亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

數(shù)學(xué) 百文網(wǎng)手機(jī)站

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2022-01-21 16:35:25 數(shù)學(xué) 我要投稿

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15篇

  在我們平凡的學(xué)生生涯里,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。為了幫助大家更高效的學(xué)習(xí),下面是小編精心整理的八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn),僅供參考,大家一起來(lái)看看吧。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15篇

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1

  第十一章三角形

  一、知識(shí)框架:

  知識(shí)概念:

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  3、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

  4、中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線。

  5、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

  6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  9、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

  10、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

  11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。

  12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,

  13、公式與性質(zhì):

 、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為180°

  ⑵三角形外角的性質(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

 、嵌噙呅蝺(nèi)角和公式:邊形的內(nèi)角和等于·180°

 、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。

 、啥噙呅螌(duì)角線的條數(shù):

 、?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形。

 、谶呅喂灿袟l對(duì)角線。

  第十二章全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1、基本定義:

 、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形。

  ⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。

  ⑶對(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)。

 、葘(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊。

 、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角。

  2、基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。

 、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

  3、全等三角形的判定定理:

 、胚呥呥叄ǎ喝厡(duì)應(yīng)相等的兩個(gè)三角形全等。

 、七吔沁叄ǎ簝蛇吅退鼈兊膴A角對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、墙沁吔牵ǎ簝山呛退鼈兊膴A邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、冉墙沁叄ǎ簝山呛推渲幸粋(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

  ⑸斜邊、直角邊():斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

  4、角平分線:

  ⑴畫法:

 、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。

  ⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。

  5、證明的基本方法:

 、琶鞔_命題中的已知和求證。(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)

 、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證。

 、墙(jīng)過(guò)分析,找出由已知推出求證的途徑,寫出證明過(guò)程。

  第十三章軸對(duì)稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1、基本概念:

 、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。

  ⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

 、蔷段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

 、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。

  ⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。

  2、基本性質(zhì):

  ⑴對(duì)稱的性質(zhì):

 、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

 、趯(duì)稱的圖形都全等。

  ⑵線段垂直平分線的性質(zhì):

 、倬段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。

 、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。

 、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)2

  實(shí)數(shù)的概念

  實(shí)數(shù),是有理數(shù)和無(wú)理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),是有理數(shù)和無(wú)理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),點(diǎn)相對(duì)應(yīng)的數(shù)。實(shí)數(shù)可以直觀地看作有限小數(shù)與無(wú)限小數(shù),實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。但僅僅以列舉的方式不能描述實(shí)數(shù)的整體。實(shí)數(shù)和虛數(shù)共同構(gòu)成復(fù)數(shù)。

  實(shí)數(shù)可以分為有理數(shù)和無(wú)理數(shù)兩類,或代數(shù)數(shù)和超越數(shù)兩類。實(shí)數(shù)集通常用黑正體字母R表示。R表示n維實(shí)數(shù)空間。實(shí)數(shù)是不可數(shù)的。實(shí)數(shù)是實(shí)數(shù)理論的核心研究對(duì)象。

  實(shí)數(shù)有什么范圍

  在實(shí)數(shù)范圍內(nèi),是指對(duì)于全體實(shí)數(shù)都成立,實(shí)數(shù)包括有理數(shù)和無(wú)理數(shù),也可以分為正實(shí)數(shù),0和負(fù)實(shí)數(shù),不只是大于等于0,還包括負(fù)實(shí)數(shù)。

  整數(shù)和小數(shù)的集合也是實(shí)數(shù),實(shí)數(shù)的定義是:有理數(shù)和無(wú)理數(shù)的集合。

  而整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù),小數(shù)分為有限小數(shù),無(wú)限循環(huán)小數(shù),無(wú)限不循環(huán)小數(shù)(即無(wú)理數(shù)),其中有限小數(shù)和無(wú)限循環(huán)小數(shù)均能化為分?jǐn)?shù)。

  所以小數(shù)即為分?jǐn)?shù)和無(wú)理數(shù)的集合,加上整數(shù),即為整數(shù)-分?jǐn)?shù)-無(wú)理數(shù),也就是有理數(shù)-無(wú)理數(shù),即實(shí)數(shù)。

  實(shí)數(shù)的性質(zhì)

  1.基本運(yùn)算:

  實(shí)數(shù)可實(shí)現(xiàn)的基本運(yùn)算有加、減、乘、除、平方等,對(duì)非負(fù)數(shù)還可以進(jìn)行開(kāi)方運(yùn)算。

  實(shí)數(shù)加、減、乘、除(除數(shù)不為零)、平方后結(jié)果還是實(shí)數(shù)。

  任何實(shí)數(shù)都可以開(kāi)奇次方,結(jié)果仍是實(shí)數(shù),只有非負(fù)實(shí)數(shù),才能開(kāi)偶次方其結(jié)果還是實(shí)數(shù)。

  有理數(shù)范圍內(nèi)的運(yùn)算律、運(yùn)算法則在實(shí)數(shù)范圍內(nèi)仍適用:

  交換律:a+b=b+a,ab=ba

  結(jié)合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.實(shí)數(shù)的相反數(shù):

  實(shí)數(shù)的相反數(shù)的意義和有理數(shù)的相反數(shù)的意義相同。

  實(shí)數(shù)只有符號(hào)不同的兩個(gè)數(shù),它們的和為零,我們就說(shuō)其中一個(gè)是另一個(gè)的相反數(shù)。

  實(shí)數(shù)a的相反數(shù)是-a,a和-a在數(shù)軸上到原點(diǎn)0的距離相等。

  3.實(shí)數(shù)的絕對(duì)值:

  實(shí)數(shù)的絕對(duì)值的意義和有理數(shù)的絕對(duì)值的意義相同。一個(gè)正實(shí)數(shù)的絕對(duì)值等于它本身;

  一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值等于它的相反數(shù),0的絕對(duì)值是0,實(shí)數(shù)a的絕對(duì)值是:|a|

  ①a為正數(shù)時(shí),|a|=a(不變)

 、赼為0時(shí),|a|=0

 、踑為負(fù)數(shù)時(shí),|a|=a(為a的相反數(shù))

  (任何數(shù)的絕對(duì)值都大于或等于0,因?yàn)榫嚯x沒(méi)有負(fù)的。)

  4實(shí)數(shù)的倒數(shù):

  實(shí)數(shù)的倒數(shù)與有理數(shù)的倒數(shù)一樣,如果a表示一個(gè)非零的實(shí)數(shù),那么實(shí)數(shù)a的倒數(shù)是:1/a(a≠0)

  初中數(shù)學(xué)分式的運(yùn)算知識(shí)點(diǎn)

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

  一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”。

  數(shù)學(xué)學(xué)習(xí)方法訣竅

  養(yǎng)成良好的解題習(xí)慣

  要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。

  在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

  正確對(duì)待考試

  首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)3

  一、變量與函數(shù)

  [變量和常量]

  在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量,我們稱之為變量,而數(shù)值始終保持不變的量,我們稱之為常量。

  [函數(shù)]

  一般地,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量 與 ,并且對(duì)于 的每一個(gè)確定的值, 都有唯一確定的值與其對(duì)應(yīng),那么我們就說(shuō) 是自變量, 是 的函數(shù)。如果當(dāng) 時(shí) ,那么 叫做當(dāng)自變量的值為 時(shí)的函數(shù)值。

  [自變量取值范圍的確定方法]

  1、 自變量的取值范圍必須使解析式有意義。

  當(dāng)解析式為整式時(shí),自變量的取值范圍是全體實(shí)數(shù);當(dāng)解析式為分?jǐn)?shù)形式時(shí),自變量的取值范圍是使分母不為0的所有實(shí)數(shù);當(dāng)解析式中含有二次根式時(shí),自變量的取值范圍是使被開(kāi)方數(shù)大于等于0的所有實(shí)數(shù)。

  2、自變量的取值范圍必須使實(shí)際問(wèn)題有意義。

  [函數(shù)的圖像]

  一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

  [描點(diǎn)法畫函數(shù)圖形的一般步驟]

  第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);

  第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));

  第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。

  [函數(shù)的表示方法]

  列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

  解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。

  圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。

  [正比例函數(shù)]

  一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù).

