述他的本節(jié)課目標(biāo)。在這些目標(biāo)中,知識(shí)與技能的目標(biāo)還是比較實(shí)在的,但“過程與方法”的目標(biāo)以及“情感、態(tài)度、價(jià)值觀”的目標(biāo)就比較空洞,流于形式。其實(shí),這位老師對(duì)教學(xué)目標(biāo)并沒有做深入的分析,這樣的教學(xué)目標(biāo)只是一個(gè)標(biāo)簽而已,這是第一個(gè)問題。

  第二個(gè)問題是問題情境的設(shè)計(jì)。好的情境應(yīng)當(dāng)是兼顧生活化與數(shù)學(xué)化,股票的價(jià)格走勢(shì)圖這個(gè)情境離學(xué)生的生活太遠(yuǎn),其中還包含了許多股票方面的專門知識(shí),對(duì)函數(shù)單調(diào)性這個(gè)數(shù)學(xué)概念的反映也不夠準(zhǔn)確,作為本課的情境,不太恰當(dāng)。

  第三個(gè)問題就是在情境到數(shù)學(xué)概念的產(chǎn)生過程中,應(yīng)當(dāng)讓學(xué)生充分體驗(yàn)或參與數(shù)學(xué)化的探索過程,從而建構(gòu)起函數(shù)單調(diào)性這一概念。我們看到在這位教師的設(shè)計(jì)當(dāng)中,他忽略了學(xué)生活動(dòng),尤其是學(xué)生思維活動(dòng)這樣一個(gè)環(huán)節(jié),而是直接把概念拋給了學(xué)生。我們認(rèn)為學(xué)生在數(shù)學(xué)學(xué)習(xí)中,“過程”相對(duì)來說比僅僅接受概念這個(gè)“結(jié)果”更為重要。

  最后一個(gè)問題就是我們發(fā)現(xiàn)有很多老師認(rèn)為數(shù)學(xué)教學(xué)設(shè)計(jì)主要就是習(xí)題的設(shè)計(jì),這位教師本節(jié)課的例題、習(xí)題量非常多,而且對(duì)這些習(xí)題的要求他存在著一步到位的傾向,尤其是他最后拋出來的含字母的函數(shù)單調(diào)性的探索這個(gè)問題,我們覺得在新授課當(dāng)中這個(gè)習(xí)題的要求太高了。我覺得老師們?cè)诮虒W(xué)設(shè)計(jì)中主要存在這樣幾點(diǎn)問題。

  張思明:劉華老師談了一個(gè)單調(diào)性的案例,對(duì)一個(gè)新教師的案例做了一個(gè)分析,分析出了我們老師在教學(xué)設(shè)計(jì)中常常出現(xiàn)的一些問題。那么面對(duì)這樣一些問題,我們應(yīng)該怎么辦?我們就以這個(gè)案例為出發(fā)點(diǎn),請(qǐng)羅強(qiáng)老師對(duì)函數(shù)單調(diào)性這個(gè)課題做了一個(gè)分析和再創(chuàng)造的工作,在這個(gè)工作中我們可以看到如何通過教師自己的再學(xué)習(xí)、再認(rèn)識(shí),設(shè)計(jì)出一個(gè)更好、更適用于學(xué)生的教學(xué)設(shè)計(jì)。我們來看一下羅強(qiáng)老師的說課錄像。

  羅強(qiáng)老師的說課:各位老師大家好,我向大家匯報(bào)一下我對(duì)函數(shù)單調(diào)性的教學(xué)設(shè)計(jì)。

  首先談一下我對(duì)教學(xué)設(shè)計(jì)的認(rèn)識(shí)。我覺得教學(xué)設(shè)計(jì)的根本目的是創(chuàng)設(shè)一個(gè)有效的教學(xué)系統(tǒng),這樣的教學(xué)系統(tǒng)不是隨意出現(xiàn)的而是教師精心創(chuàng)設(shè)的,沒有有效的教學(xué)設(shè)計(jì)就不可能保證教學(xué)的效果和質(zhì)量。教學(xué)設(shè)計(jì)最根本的著力點(diǎn)是“為學(xué)習(xí)設(shè)計(jì)教學(xué)”,而不是“為教學(xué)設(shè)計(jì)學(xué)習(xí)”。