  [正比例函數(shù)圖象和性質(zhì)]

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)和(1,k)的直線.我們稱它為直線y=kx.當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)二、四象限,從左向右下降,即隨x增大y反而減小.

  (1) 解析式:y=kx(k是常數(shù),k≠0)

  (2) 必過(guò)點(diǎn):(0,0)、(1,k)

  (3) 走向:k>0時(shí),圖像經(jīng)過(guò)一、三象限;k<0時(shí),圖像經(jīng)過(guò)二、四象限

  (4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小

  (5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸

  [正比例函數(shù)解析式的確定]——待定系數(shù)法

  1. 設(shè)出含有待定系數(shù)的函數(shù)解析式y(tǒng)=kx(k≠0)

  2. 把已知條件(一個(gè)點(diǎn)的坐標(biāo))代入解析式,得到關(guān)于k的一元一次方程

  3. 解方程,求出系數(shù)k

  4. 將k的值代回解析式

  二、一次函數(shù)

  [一次函數(shù)]

  一般地,形如y=kx+b(k、b是常數(shù),k 0)函數(shù),叫做一次函數(shù). 當(dāng)b=0時(shí),y=kx+b即y=kx,所以正比例函數(shù)是一種特殊的一次函數(shù).

  [一次函數(shù)的圖象及性質(zhì)]

  一次函數(shù)y=kx+b的圖象是經(jīng)過(guò)(0,b)和(- ,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個(gè)單位長(zhǎng)度得到.(當(dāng)b>0時(shí),向上平移;當(dāng)b<0時(shí),向下平移)

  (1)解析式:y=kx+b(k、b是常數(shù),k 0)

  (2)必過(guò)點(diǎn):(0,b)和(- ,0)

  (3)走向: k>0,圖象經(jīng)過(guò)第一、三象限;k<0,圖象經(jīng)過(guò)第二、四象限

  b>0,圖象經(jīng)過(guò)第一、二象限;b<0,圖象經(jīng)過(guò)第三、四象限

  直線經(jīng)過(guò)第一、二、三象限

  直線經(jīng)過(guò)第一、三、四象限

  直線經(jīng)過(guò)第一、二、四象限

  直線經(jīng)過(guò)第二、三、四象限

  (4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.

  (5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.

  (6)圖像的平移: 當(dāng)b>0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;

  當(dāng)b<0時(shí),將直線y=kx的圖象向下平移b個(gè)單位.

  [直線y=k1x+b1與y=k2x+b2的位置關(guān)系]

  (1)兩直線平行:k1=k2且b1 b2

  (2)兩直線相交:k1 k2

  (3)兩直線重合:k1=k2且b1=b2

  [確定一次函數(shù)解析式的方法]

  (1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)解析式;

  (2)將x、y的幾對(duì)值或圖象上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)解析式中得到以待定系數(shù)為未知數(shù)的方程;

  (3)解方程得出未知系數(shù)的值;

  (4)將求出的待定系數(shù)代回所求的函數(shù)解析式中得出結(jié)果.

  [一次函數(shù)建模]

  函數(shù)建模的關(guān)鍵是將實(shí)際問(wèn)題數(shù)學(xué)化,從而解決最佳方案、最佳策略等問(wèn)題. 建立一次函數(shù)模型解決實(shí)際問(wèn)題,就是要從實(shí)際問(wèn)題中抽象出兩個(gè)變量,再尋求出兩個(gè)變量之間的關(guān)系,構(gòu)建函數(shù)模型,從而利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題.

  正比例函數(shù)的圖象和一次函數(shù)的圖象在賦予實(shí)際意義時(shí),其圖象大多為線段或射線. 這是因?yàn)樵趯?shí)際問(wèn)題中,自變量的取值范圍是有一定的限制條件的,即自變量必須使實(shí)際問(wèn)題有意義.

  從圖象中獲取的信息一般是:(1)從函數(shù)圖象的形狀判定函數(shù)的類型;

  (2)從橫、縱軸的實(shí)際意義理解圖象上點(diǎn)的坐標(biāo)的實(shí)際意義.

  解決含有多個(gè)變量的問(wèn)題時(shí),可以分析這些變量的關(guān)系,選取其中某個(gè)變量作為自變量,再根據(jù)問(wèn)題的條件尋求可以反映實(shí)際問(wèn)題的函數(shù).

  三、用函數(shù)觀點(diǎn)看方程(組)與不等式

  [一元一次方程與一次函數(shù)的關(guān)系]

  任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值. 從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.

  [一次函數(shù)與一元一次不等式的關(guān)系]

  任何一個(gè)一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量的取值范圍.

  [一次函數(shù)與二元一次方程組]

  (1)以二元一次方程ax+by=c的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y= 的圖象相同.

  (2)二元一次方程組 的解可以看作是兩個(gè)一次函數(shù)y= 和y= 的圖象交點(diǎn).

  三個(gè)重要的`數(shù)學(xué)思想

  1.方程的思想。數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中數(shù)學(xué)最重要的就是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是方程。

  2.數(shù)形結(jié)合的思想。任何一道題,只要與形沾邊,就應(yīng)該根據(jù)題意中的草圖分析一番。這樣做,不但直觀,而且全面,整體性強(qiáng)。

  3.對(duì)應(yīng)的思想。

  初中生數(shù)學(xué)成績(jī)的提高,需要靠自己勤加練習(xí)和腳踏實(shí)地的去接受數(shù)學(xué)。

  合數(shù)的概念

  合數(shù)指自然數(shù)中除了能被1和本身整除外,還能被其他數(shù)(0除外)整除的數(shù)。與之相對(duì)的是質(zhì)數(shù),而1既不屬于質(zhì)dao數(shù)也不屬于合數(shù)。最小的合數(shù)是4。其中,完全數(shù)與相親數(shù)是以它為基礎(chǔ)的。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)4

  1 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  3 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  4 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  5 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  7 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  8 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  9 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  10 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

  11 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  12 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  13 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  14 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  15 推論1 三個(gè)角都相等的三角形是等邊三角形

  16 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  17 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  18 直角三角形斜邊上的中線等于斜邊上的一半

  19 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  20 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  初二數(shù)學(xué)求定義域口訣