  教學(xué)設(shè)計(jì)的首要任務(wù)就是明確教學(xué)目標(biāo),實(shí)際上教學(xué)目標(biāo)是教學(xué)設(shè)計(jì)的靈魂和統(tǒng)帥,將指引后續(xù)教學(xué)設(shè)計(jì)的方向,決定后續(xù)教學(xué)設(shè)計(jì)的具體工作。在制定教學(xué)目標(biāo)的時(shí)候,我覺得要把握以下幾點(diǎn):

  第一,把握教學(xué)要求,不求一步到位。函數(shù)單調(diào)性是高中階段刻劃函數(shù)變化的一個(gè)最基本的性質(zhì)。在高中數(shù)學(xué)課程中,對(duì)于函數(shù)單調(diào)性的研究分成兩個(gè)階段:第一個(gè)階段是用運(yùn)算的性質(zhì)研究單調(diào)性,知道它的變化趨勢(shì);第二階段用導(dǎo)數(shù)的性質(zhì)研究單調(diào)性,知道它的變化快慢。那么高一我們是處在第一個(gè)階段。第二,明確知識(shí)目標(biāo),落實(shí)隱性目標(biāo)。知識(shí)目標(biāo)往往就是教學(xué)的顯性目標(biāo),確定知識(shí)目標(biāo)的關(guān)鍵在于分清主次輕重,把握好教學(xué)要求。根據(jù)課程標(biāo)準(zhǔn)的要求,本節(jié)課的知識(shí)目標(biāo)定位在以下三個(gè)方面:一是理解函數(shù)單調(diào)性的概念;二是掌握判斷函數(shù)單調(diào)性的方法;三是會(huì)用定義證明一些簡(jiǎn)單函數(shù)在某個(gè)區(qū)間上的單調(diào)性。另外這節(jié)課的隱性目標(biāo)我覺得也很重要,因?yàn)楹瘮?shù)單調(diào)性的定義是對(duì)函數(shù)圖象特征的一種數(shù)學(xué)描述,它經(jīng)歷了由圖象直觀特征到自然語言描述再到數(shù)學(xué)符號(hào)的描述的進(jìn)化過程,反映了數(shù)學(xué)的理性思維和理性精神。對(duì)高一學(xué)生來講它是一個(gè)很有價(jià)值的數(shù)學(xué)教育載體和契機(jī)。因此這節(jié)課的隱性目標(biāo)應(yīng)該包括讓學(xué)生體驗(yàn)數(shù)學(xué)知識(shí)的發(fā)生發(fā)展過程,學(xué)會(huì)數(shù)學(xué)概念符號(hào)化的建構(gòu)過程。根據(jù)剛才的分析,我把教學(xué)流程分成了三個(gè)階段:第一個(gè)階段是進(jìn)行函數(shù)單調(diào)性概念的數(shù)學(xué)化過程;第二個(gè)階段是從不同的角度幫助學(xué)生深入理解函數(shù)單調(diào)性的概念;第三個(gè)階段是讓學(xué)生學(xué)會(huì)判斷,并用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性。

  第一階段的教學(xué)流程分成三個(gè)教學(xué)環(huán)節(jié)。第一,問題情境;第二,溫故知新;第三,建構(gòu)概念。具體如下:

  先是創(chuàng)設(shè)問題情境。由老師和學(xué)生一起舉出生活中描繪上升或者下降的變化規(guī)律的成語。老師可以啟發(fā)一下,先說一個(gè)“蒸蒸日上”,然后和學(xué)生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語。然后請(qǐng)學(xué)生根據(jù)上述成語,給出一個(gè)函數(shù),并在平面直角坐標(biāo)系中繪制相應(yīng)的函數(shù)圖象。這樣設(shè)計(jì)的意圖是讓學(xué)生結(jié)合生活體驗(yàn)用樸素的生活語言描繪變化規(guī)律,體會(huì)如何將文字語言轉(zhuǎn)化為圖形語言。

  接下來是溫故知新。在剛才學(xué)生繪制出的三個(gè)函數(shù)圖象的基礎(chǔ)上,我請(qǐng)學(xué)生觀察它們變化的趨勢(shì)。在剛才學(xué)生繪制的三個(gè)函數(shù)圖象的基礎(chǔ)上,再請(qǐng)學(xué)生用初中的語言來敘述什么叫圖象呈逐漸上升的趨勢(shì),也就是“函數(shù)值隨著的增大而增大”。這樣設(shè)計(jì)的意圖是讓學(xué)生對(duì)照繪制的函數(shù)圖象,用自然語言描述函數(shù)的變化規(guī)律,重溫初中函數(shù)單調(diào)性的描述定義。

  張思明:剛才我們看到了時(shí)駿老師的說課,下面我們來聽一聽嘉賓對(duì)這個(gè)說課的分析。

  羅強(qiáng):我還是要強(qiáng)調(diào)教學(xué)設(shè)計(jì)一定要注意為學(xué)習(xí)而設(shè)計(jì)教學(xué)。還是拿我剛才的這個(gè)比喻,就是教師帶學(xué)生去旅游。既然是帶學(xué)生去旅游,首先就要考慮我要帶學(xué)生到什么地方去?然后需要考慮我怎么才能夠帶學(xué)生到達(dá)這個(gè)地方?然后我要確定學(xué)生是不是真的到達(dá)了這個(gè)地方?還要注意的是,作為教學(xué)的一種延伸,我覺得還應(yīng)該讓學(xué)生有興趣、有能力繼續(xù)他自己的旅程。我覺得這是我們教學(xué)設(shè)計(jì)要做的主要工作。

  張思明:通過以上幾個(gè)案例,我想老師們對(duì)于如何做教學(xué)設(shè)計(jì)有了一個(gè)初步的認(rèn)識(shí)。怎樣做好教學(xué)設(shè)計(jì)呢?我們也想聽一聽在教育指導(dǎo)部門的老師的一些想法,我們特別采訪了江蘇省教研室的董林偉主任,我們來聽一聽董主任關(guān)于教學(xué)設(shè)計(jì)的思考和認(rèn)識(shí)。

  董主任:關(guān)于設(shè)計(jì)這兩個(gè)詞大家應(yīng)該都非常的熟悉。當(dāng)人們要從事一項(xiàng)有目的的活動(dòng)的時(shí)候,事先都要有一些設(shè)想,要進(jìn)行一些規(guī)劃,要進(jìn)行一些設(shè)計(jì)。作為我們教學(xué)工作者來說,在開始我們的教學(xué)活動(dòng)之前,我們的老師都必須做一項(xiàng)非常重要的工作,那就是教學(xué)設(shè)計(jì)。今天我要談的就是關(guān)于教學(xué)設(shè)計(jì)的話題。我想就三個(gè)方面來談?wù)勎业囊恍┗鞠敕ā5谝,我想先談(wù)勈裁唇薪虒W(xué)設(shè)計(jì)?第二,談?wù)勎覀冊(cè)诮虒W(xué)設(shè)計(jì)過程中應(yīng)該來設(shè)計(jì)一些什么?第三,在設(shè)計(jì)的過程當(dāng)中我們要注意哪幾點(diǎn)?下面我想簡(jiǎn)要的把這三個(gè)方面跟大家做一個(gè)交流。

  一、關(guān)于什么叫教學(xué)設(shè)計(jì)?

  所謂的教學(xué)設(shè)計(jì)就是用系統(tǒng)的方法對(duì)各種課程資源進(jìn)行有機(jī)的整合,對(duì)教學(xué)過程中相互聯(lián)系的各個(gè)部分作出整體安排的一種構(gòu)想。它是一種構(gòu)想,是一種整體的安排,是我們教師為將來進(jìn)行的教學(xué)勾畫的一些圖景,它反映了我們的教師對(duì)自己未來教學(xué)的一種認(rèn)識(shí)和期望。如果通俗一點(diǎn)來說,那么所謂的教學(xué)設(shè)計(jì)可以這樣來理解,就是:你要把學(xué)生帶到哪里去?你怎樣把學(xué)生帶到那里去?你這樣做能把學(xué)生帶到那里去嗎?

  二、在教學(xué)設(shè)計(jì)過程當(dāng)中我們應(yīng)該關(guān)注些什么,就是說設(shè)計(jì)一些什么?

  首先,我們必須明確我們的教學(xué)目標(biāo),教學(xué)目標(biāo)是我們教學(xué)根本的指向與核心的任務(wù),是教學(xué)設(shè)計(jì)的關(guān)鍵。教學(xué)的目標(biāo)是教學(xué)中師生所預(yù)期達(dá)到的一種教學(xué)效果和標(biāo)準(zhǔn),因此,明確教學(xué)目標(biāo)就是要明確你要把學(xué)生帶到哪里去。在確定教學(xué)目標(biāo)的時(shí)候,我們要關(guān)注以下的幾點(diǎn):第一,整體性。就是要注意這部分內(nèi)容在整個(gè)高中階段數(shù)學(xué)教學(xué)中的聯(lián)系,以達(dá)到教學(xué)的一種連貫性,要正確處理好我們的近期的目標(biāo)跟遠(yuǎn)期目標(biāo)的相互關(guān)系。第二,在我們明確目標(biāo)的時(shí)候,要關(guān)注它的全面性。新課程對(duì)數(shù)學(xué)教學(xué)的目標(biāo)提出了新的一種要求,三維目標(biāo)在關(guān)注知識(shí)結(jié)果的同時(shí),更注重對(duì)過程目標(biāo)的關(guān)注和對(duì)學(xué)習(xí)者——學(xué)生的關(guān)注,更關(guān)注學(xué)生獲取數(shù)學(xué)知識(shí)的過程以及在學(xué)習(xí)中的經(jīng)歷、感受和體驗(yàn)。因此,教師在設(shè)計(jì)數(shù)學(xué)教學(xué)目標(biāo)時(shí),應(yīng)特別注意關(guān)注新課程所提出的過程性目標(biāo)。第三,我們要關(guān)注目標(biāo)的現(xiàn)實(shí)性。確定教學(xué)目標(biāo)時(shí),應(yīng)當(dāng)注意它與所授課任務(wù)的實(shí)質(zhì)性聯(lián)系,以避免目標(biāo)空洞、無法落實(shí)。我們?cè)谠O(shè)計(jì)教學(xué)目標(biāo)時(shí),常見的一種狀況是目標(biāo)過分的大,過分的空洞,那么在落實(shí)過程中,就難以達(dá)到預(yù)設(shè)的目標(biāo)。其次,我們?cè)诮虒W(xué)設(shè)計(jì)中要非常關(guān)注學(xué)生,要了解學(xué)生。我想,以下幾個(gè)方面,至少老師在教學(xué)設(shè)計(jì)過程中應(yīng)該心中有數(shù)。

  第一,在數(shù)學(xué)方面學(xué)生以前做過什么?他在數(shù)學(xué)活動(dòng)或者是在數(shù)學(xué)實(shí)驗(yàn)方面,曾經(jīng)做過什么?這里我們實(shí)際上要關(guān)注的是學(xué)生的活動(dòng)經(jīng)驗(yàn)。