  求定義域有講究,四項(xiàng)原則須留意。

  負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

  指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次。

  限制條件不唯一,滿足多個(gè)不等式。

  求定義域要過(guò)關(guān),四項(xiàng)原則須注意。

  負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

  分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次。

  限制條件不唯一,不等式組求解集。

  初中提高數(shù)學(xué)成績(jī)?cè)E竅

  很多初中生認(rèn)為自己只要上數(shù)學(xué)課聽(tīng)得懂就夠了,但是一做到綜合題就蒙了,基礎(chǔ)題會(huì)做,但是會(huì)馬虎。這類問(wèn)題都是學(xué)生在課堂上都以為自己聽(tīng)得懂就夠了。

  初中同學(xué)要首先對(duì)數(shù)學(xué)做一個(gè)認(rèn)知,聽(tīng)得懂≠會(huì)做,會(huì)做≠拿的到分。聽(tīng)得懂只占你數(shù)學(xué)成績(jī)的20%,僅僅聽(tīng)得懂只說(shuō)明你理解能力還可以,不說(shuō)明你能拿到很高的數(shù)學(xué)成績(jī)。

  只有聽(tīng)的懂理解了加上練,再加上多練,達(dá)到最后又快又準(zhǔn)的做出來(lái),這時(shí)候的數(shù)學(xué)成績(jī)才會(huì)有長(zhǎng)足的進(jìn)步。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)5

  1、確定位置

  在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

  2、平面直角坐標(biāo)系及有關(guān)概念

 、倨矫嬷苯亲鴺(biāo)系

  在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

  ②坐標(biāo)軸和象限

  為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

 、埸c(diǎn)的坐標(biāo)的概念

  對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

 、懿煌恢玫狞c(diǎn)的坐標(biāo)的特征

  a、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一象限→ x>0,y>0

  點(diǎn)P(x,y)在第二象限 → x<0,y>0

  點(diǎn)P(x,y)在第三象限 → x<0,y<0

  點(diǎn)P(x,y)在第四象限 → x>0,y<0

  b、坐標(biāo)軸上的點(diǎn)的特征

  點(diǎn)P(x,y)在x軸上 → y=0,x為任意實(shí)數(shù)

  點(diǎn)P(x,y)在y軸上 → x=0,y為任意實(shí)數(shù)

  點(diǎn)P(x,y)既在x軸上,又在y軸上→ x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

  c、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等

  點(diǎn)P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數(shù)

  d、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

  位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

  位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

  e、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

  點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)

  點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)

  點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)

  f、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

  點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

  點(diǎn)P(x,y)到x軸的距離等于 ∣y∣

  點(diǎn)P(x,y)到y(tǒng)軸的距離等于 ∣x∣

  點(diǎn)P(x,y)到原點(diǎn)的距離等于 √x2+y2

  3、坐標(biāo)變化與圖形變化的規(guī)律

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)6

  全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本定義:

 、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形。

  ⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。

 、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)。

  ⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊。

 、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角。

  2.基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性。

 、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

  3.全等三角形的判定定理:

 、胚呥呥():三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、七吔沁():兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。

  ⑶角邊角():兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

 、冉墙沁():兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

  ⑸斜邊、直角邊():斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

  4.角平分線:

 、女嫹ǎ

 、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等。

 、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上。

  5.證明的基本方法:

 、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)

  ⑵根據(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證。

 、墙(jīng)過(guò)分析,找出由已知推出求證的途徑,寫出證明過(guò)程。

  數(shù)學(xué)不能只依靠上課聽(tīng)得懂

  很多初中生認(rèn)為自己只要上數(shù)學(xué)課聽(tīng)得懂就夠了,但是一做到綜合題就蒙了,基礎(chǔ)題會(huì)做,但是會(huì)馬虎。這類問(wèn)題都是學(xué)生在課堂上都以為自己聽(tīng)得懂就夠了。

  初中同學(xué)要首先對(duì)數(shù)學(xué)做一個(gè)認(rèn)知,聽(tīng)得懂≠會(huì)做,會(huì)做≠拿的到分。聽(tīng)得懂只占你數(shù)學(xué)成績(jī)的20%,僅僅聽(tīng)得懂只說(shuō)明你理解能力還可以,不說(shuō)明你能拿到很高的數(shù)學(xué)成績(jī)。

  只有聽(tīng)的懂理解了加上練,再加上多練,達(dá)到最后又快又準(zhǔn)的做出來(lái),這時(shí)候的數(shù)學(xué)成績(jī)才會(huì)有長(zhǎng)足的進(jìn)步。

  質(zhì)數(shù)和合數(shù)應(yīng)用

  1、質(zhì)數(shù)與密碼學(xué):所謂的公鑰就是將想要傳遞的信息在編碼時(shí)加入質(zhì)數(shù),編碼之后傳送給收信人,任何人收到此信息后,若沒(méi)有此收信人所擁有的密鑰,則解密的過(guò)程中(實(shí)為尋找素?cái)?shù)的過(guò)程),將會(huì)因?yàn)檎屹|(zhì)數(shù)的過(guò)程(分解質(zhì)因數(shù))過(guò)久,使即使取得信息也會(huì)無(wú)意義。

  2、質(zhì)數(shù)與變速箱:在汽車變速箱齒輪的設(shè)計(jì)上,相鄰的兩個(gè)大小齒輪齒數(shù)設(shè)計(jì)成質(zhì)數(shù),以增加兩齒輪內(nèi)兩個(gè)相同的齒相遇嚙合次數(shù)的最小公倍數(shù),可增強(qiáng)耐用度減少故障。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)7

  (3) 幾何表達(dá)式舉例:

  (1) ∵ AB = EF

  ∵ ∠B=∠F

  又∵ BC = FG

  ∴ΔABC≌ΔEFG

  (2) ………………

  (3)在RtΔABC和RtΔEFG中

  ∵ AB=EF

  又∵ AC = EG

  ∴RtΔABC≌RtΔEFG

  12.角平分線的性質(zhì)定理及逆定理:

  (1)在角平分線上的點(diǎn)到角的兩邊距離相等;(如圖)

  (2)到角的兩邊距離相等的點(diǎn)在角平分線上.(如圖)

  幾何表達(dá)式舉例:

  (1)∵OC平分∠AOB

  又∵CD⊥OA CE⊥OB

  ∴ CD = CE

  (2) ∵CD⊥OA CE⊥OB

  又∵CD = CE

  ∴OC是角平分線

  13.線段垂直平分線的定義:

  垂直于一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵EF垂直平分AB

  ∴EF⊥AB OA=OB

  (2) ∵EF⊥AB OA=OB

  ∴EF是AB的垂直平分線

  14.線段垂直平分線的性質(zhì)定理及逆定理:

  (1)線段垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等;(如圖)

  (2)和一條線段的兩個(gè)端點(diǎn)的距離相等的點(diǎn),在這條線段的垂直平分線上.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵M(jìn)N是線段AB的垂直平分線

  ∴ PA = PB

  (2) ∵PA = PB

  ∴點(diǎn)P在線段AB的垂直平分線上

  15.等腰三角形的性質(zhì)定理及推論:

  (1)等腰三角形的兩個(gè)底角相等;(即等邊對(duì)等角)(如圖)

  (2)等腰三角形的“頂角平分線、底邊中線、底邊上的高”三線合一;(如圖)

  (3)等邊三角形的各角都相等,并且都是60°.(如圖)

  (1) (2) (3) 幾何表達(dá)式舉例:

  (1) ∵AB = AC

  ∴∠B=∠C

  (2) ∵AB = AC

  又∵∠BAD=∠CAD

  ∴BD = CD

  AD⊥BC

  ………………

  (3) ∵ΔABC是等邊三角形

  ∴∠A=∠B=∠C =60°

  16.等腰三角形的判定定理及推論:

  (1)如果一個(gè)三角形有兩個(gè)角都相等,那么這兩個(gè)角所對(duì)邊也相等;(即等角對(duì)等邊)(如圖)

  (2)三個(gè)角都相等的三角形是等邊三角形;(如圖)

  (3)有一個(gè)角等于60°的等腰三角形是等邊三角形;(如圖)

  (4)在直角三角形中,如果有一個(gè)角等于30°,那么它所對(duì)的直角邊是斜邊的一半.(如圖)

  (1) (2)(3) (4) 幾何表達(dá)式舉例:

  (1) ∵∠B=∠C

  ∴ AB = AC

  (2) ∵∠A=∠B=∠C

  ∴ΔABC是等邊三角形

  (3) ∵∠A=60°

  又∵AB = AC

  ∴ΔABC是等邊三角形

  (4) ∵∠C=90°∠B=30°

  ∴AC = AB

  17.關(guān)于軸對(duì)稱的定理

  (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;(如圖)

  (2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱

  ∴ΔABC≌ΔEGF

  (2) ∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱

  ∴OA=OE MN⊥AE

  18.勾股定理及逆定理:

  (1)直角三角形的兩直角邊a、b的平方和等于斜邊c的平方,即a2+b2=c2;(如圖)

  (2)如果三角形的三邊長(zhǎng)有下面關(guān)系: a2+b2=c2,那么這個(gè)三角形是直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是直角三角形

  ∴a2+b2=c2

  (2) ∵a2+b2=c2

  ∴ΔABC是直角三角形

  19.RtΔ斜邊中線定理及逆定理:

  (1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)

  (2)如果三角形一邊上的中線是這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是直角三角形

  ∵D是AB的中點(diǎn)

  ∴CD = AB

  (2) ∵CD=AD=BD

  ∴ΔABC是直角三角形

  幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)

  一 基本概念:

  三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規(guī)作圖、輔助線、線段垂直平分線的集合定義、軸對(duì)稱的定義、軸對(duì)稱圖形的定義、勾股數(shù).

  二 常識(shí):

  1.三角形中,第三邊長(zhǎng)的判斷: 另兩邊之差<第三邊<另兩邊之和.

  2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交于一點(diǎn),其中前兩個(gè)交點(diǎn)都在三角形內(nèi),而第三個(gè)交點(diǎn)可在三角形內(nèi),三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.

  3.如圖,三角形中,有一個(gè)重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.

  4.三角形能否成立的條件是:最長(zhǎng)邊<另兩邊之和.

  5.直角三角形能否成立的條件是:最長(zhǎng)邊的平方等于另兩邊的平方和.

  6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如圖,雙垂圖形中,有兩個(gè)重要的性質(zhì),即:

  (1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .

  8.三角形中,最多有一個(gè)內(nèi)角是鈍角,但最少有兩個(gè)外角是鈍角.

  9.全等三角形中,重合的點(diǎn)是對(duì)應(yīng)頂點(diǎn),對(duì)應(yīng)頂點(diǎn)所對(duì)的角是對(duì)應(yīng)角,對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊.

  10.等邊三角形是特殊的等腰三角形.

  11.幾何習(xí)題中,“文字?jǐn)⑹鲱}”需要自己畫圖,寫已知、求證、證明.

  12.符合“AAA”“SSA”條件的三角形不能判定全等.

  13.幾何習(xí)題經(jīng)常用四種方法進(jìn)行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.

  14.幾何基本作圖分為:(1)作線段等于已知線段;(2)作角等于已知角;(3)作已知角的平分線;(4)過(guò)已知點(diǎn)作已知直線的垂線;(5)作線段的中垂線;(6)過(guò)已知點(diǎn)作已知直線的平行線.

  15.會(huì)用尺規(guī)完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等邊三角形”、“等腰直角三角形”的作圖.

  16.作圖題在分析過(guò)程中,首先要畫出草圖并標(biāo)出字母,然后確定先畫什么,后畫什么;注意:每步作圖都應(yīng)該是幾何基本作圖.

  17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規(guī)畫圖.

  ※18.幾何重要圖形和輔助線:

  (1)選取和作輔助線的原則:

  ① 構(gòu)造特殊圖形,使可用的定理增加;

 、 一舉多得;

 、 聚合題目中的分散條件,轉(zhuǎn)移線段,轉(zhuǎn)移角;

 、 作輔助線必須符合幾何基本作圖.

  (2)已知角平分線.(若BD是角平分線)

  ① 在BA上截取BE=BC構(gòu)造全等,轉(zhuǎn)移線段和角;

 、 過(guò)D點(diǎn)作DE‖BC交AB于E,構(gòu)造等腰三角形 .

  (3)已知三角形中線(若AD是BC的中線)

 、 過(guò)D點(diǎn)作DE‖AC交AB于E,構(gòu)造中位線 ;

 、 延長(zhǎng)AD到E,使DE=AD

  連結(jié)CE構(gòu)造全等,轉(zhuǎn)移線段和角;

 、 ∵AD是中線

  ∴SΔABD= SΔADC

  (等底等高的三角形等面積)

  (4) 已知等腰三角形ABC中,AB=AC

 、 作等腰三角形ABC底邊的中線AD

  (頂角的平分線或底邊的高)構(gòu)造全

  等三角形;

 、 作等腰三角形ABC一邊的平行線DE,構(gòu)造

  新的等腰三角形.

  (5)其它

 、 作等邊三角形ABC

  一邊 的平行線DE,構(gòu)造新的等邊三角形;

 、 作CE‖AB,轉(zhuǎn)移角;

 、 延長(zhǎng)BD與AC交于E,不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形;

 、 多邊形轉(zhuǎn)化為三角形;

 、 延長(zhǎng)BC到D,使CD=BC,連結(jié)AD,直角三角形轉(zhuǎn)化為等腰三角形;

  ⑥ 若a‖b,AC,BC是角平

  分線,則∠C=90°.