  第二,不同的學(xué)生在思維方式上會(huì)有什么不同。實(shí)際上就是要在教學(xué)中關(guān)注我所授課的學(xué)生的特點(diǎn),關(guān)注我班學(xué)生的構(gòu)成,班級(jí)當(dāng)中不同群體的學(xué)生在思維方面有些什么樣的不同。

  第三,要初步確定課堂的組織形式,就是說我這一堂課是整個(gè)班級(jí)一起學(xué)習(xí),還是將學(xué)生分成若干個(gè)組來活動(dòng),甚至于是一種個(gè)體性的活動(dòng),包括開展一些個(gè)體性的實(shí)驗(yàn)活動(dòng),包括自主學(xué)習(xí)的一種活動(dòng)方式。組織形式上還要關(guān)注這堂課需要利用什么模型?是否需要做適當(dāng)?shù)恼n件?或者準(zhǔn)備一些相關(guān)的硬件設(shè)施。這也是我們?cè)诖_定課堂組織形式是所必須要關(guān)注的。

  第四,要勾勒教學(xué)的一種順序。這個(gè)順序當(dāng)中主要包括這樣幾點(diǎn):

  第一點(diǎn),應(yīng)當(dāng)怎樣提出主題,通俗一點(diǎn)講就是問題情境的創(chuàng)設(shè)。關(guān)于問題情境的創(chuàng)設(shè),我們?cè)谙嚓P(guān)的專題中也都提到它的重要性和一些要求。我們?cè)诠蠢战虒W(xué)順序的時(shí)候,首先要關(guān)注的是怎樣提出主題,這個(gè)主題應(yīng)該是跟學(xué)生接近的,又要能夠引起他的興趣,又要圍繞著我們的教學(xué)主題的,而且能夠使得學(xué)生迅速的進(jìn)入學(xué)習(xí)活動(dòng)中。

  第二點(diǎn),就是要關(guān)注是否需要復(fù)習(xí)以前的相關(guān)知識(shí)。一堂課的教學(xué)它往往不是獨(dú)立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學(xué)中是否需要復(fù)習(xí)相關(guān)的知識(shí)?

  第三點(diǎn),當(dāng)學(xué)生對(duì)材料產(chǎn)生爭(zhēng)論的時(shí)候,你準(zhǔn)備提出怎樣的探索性問題。當(dāng)我們提出問題以后學(xué)生可能會(huì)產(chǎn)生什么樣的一種思考,可能會(huì)產(chǎn)生一種什么樣的爭(zhēng)論?我們要了解這些爭(zhēng)論的思維的背景,需要進(jìn)行正確的引導(dǎo),那么你就必須要設(shè)計(jì)好一些問題串,來引導(dǎo)學(xué)生圍繞主題展開探索。

  第四點(diǎn),我們?cè)谠O(shè)計(jì)教學(xué)程序的過程中要關(guān)注一下我們使用的材料,我們的課本提出了什么樣的觀點(diǎn),使用什么樣課外的材料來幫助我們的教學(xué)。

  第五點(diǎn),要根據(jù)學(xué)生對(duì)主題的掌握程度,準(zhǔn)備幾個(gè)可以供選擇的,課堂當(dāng)中要自主完成的練習(xí),或者是課后要完成家庭作業(yè)。這些是勾勒我們整個(gè)教學(xué)流程的一些關(guān)鍵程序。