  學(xué)好數(shù)學(xué)的方法有哪些

  1學(xué)好初中數(shù)學(xué)課前預(yù)習(xí)是重點(diǎn)

  數(shù)學(xué)解題思路和能力的培養(yǎng)主要在于課堂上,所以想要學(xué)好初中數(shù)學(xué)一定要重視數(shù)學(xué)的學(xué)習(xí)效率和提前預(yù)習(xí)。只有提前預(yù)習(xí)才知道自己哪里不會(huì),這樣在課堂上才會(huì)注意力集中不走神。同時(shí)在初中數(shù)學(xué)的課上,學(xué)生也要緊跟老師的解題思路,注意自己的解題思路和老師的有什么不同。尤其是基礎(chǔ)知識(shí)和最基本的技能學(xué)習(xí),課上數(shù)學(xué)老師講完后,初中生要在課后及時(shí)復(fù)習(xí),爭(zhēng)取老師講完每一節(jié)的知識(shí)后,學(xué)生都不要留下疑問(wèn)。

  2獨(dú)立完成初中數(shù)學(xué)作業(yè)

  在完成老師布置的作業(yè)時(shí),初中生要學(xué)會(huì)自己能夠獨(dú)立完成,想要學(xué)好初中數(shù)學(xué)就要勤于思考,千萬(wàn)不能偷懶。平時(shí)對(duì)于自己弄不懂的題目和解題思路,不要放棄,靜下心來(lái)認(rèn)真分析和研究,盡量做到自己能夠解決,實(shí)在是想不出來(lái)在問(wèn)同學(xué)或者老師。對(duì)于初中數(shù)學(xué)的每一個(gè)學(xué)習(xí)階段,都要學(xué)會(huì)進(jìn)行整理和歸納。

  建立數(shù)學(xué)思維方式

  到了八年級(jí),數(shù)學(xué)出現(xiàn)了很多新的知識(shí)點(diǎn),也是重點(diǎn)考點(diǎn)和關(guān)鍵難點(diǎn),比如系統(tǒng)性的開(kāi)始學(xué)習(xí)幾何知識(shí),首次引入函數(shù)的概念并求解一般的線性函數(shù)問(wèn)題,這些對(duì)于初中生來(lái)說(shuō)既是全新的,又是有一定難度的。這就需要學(xué)生創(chuàng)新數(shù)學(xué)思維方式,緊跟教材進(jìn)度和課堂進(jìn)度,訓(xùn)練自己的數(shù)學(xué)思維尤其的幾何圖形的感覺(jué),以及對(duì)函數(shù)的深刻理解。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)8

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形.約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái).

  2.通分和約分都是依據(jù)分式的基本×質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.

  3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.

  4.通分的依據(jù):分式的基本×質(zhì).

  5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母.

  6.類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.

  9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào).

  10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.

  11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化.

  12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式.

  數(shù)學(xué)解題方法技巧和思路有哪些

  選擇題的解法

  1、直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,最后得到題目的所求。

  2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

  仔細(xì)審題

  考試時(shí)精力要集中,審題一定要細(xì)心。要放慢速度,逐字逐句搞清題意(似曾相識(shí)的題目更要注意異同),從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系,為快速解答提供可靠的信息和依據(jù)。否則,一味求快,丟三落四,不是思維受阻,就是前功盡棄。

  三層遞進(jìn)模式解題技巧

  第一要保證不考砸。

  第二要正常發(fā)揮。正常發(fā)揮就是將自己的水平發(fā)揮出80%,發(fā)揮出80%已經(jīng)很不簡(jiǎn)單了,發(fā)揮出80%無(wú)疑是沒(méi)考砸。

  第三要向更高標(biāo)準(zhǔn)邁進(jìn),就是在保證已發(fā)揮出 80%以后,再向發(fā)揮100%努力,再向超常發(fā)揮進(jìn)發(fā)。

  初中數(shù)學(xué)函數(shù)的概念知識(shí)點(diǎn)

  1.常量與變量:在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量;在某一變化過(guò)程中保持?jǐn)?shù)值不變的量叫做常量.

  2.函數(shù):在某一變化過(guò)程中的兩個(gè)變量x和y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一確定的值和它對(duì)應(yīng),那么y就叫做x的函數(shù),其中x做自變量,y是因變量.

  (1)自變量取值范圍的確定

 、僬胶瘮(shù)自變量的取值范圍是全體實(shí)數(shù).

  ②分式函數(shù)自變量的取值范圍是使分母不為0的實(shí)數(shù).

 、鄱胃胶瘮(shù)自變量的取值范嗣是使被開(kāi)方數(shù)是非負(fù)數(shù)的實(shí)數(shù),若涉及實(shí)際問(wèn)題的函數(shù),除滿足上述要求外還要使實(shí)際問(wèn)題有意義.

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)9

  1、平均數(shù)

 、僖话愕兀瑢(duì)于n個(gè)數(shù)x1x2...xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱平均數(shù)記為。

 、谠趯(shí)際問(wèn)題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

  2、中位數(shù)與眾數(shù)

 、僦形粩(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

  ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

 、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量

 、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

 、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

 、薷鱾(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒(méi)有特別意義

  3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

  4、數(shù)據(jù)的離散程度

 、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

 、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

  數(shù)學(xué)的方法和技巧

  狠抓“雙基”訓(xùn)練

  “雙基”即基礎(chǔ)知識(shí)與基本技能;A(chǔ)知識(shí)是指數(shù)學(xué)概念、定理、法則、公式以及各種知識(shí)之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動(dòng)作,初中數(shù)學(xué)基本技能包括運(yùn)算技能、畫圖技能、運(yùn)用數(shù)字語(yǔ)言的技能、推理論證的技能等。只有扎實(shí)地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。

  解決疑難

  這是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并經(jīng)常把容易錯(cuò)的地方拿來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。

  初中數(shù)學(xué)二元一次方程組知識(shí)點(diǎn)

  (一)定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的最高次數(shù)是1的整式方程叫做二元一次方程。

  (二)二元一次方程組的解法

  (1)代入法

  由一個(gè)二次方程和一個(gè)一次方程所組成的方程組通常用代入法來(lái)解,這是基本的消元降次方法。

  (2)因式分解法

  在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過(guò)消元降次來(lái)解。

  (3)配方法

  將一個(gè)式子,或一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和。

  (4)韋達(dá)定理法

  通過(guò)韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。

  (5)消常數(shù)項(xiàng)法

  當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。

 、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

 、芷渲惺莤1,x2.....xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

 、菀话愣裕唤M數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)10

  數(shù)學(xué)重要知識(shí)點(diǎn)八年級(jí)上冊(cè)匯集

  第十二章全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本定義:

 、湃刃危耗軌蛲耆睾系膬蓚(gè)圖形叫做全等形.

 、迫热切危耗軌蛲耆睾系膬蓚(gè)三角形叫做全等三角形.

 、菍(duì)應(yīng)頂點(diǎn):全等三角形中互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).

  ⑷對(duì)應(yīng)邊:全等三角形中互相重合的邊叫做對(duì)應(yīng)邊.

 、蓪(duì)應(yīng)角:全等三角形中互相重合的角叫做對(duì)應(yīng)角.

  2.基本性質(zhì):

 、湃切蔚姆(wěn)定性:三角形三邊的長(zhǎng)度確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.

 、迫热切蔚男再|(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.

  3.全等三角形的判定定理:

 、胚呥呥(SSS):三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

  ⑵邊角邊(SAS):兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.

 、墙沁吔(ASA):兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

  ⑷角角邊(AAS):兩角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

 、尚边、直角邊(HL):斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.

  4.角平分線:

 、女嫹ǎ

 、菩再|(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離相等.

 、切再|(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上.

  5.證明的基本方法:

 、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)

  ⑵根據(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.

 、墙(jīng)過(guò)分析,找出由已知推出求證的途徑,寫出證明過(guò)程.

  第十三章軸對(duì)稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本概念:

 、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形.

  ⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱.

 、蔷段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.

  ⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

 、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形.

  2.基本性質(zhì):

  ⑴對(duì)稱的性質(zhì):

 、俨还苁禽S對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.

 、趯(duì)稱的圖形都全等.

 、凭段垂直平分線的性質(zhì):

 、倬段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.

 、谂c一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

 、顷P(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)

 、冱c(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為P'(x,y).

 、邳c(diǎn)P(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為P"(x,y).

 、鹊妊切蔚男再|(zhì):

  ①等腰三角形兩腰相等.

 、诘妊切蝺傻捉窍嗟(等邊對(duì)等角).

  ③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條).

 、傻冗吶切蔚男再|(zhì):

 、俚冗吶切稳叾枷嗟.

  ②等邊三角形三個(gè)內(nèi)角都相等,都等于60°

 、鄣冗吶切蚊織l邊上都存在三線合一.

 、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條).

  3.基本判定:

 、诺妊切蔚呐卸ǎ

 、儆袃蓷l邊相等的三角形是等腰三角形.

 、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).

 、频冗吶切蔚呐卸ǎ

  ①三條邊都相等的三角形是等邊三角形.

 、谌齻(gè)角都相等的三角形是等邊三角形.

 、塾幸粋(gè)角是60°的等腰三角形是等邊三角形.

  4.基本方法:

 、抛鲆阎本的垂線:

 、谱鲆阎段的垂直平分線:

 、亲鲗(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線.

 、茸饕阎獔D形關(guān)于某直線的對(duì)稱圖形:

 、稍谥本上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

  八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  因式分解

  1.因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項(xiàng):

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

  (2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;

  (4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;

  (5)因式分解的最后結(jié)果要求加以整理;

  (6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號(hào)或去括號(hào)整理;(2)提負(fù)號(hào);(3)全變號(hào);(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開(kāi)部分括號(hào)或全部括號(hào);(10)拆項(xiàng)或補(bǔ)項(xiàng).

  7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對(duì)于二次三項(xiàng)式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示兩個(gè)整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式與分式統(tǒng)稱有理式;即.

  3.對(duì)于分式的兩個(gè)重要判斷:(1)若分式的分母為零,則分式無(wú)意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義.

  4.分式的基本性質(zhì)與應(yīng)用:

  (1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;

  (2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變;

  即

  (3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡(jiǎn)單.

  5.分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

  6.最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式,這個(gè)分式叫做最簡(jiǎn)分式;注意:分式計(jì)算的最后結(jié)果要求化為最簡(jiǎn)分式.

  7.分式的乘除法法則:.

  8.分式的乘方:.

  9.負(fù)整指數(shù)計(jì)算法則:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計(jì)算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡(jiǎn)公分母.

  11.最簡(jiǎn)公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.

  12.同分母與異分母的分式加減法法則:.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對(duì)x來(lái)說(shuō),字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個(gè)公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時(shí)乘以含字母的代數(shù)式時(shí),一般需要先確認(rèn)這個(gè)代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過(guò)的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根.

  17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡(jiǎn)公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無(wú)解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.

  18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序.

  數(shù)的開(kāi)方

  1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開(kāi)方,乘方與開(kāi)方互為逆運(yùn)算.

  2.平方根的性質(zhì):

  (1)正數(shù)的平方根是一對(duì)相反數(shù);

  (2)0的平方根還是0;

  (3)負(fù)數(shù)沒(méi)有平方根.

  3.平方根的表示方法:a的平方根表示為和.注意:可以看作是一個(gè)數(shù),也可以認(rèn)為是一個(gè)數(shù)開(kāi)二次方的運(yùn)算.

  4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為.注意:0的算術(shù)平方根還是0.

  5.三個(gè)重要非負(fù)數(shù):a2≥0 ,|a|≥0,≥0 .注意:非負(fù)數(shù)之和為0,說(shuō)明它們都是0.

  6.兩個(gè)重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為;即把a(bǔ)開(kāi)三次方.

  8.立方根的性質(zhì):

  (1)正數(shù)的立方根是一個(gè)正數(shù);

  (2)0的立方根還是0;

  (3)負(fù)數(shù)的立方根是一個(gè)負(fù)數(shù).

  9.立方根的特性:.

  10.無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù).注意:?和開(kāi)方開(kāi)不盡的數(shù)是無(wú)理數(shù).

  11.實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù).

  12.實(shí)數(shù)的分類:(1) (2) .

  13.數(shù)軸的性質(zhì):數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).

  14.無(wú)理數(shù)的近似值:實(shí)數(shù)計(jì)算的結(jié)果中若含有無(wú)理數(shù)且題目無(wú)近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)表示;如果題目有近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)的近似值表示.注意:(1)近似計(jì)算時(shí),中間過(guò)程要多保留一位;(2)要求記憶:.

  三角形

  幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)

  1.三角形的角平分線定義:

  三角形的一個(gè)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.(如圖)幾何表達(dá)式舉例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分線

  2.三角形的中線定義:

  在三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊的中點(diǎn)的線段叫做三角形的中線.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵AD是三角形的中線

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中線

  3.三角形的高線定義:

  從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊畫垂線,頂點(diǎn)和垂足間的線段叫做三角形的高線.

  (如圖)

  幾何表達(dá)式舉例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三邊關(guān)系定理:

  三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC

  ∴……………

  5.等腰三角形的定義:

  有兩條邊相等的三角形叫做等腰三角形. (如圖)

  幾何表達(dá)式舉例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等邊三角形的定義:

  有三條邊相等的三角形叫做等邊三角形. (如圖)

  幾何表達(dá)式舉例:

  (1)∵ΔABC是等邊三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等邊三角形

  7.三角形的內(nèi)角和定理及推論:

  (1)三角形的內(nèi)角和180°;(如圖)

  (2)直角三角形的兩個(gè)銳角互余;(如圖)

  (3)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;(如圖)

  ※(4)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

  (1) (2) (3)(4)幾何表達(dá)式舉例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定義:

  有一個(gè)角是直角的三角形叫直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定義:

  兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)

  幾何表達(dá)式舉例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性質(zhì):

  (1)全等三角形的對(duì)應(yīng)邊相等;(如圖)

  (2)全等三角形的對(duì)應(yīng)角相等.(如圖)

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)11

  三角形的外角:

  三角形的一條邊的延長(zhǎng)線和另一條相鄰的邊組成的角,叫做三角形的外角。

  三角形的外角特征:

 、夙旤c(diǎn)在三角形的一個(gè)頂點(diǎn)上,如∠ACD的頂點(diǎn)C是△ABC的一個(gè)頂點(diǎn);

  ②一條邊是三角形的一邊,如∠ACD的一條邊AC正好是△ABC的一條邊;

 、哿硪粭l邊是三角形某條邊的延長(zhǎng)線如∠ACD的邊CD是△ABC的BC邊的延長(zhǎng)線。

  性質(zhì):

  ①. 三角形的外角與它相鄰的內(nèi)角互補(bǔ)。

 、. 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

 、. 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

 、. 三角形的外角和等于360°。

  設(shè)三角形ABC 則三個(gè)外角和=(A+B)+(A+C)+(B+C)=360度。

  定理:三角形的一個(gè)外角等于不相鄰的兩個(gè)內(nèi)角和。

  定理:三角形的三個(gè)內(nèi)角和為180度。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)12

  第五章 二元一次方程組

  1、二元一次方程

 、俣淮畏匠、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解、適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

  2、二元一次方程組

 、俸袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。

 、诙淮畏匠探M的解二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

 、鄱淮畏匠探M的解法代入(消元)法、加減(消元)法

 、芤淮魏瘮(shù)與二元一次方程(組)的關(guān)系:

  一次函數(shù)與二元一次方程的關(guān)系:直線y=kx+b上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程kx- y+b=0的解

  一次函數(shù)與二元一次方程組的關(guān)系:二元一次方程組的解可看作兩個(gè)一次函數(shù)和的圖象的交點(diǎn)。

  當(dāng)函數(shù)圖象有交點(diǎn)時(shí),說(shuō)明相應(yīng)的二元一次方程組有解;

  當(dāng)函數(shù)圖象(直線)平行即無(wú)交點(diǎn)時(shí),說(shuō)明相應(yīng)的二元一次方程組無(wú)解。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)13

  1.無(wú)理數(shù)定義:無(wú)限不循環(huán)小數(shù)

  2.實(shí)數(shù)的分類:分為有理數(shù)和無(wú)理數(shù)。有理數(shù)分為:正有理數(shù)、負(fù)有理數(shù)、零

  3.算術(shù)平方根:若一個(gè)正數(shù)x的平方等于a,即x=a,則這個(gè)正數(shù)x為a的算術(shù)平方根。a的算術(shù)平方根記作,讀作“根號(hào)a”,a叫做被開(kāi)方數(shù)。規(guī)定:0的算術(shù)平方根為0。

  4.平方根:如果一個(gè)數(shù)x的平方等于a,即x=a,那么這個(gè)數(shù)x就叫做a的平方根。

  5.二次根式的定義:一般形如(a≥0)的代數(shù)式叫做二次根式,其中,a叫做被開(kāi)方數(shù),被開(kāi)方數(shù)必須大于或等于0。

  6.最簡(jiǎn)二次根式滿足:①.分母中不含根號(hào)=根號(hào)下沒(méi)有分母=根號(hào)下沒(méi)有分?jǐn)?shù)

  ②.根號(hào)下不含可以開(kāi)得盡方的數(shù)

  7.同類二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。

  8.()2=a(a≥0) =a(a≥0)

 、俣胃降某朔ǚ▌t:×(a≥0,b≥0)

  兩個(gè)二次根式相乘,把被開(kāi)方數(shù)相乘,根指數(shù)不變.

 、诜e的算術(shù)平方根的_質(zhì):(a≥0,b≥0)

  兩個(gè)非負(fù)數(shù)的積的算術(shù)平方根,等于這兩個(gè)因數(shù)的算術(shù)平方根的乘積.

 、鄱胃降某ǚ▌t:=(a≥0,b>0)

  兩個(gè)二次根式相除,把被開(kāi)方數(shù)相除,根指數(shù)不變.

  ④商的算術(shù)平方根的_質(zhì):=(a≥0,b>0)

  數(shù)學(xué)單項(xiàng)式知識(shí)點(diǎn)

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。

  2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。

  3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。

  4、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。

  5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。

  6、單獨(dú)的一個(gè)數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。

  7、單獨(dú)的一個(gè)非零常數(shù)的次數(shù)是0。

  8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。

  9、單項(xiàng)式的系數(shù)包括它前面的符號(hào)。

  10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時(shí),應(yīng)化成假分?jǐn)?shù)。

  11、單項(xiàng)式的系數(shù)是1或―1時(shí),通常省略數(shù)字“1”。

  12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無(wú)關(guān)。

  初中生如何能輕松學(xué)好數(shù)學(xué)

  1學(xué)好初中數(shù)學(xué)認(rèn)真聽(tīng)課很重要

  初中學(xué)生想要學(xué)好數(shù)學(xué),在課上一定要認(rèn)真聽(tīng)老師講課。老師在課堂上講的是非常重要的知識(shí)點(diǎn),但是在初中數(shù)學(xué)課上選擇做筆記并不是一個(gè)正確的做法。

  在初中數(shù)學(xué)課上你需要做的就是跟住老師的思維,學(xué)好老師的思維方式,這個(gè)階段要培養(yǎng)自己的數(shù)學(xué)邏輯思維能力。大部分的初中數(shù)學(xué)老師,對(duì)于這門學(xué)科都有自己的見(jiàn)解,所以跟住老師的思路久而久之就會(huì)逐漸轉(zhuǎn)換成自己解題的思路。

  2初中生學(xué)習(xí)數(shù)學(xué)要會(huì)獨(dú)立思考

  初一初二是數(shù)學(xué)開(kāi)竅的階段,在解題上初中生一定要學(xué)會(huì)自己獨(dú)立去思考。你需要做的就是不斷的做題來(lái)培養(yǎng)自己的這一能力。而在積累到一定的數(shù)量之后,你的這種獨(dú)立解題的能力是別人無(wú)法超越的。這個(gè)培養(yǎng)過(guò)程很簡(jiǎn)單也很短,只要你得到一點(diǎn)的成就感對(duì)于初中數(shù)學(xué)你就會(huì)充滿自信。

  其實(shí),學(xué)好初中數(shù)學(xué)關(guān)鍵在于自己的真實(shí)能力,而不是形式。很多的初中生數(shù)學(xué)筆記一大堆,最后考試的成績(jī)也就是那樣。在學(xué)習(xí)上初中數(shù)學(xué)也好,其他科目也罷,不要講究形式感,關(guān)鍵是要把一個(gè)個(gè)的問(wèn)題和知識(shí)學(xué)透。不反對(duì)記筆記,但是不要一味的做筆記,聽(tīng)初中數(shù)學(xué)課是需要過(guò)腦子的。

  3學(xué)好初中數(shù)學(xué)要較真

  數(shù)學(xué)是一門嚴(yán)謹(jǐn)?shù)膶W(xué)科,對(duì)于自己不會(huì)的地區(qū)和知識(shí)點(diǎn)初中生絕對(duì)不能模棱兩可的就過(guò)去了,而是要把它弄清楚做明白。有的同學(xué)在初中數(shù)學(xué)的學(xué)習(xí)中不會(huì)只是因?yàn)椴皇於眩敲丛趺崔k?就是多練習(xí)和多思考,數(shù)學(xué)的學(xué)習(xí)沒(méi)有什么捷徑和技巧,熟能生巧才是最好的學(xué)習(xí)技巧。另外,初中數(shù)學(xué)想要打高分,在做題方面一定要仔細(xì)和認(rèn)真,不能馬虎。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)14

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  3、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

  4、中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線。

  5、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

  6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  9、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

  10、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

  11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。

  12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  13、公式與性質(zhì):

  (1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°

  (2)三角形外角的性質(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

  (3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°

  (4)多邊形的外角和:多邊形的外角和為360°

  (5)多邊形對(duì)角線的條數(shù):①?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形。②邊形共有條對(duì)角線。

  提高數(shù)學(xué)成績(jī)的方法

  1、要提高初中生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣和動(dòng)力。首先可以從家庭引導(dǎo),家長(zhǎng)可以對(duì)數(shù)學(xué)產(chǎn)生濃厚的興趣,言傳身教,讓孩子對(duì)數(shù)學(xué)有一種神秘的好感。老師也可以和學(xué)生進(jìn)行貼心的交流,打造自己的人格魅力,讓學(xué)生被自己吸引從而更好的對(duì)數(shù)學(xué)感興趣。