  三、教學(xué)設(shè)計(jì)中我們應(yīng)該注意的方面。

  教學(xué)設(shè)計(jì)永遠(yuǎn)只是教學(xué)過程的一種預(yù)期,實(shí)際的教學(xué)活動(dòng)則永遠(yuǎn)是一個(gè)謎。我們老師都有經(jīng)驗(yàn),同樣的一個(gè)課題,同一個(gè)老師的備課,他在不同班的授課過程中都會(huì)產(chǎn)生不同的教學(xué)流程、教學(xué)效果。因?yàn)槲覀兯鎸?duì)的學(xué)生是不同的,是在變化的,我們的教學(xué)生成是變化的,只有當(dāng)這堂課教學(xué)完成了,我們才能知道這堂課最后的結(jié)果。所以前面的教學(xué)設(shè)計(jì)只是一種預(yù)期,我們的教學(xué)設(shè)計(jì)就是要關(guān)注這樣的一種變化。

  因此,教學(xué)設(shè)計(jì)首先要注意它的整體性,就是說我們的教學(xué)設(shè)計(jì)不是一種片斷,是一種整體的設(shè)計(jì),它不是寫在我們紙上的一種文本,而是我們教師對(duì)自己和學(xué)生所持的一種整體性的目標(biāo)。其次,要注意它的可變性,沒有一件事情是絲毫不差地按照計(jì)劃進(jìn)行的。學(xué)生的思維可能還停留在你認(rèn)為根本不重要的問題上,他們還會(huì)以你幾乎不能想象的方式來理解某些概念。當(dāng)活動(dòng)過程受到影響時(shí),你必須放棄你原來的教學(xué)計(jì)劃,運(yùn)用你對(duì)學(xué)生已有的知識(shí)的了解和更宏觀的數(shù)學(xué)教學(xué)目標(biāo),去指導(dǎo)你的教學(xué)行動(dòng),也就是說要產(chǎn)生一些生成的問題。第三,要注意它創(chuàng)造性。我們的教師很大程度上會(huì)依賴于教材或教學(xué)參考書,以確保他們的數(shù)學(xué)教學(xué)內(nèi)容符合一個(gè)內(nèi)部連貫的發(fā)展框架。這種依賴有一定的好處,它能夠使得我們的教學(xué)設(shè)計(jì)能夠圍繞著我們課程的設(shè)計(jì)來進(jìn)行,但是同時(shí)也存在一些問題,就是說畢竟教材是我們課程的一種呈現(xiàn),跟教學(xué)的呈現(xiàn)還是有著本質(zhì)差別的。我們的教學(xué)設(shè)計(jì)應(yīng)該是一種流動(dòng)的過程,應(yīng)該適合我們的學(xué)生,就像設(shè)計(jì)師設(shè)計(jì)的服裝要符合你所設(shè)計(jì)的群體的特點(diǎn)和要求,如果考慮到個(gè)體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學(xué)設(shè)計(jì)也是這樣,我想每個(gè)人都應(yīng)該有個(gè)人設(shè)計(jì)的一種思考和魅力。

  剛才談到這幾點(diǎn)僅供我們老師做一種參考。

  張思明:各位老師,我們這一講把教學(xué)設(shè)計(jì)中存在的問題通過幾個(gè)案例給大家做了一個(gè)初步的展示。我想教學(xué)設(shè)計(jì)中的問題是一個(gè)教學(xué)實(shí)踐過程中產(chǎn)生的問題,我們每一個(gè)老師都有自己的設(shè)計(jì)理念,都有自己設(shè)計(jì)成功或者不如意甚至失敗的地方。我們希望研討是一個(gè)互動(dòng)的過程,我們真誠(chéng)的期待著老師們把您們?cè)诮虒W(xué)設(shè)計(jì)中遇到的問題和成功的經(jīng)驗(yàn)寄給我們,我們一起來研討。那么這一講就到這里,謝謝老師們的參與!

高中數(shù)學(xué)教學(xué)設(shè)計(jì)14

  一、教學(xué)目標(biāo)

  1、在初中學(xué)過原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。

  2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

  3、通過對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力

  4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。

  二、教學(xué)分析

  重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系

  1、本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。

  2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

 。场ⅰ叭魀則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。

  三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)

  1、以故事形式入題

  2、多媒體演示

  四、教學(xué)過程

 。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話:某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時(shí)還沒意識(shí)到又順口說了一句:“俺說的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒來的沒來,來的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺得這個(gè)人不會(huì)說話,但是你想過這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!

  設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣

 。ǘ⿵(fù)習(xí)提問:

  1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

  2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:

 。1)若同位角相等,則兩直線平行;

 。2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設(shè)計(jì)意圖:通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

 。ㄈ┬抡n講解:

  1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

  2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線不平行”,這個(gè)新命題就叫做原命題的否命題。

  3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。

 。ㄋ模┙M織討論:

  讓學(xué)生歸納什么是否命題,什么是逆否命題。

  例1及例2

 。ㄎ澹┱n堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真

  引導(dǎo)學(xué)生討論原命題的'真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。

 。┱n堂小結(jié):

  1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結(jié)論)

  否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結(jié)論)

  逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時(shí)否定)

  2、四種命題的關(guān)系

 。1).原命題為真,它的逆命題不一定為真.

 。2).原命題為真,它的否命題不一定為真.

 。3).原命題為真,它的逆否命題一定為真

 。ㄆ撸┗乜垡

  分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:

  第一句:“該來的沒來”

  其逆否命題是“不該來的來了”,甲認(rèn)為自己是不該來的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認(rèn)為自己該走,所以乙也走了。

  第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認(rèn)為說的是自己,所以丙也走了。

  同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛

  五、作業(yè)

  1.設(shè)原命題是“若

  斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判

  2.設(shè)原命題是“當(dāng)時(shí),若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數(shù)學(xué)教學(xué)設(shè)計(jì)15

  教學(xué)目標(biāo)

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題

  3.培養(yǎng)學(xué)生觀察、歸納能力.

  教學(xué)重點(diǎn)

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的.通項(xiàng)公式

  教學(xué)難點(diǎn)

  等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用

  教具準(zhǔn)備

  投影片1張

  教學(xué)過程

  (I)復(fù)習(xí)回顧

  師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數(shù)列有什么共同的特點(diǎn)?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:積極思考,找上述數(shù)列共同特點(diǎn)。

  對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6)

  對(duì)于數(shù)列②-2n(n≥1)(n≥2)

  對(duì)于數(shù)列③(n≥1)(n≥2)

  共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的通項(xiàng)公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:

  若將這n-1個(gè)等式相加,則可得:

  即:即:即:……

  由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。

  如數(shù)列①(1≤n≤6)

  數(shù)列②:(n≥1)

  數(shù)列③:(n≥1)

  由上述關(guān)系還可得:即:則:=如:三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)

  (2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

  解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

  (Ⅲ)課堂練習(xí)

  生:(口答)課本P118練習(xí)3

  (書面練習(xí))課本P117練習(xí)1

  師:組織學(xué)生自評(píng)練習(xí)(同桌討論)

  (Ⅳ)課時(shí)小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即(n≥2)

 、诘炔顢(shù)列通項(xiàng)公式 (n≥1)

  推導(dǎo)出公式:(V)課后作業(yè)

  一、課本P118習(xí)題3.2 1,2

  二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4

  2.預(yù)習(xí)提綱:

  ①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

【高中數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:

高中數(shù)學(xué)教學(xué)設(shè)計(jì)05-27

高中數(shù)學(xué)教學(xué)設(shè)計(jì)獲獎(jiǎng)05-03

高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(jì)12-27

高中數(shù)學(xué)對(duì)數(shù)教學(xué)設(shè)計(jì)06-01

最新高中數(shù)學(xué)教學(xué)設(shè)計(jì)04-28

高中數(shù)學(xué)課堂教學(xué)設(shè)計(jì)(精選15篇)08-02

高中數(shù)學(xué)教學(xué)總結(jié)02-05

高中數(shù)學(xué)教學(xué)反思04-05

高中數(shù)學(xué)教學(xué)總結(jié)08-06