  2、初中生想要提高數(shù)學(xué)成績(jī)就一定要重視基礎(chǔ),千里之堤始于磚泥,不重視基礎(chǔ)的下場(chǎng)就是你覺(jué)得自己的數(shù)學(xué)學(xué)得很好成績(jī)會(huì)很好,但是在你成績(jī)出來(lái)的時(shí)候會(huì)低于你的預(yù)期很多。很多初中生經(jīng)常是知道怎么演算就算了,而不去認(rèn)真的做幾遍,好高騖遠(yuǎn),總想去沖擊難題,結(jié)果連考試中最基礎(chǔ)的方程都會(huì)錯(cuò)。

  3、要抓好幾個(gè)提高數(shù)學(xué)成績(jī)的必要條件。數(shù)學(xué)運(yùn)算,數(shù)學(xué)解題(保證數(shù)量和質(zhì)量),準(zhǔn)備錯(cuò)題本,準(zhǔn)備一本參考書,遇到難題盡量靠自己去解決而不是直接看答案,再保持勤奮和多動(dòng)筆練習(xí)。

  初中數(shù)學(xué)整式的知識(shí)點(diǎn)

  (一)整式

  1、整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運(yùn)算,但在整式中除數(shù)不能含有字母。

  2、整式的乘法

  (1)同底數(shù)冪的乘法

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。

  (2)冪的乘方

  冪的乘方,底數(shù)不變,指數(shù)相乘。

  (3)積的乘方

  積的乘方,先把積中的每一個(gè)因數(shù)分別乘方,再把所得的冪相乘。

  3、因式分解

  (1)待定系數(shù)法

 、俅_定所求問(wèn)題含待定系數(shù)的一般解析式;

 、诟鶕(jù)恒等條件,列出一組含待定系數(shù)的方程;

 、劢夥匠袒蛳ゴㄏ禂(shù),從而使問(wèn)題得到解決。

  (2)十字相乘法

 、侔讯雾(xiàng)系數(shù)和常數(shù)項(xiàng)分別分解因數(shù);

 、趪L試十字圖,使經(jīng)過(guò)十字交叉線相乘后所得的數(shù)的和為一次項(xiàng)系數(shù);

 、鄞_定合適的十字圖并寫出因式分解的結(jié)果;

  ④檢驗(yàn)。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15

  1.提公共因式法

  ※1.如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式.這種分解因式的方法叫做提公因式法.

  如:

  ※2.概念內(nèi)涵:

  (1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;

  (2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;

  (3)提公因式法的理論依據(jù)是乘法對(duì)加法的分配律,即:

  ※3.易錯(cuò)點(diǎn)點(diǎn)評(píng):

  (1)注意項(xiàng)的符號(hào)與冪指數(shù)是否搞錯(cuò);

  (2)公因式是否提“干凈”;

  (3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號(hào)中這一項(xiàng)為+1,不漏掉.

  2.運(yùn)用公式法

  ※1.如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.

  ※2.主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3.易錯(cuò)點(diǎn)點(diǎn)評(píng):

  因式分解要分解到底.如就沒(méi)有分解到底.

  ※4.運(yùn)用公式法:

  (1)平方差公式:

 、賾(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;

 、诙(xiàng)式的每項(xiàng)(不含符號(hào))都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;

 、鄱(xiàng)是異號(hào).

  (2)完全平方公式:

 、賾(yīng)是三項(xiàng)式;

 、谄渲袃身(xiàng)同號(hào),且各為一整式的平方;

  ③還有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.

  3.因式分解的思路與解題步驟:

  (1)先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;

  (2)再看能否使用公式法;

  (3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;

  (4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

  (5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.

  4.分組分解法:

  ※1.分組分解法:利用分組來(lái)分解因式的方法叫做分組分解法.

  如:

  ※2.概念內(nèi)涵:

  分組分解法的關(guān)鍵是如何分組,要嘗試通過(guò)分組后是否有公因式可提,并且可繼續(xù)分解,分組后是否可利用公式法繼續(xù)分解因式.

  ※3.注意:分組時(shí)要注意符號(hào)的變化.

  5.十字相乘法:

  ※1.對(duì)于二次三項(xiàng)式,將a和c分別分解成兩個(gè)因數(shù)的乘積,且滿足,往往寫成的形式,將二次三項(xiàng)式進(jìn)行分解.

  如:

  ※2.二次三項(xiàng)式的分解:

  ※3.規(guī)律內(nèi)涵:

  (1)理解:把分解因式時(shí),如果常數(shù)項(xiàng)q是正數(shù),那么把它分解成兩個(gè)同號(hào)因數(shù),它們的符號(hào)與一次項(xiàng)系數(shù)p的符號(hào)相同.

  (2)如果常數(shù)項(xiàng)q是負(fù)數(shù),那么把它分解成兩個(gè)異號(hào)因數(shù),其中絕對(duì)值較大的因數(shù)與一次項(xiàng)系數(shù)p的符號(hào)相同,對(duì)于分解的兩個(gè)因數(shù),還要看它們的和是不是等于一次項(xiàng)系數(shù)p.

  ※4.易錯(cuò)點(diǎn)點(diǎn)評(píng):

  (1)十字相乘法在對(duì)系數(shù)分解時(shí)易出錯(cuò);

  (2)分解的結(jié)果與原式不等,這時(shí)通常采用多項(xiàng)式乘法還原后檢驗(yàn)分解的是否正確.

  八年級(jí)數(shù)學(xué)學(xué)習(xí)方法

  1.必須熟悉各種基本題型并掌握其解法。

  課本上的每一道練習(xí)題,都是針對(duì)一個(gè)知識(shí)點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對(duì)性也強(qiáng),應(yīng)該能夠迅速做出。許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。

  2.在解題過(guò)程中有意識(shí)地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢(shì)。

  數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過(guò)程中,都會(huì)反映出一定的思維方法,如果我們有意識(shí)地注重這些思維方法,時(shí)間長(zhǎng)了頭腦中便形成了對(duì)每一類題型的“通用”解法,即正確的思維定勢(shì),這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌 握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。

  3.多做綜合題。

  綜合題,由于用到的知識(shí)點(diǎn)較多,頗受命題人青睞。做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過(guò)做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高!岸嘧鼍毩(xí)”要長(zhǎng)期堅(jiān)持,每天都要做幾道,時(shí)間長(zhǎng)了才會(huì)有明顯的效果和較大的收獲。

  八年級(jí)數(shù)學(xué)學(xué)習(xí)技巧

  初中數(shù)學(xué)的快速記憶法之歌訣記憶

  就是把要記憶的數(shù)學(xué)知識(shí)編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對(duì)準(zhǔn)頂點(diǎn),零線對(duì)著一邊,另一邊看度數(shù)。”再如,小數(shù)點(diǎn)位置移動(dòng)引起數(shù)的大小變化,“小數(shù)點(diǎn)請(qǐng)你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個(gè)you,擴(kuò)大向you走走走;橫撇加個(gè)zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤!辈捎眠@種方法來(lái)記憶,學(xué)生不僅喜歡記,而且記得牢。

【八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15篇】相關(guān)文章:

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)12-07

數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-02

數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)15篇01-23

數(shù)學(xué)八年級(jí)上冊(cè)十三章知識(shí)點(diǎn)11-17

數(shù)學(xué)人教版八年級(jí)上冊(cè)知識(shí)點(diǎn)07-31

中考八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)11-09

人教版八年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)10-08

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱11-16

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)(15篇)01-22

最新文章