有關(guān)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在現(xiàn)實(shí)學(xué)習(xí)生活中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?以下是小編整理的有關(guān)數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
⑴線(xiàn)段的重心就是線(xiàn)段的中點(diǎn);
⑵平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線(xiàn)的交點(diǎn);
、侨切蔚娜龡l中線(xiàn)交于一點(diǎn),這一點(diǎn)就是三角形的重心;
⑷任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線(xiàn)的交點(diǎn)就是這個(gè)多邊形的重心。
提示:
、艧o(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);
⑵從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見(jiàn)圖形重心的性質(zhì):
、啪(xiàn)段的重心把線(xiàn)段分為兩等份;
、破叫兴倪呅蔚闹匦陌褜(duì)角線(xiàn)分為兩等份;
⑶三角形的重心把中線(xiàn)分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。
上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列?荚嚤乜。等差等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì)做的類(lèi)型?荚囶}中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。
第三章:不等式。這一章一般用線(xiàn)性規(guī)劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線(xiàn)性規(guī)劃圖。然后再根據(jù)實(shí)際問(wèn)題的限制要求求最值。
選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線(xiàn)和導(dǎo)數(shù):邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會(huì)用選擇題考這一知識(shí)點(diǎn),難度不大;圓錐曲線(xiàn)一般作為考試的壓軸題出現(xiàn)。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線(xiàn)方程,只要記住圓錐曲線(xiàn)的表達(dá)式難度就不大。后面兩到三問(wèn)難打一般會(huì)很大,而且較費(fèi)時(shí)間。所以不建議做。
這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會(huì)考察用導(dǎo)數(shù)求最值,會(huì)用導(dǎo)數(shù)公式就難度不大。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。
二、平面向量和三角函數(shù)
對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
四、空間向量和立體幾何
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
五、概率和統(tǒng)計(jì)
概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。
六、解析幾何
這部分內(nèi)容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(zhǎng)問(wèn)題;第四類(lèi)是對(duì)稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準(zhǔn)確度。
七、壓軸題
同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
圓的方程定義:
圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線(xiàn)和圓的位置關(guān)系:
1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。
、佴>0,直線(xiàn)和圓相交、②Δ=0,直線(xiàn)和圓相切、③Δ<0,直線(xiàn)和圓相離。
方法二是幾何的觀點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。
、賒R,直線(xiàn)和圓相離、
2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程、求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。
3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題。
切線(xiàn)的性質(zhì)
⑴圓心到切線(xiàn)的距離等于圓的半徑;
、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);
、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);
、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;
當(dāng)一條直線(xiàn)滿(mǎn)足
。1)過(guò)圓心;
。2)過(guò)切點(diǎn);
。3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。
切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
切線(xiàn)長(zhǎng)定理
從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(zhǎng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
第一部分集合
。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;
。2)注意:討論的時(shí)候不要遺忘了的情況。
第二部分函數(shù)與導(dǎo)數(shù)
1、映射:注意
①第一個(gè)集合中的元素必須有象;
②一對(duì)一,或多對(duì)一。
2、函數(shù)值域的求法:
、俜治龇ǎ
、谂浞椒;
③判別式法;
、芾煤瘮(shù)單調(diào)性;
、輷Q元法;
、蘩镁挡坏仁剑
、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);
⑧利用函數(shù)有界性;
、釋(dǎo)數(shù)法
3、復(fù)合函數(shù)的有關(guān)問(wèn)題
。1)復(fù)合函數(shù)定義域求法:
、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。
②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。
(2)復(fù)合函數(shù)單調(diào)性的判定:
、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
、鄹鶕(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。
4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。
5、函數(shù)的奇偶性
(1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;
(2)是奇函數(shù);
。3)是偶函數(shù);
。4)奇函數(shù)在原點(diǎn)有定義,則;
(5)在關(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;
。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。
、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的.射影也組成一個(gè)直角三角形。
⑶特殊棱錐的頂點(diǎn)在底面的射影位置:
、倮忮F的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。
②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。
③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。
、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。
、萑忮F有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心。
⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心。
、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;
、嗝總(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑。
[注]:
i、各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)
ii、若一個(gè)三角錐,兩條對(duì)角線(xiàn)互相垂直,則第三對(duì)角線(xiàn)必然垂直。
簡(jiǎn)證:AB⊥CD,AC⊥BD
BC⊥AD。令得,已知?jiǎng)t。
iii、空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形。
iv、若是四邊長(zhǎng)與對(duì)角線(xiàn)分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形。
簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形
EFGH為長(zhǎng)方形。若對(duì)角線(xiàn)等,則為正方形。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
正數(shù)和負(fù)數(shù)
⒈、正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
。1)0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
。2)0是正數(shù)和負(fù)數(shù)的分界線(xiàn),0既不是正數(shù),也不是負(fù)數(shù)。如:
。3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。
有理數(shù)
有理數(shù)的概念
。1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù))
。2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù)
(3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。
、佴惺菬o(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。
、谟邢扌(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。
、壅麛(shù)也能化成分?jǐn)?shù),也是有理數(shù)
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。
例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。
3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。
什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀、公理的方法來(lái)下定義。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對(duì)象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。
集合與集合之間的關(guān)系
某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
。ㄕf(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作AB。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作AB。中學(xué)教材課本里將符號(hào)下加了一個(gè)符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。
理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。
理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。
掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問(wèn)題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
角的性質(zhì):
。1)角的大小與邊的長(zhǎng)短無(wú)關(guān),只與構(gòu)成角的兩條射線(xiàn)的幅度大小有關(guān)。
。2)角的大小可以度量,可以比較
。3)角可以參與運(yùn)算。
時(shí)針問(wèn)題:
時(shí)針每小時(shí)300,每分鐘0.50;分針每分鐘60;時(shí)針與分針每分鐘差5.50。
時(shí)針與分針夾角=分×5.50—時(shí)×300(分針靠近12點(diǎn))
時(shí)針與分針夾角=時(shí)×300—分×5.50(時(shí)針靠近12點(diǎn))
若結(jié)果大于1800,另一角度用3600減這個(gè)角度。
經(jīng)過(guò)多少時(shí)間重合、垂直、在一條線(xiàn)上,用求出的重合、垂直、在一條線(xiàn)上的時(shí)間減去現(xiàn)在的時(shí)間。追及問(wèn)題還可用追及度數(shù)/5.5。
角的平分線(xiàn)
從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
多邊形
由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉平面圖形,叫做多邊形。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以把這個(gè)n邊形分割成(n—2)個(gè)三角形。n邊形內(nèi)角和等于(n—2)×1800,正多邊形(每條邊都相等,每個(gè)內(nèi)角都相等的多邊形)的每個(gè)內(nèi)角都等于(n—2)×1800/n
過(guò)n邊形一個(gè)頂點(diǎn)有(n—3)條對(duì)角線(xiàn),n邊形共(n—3)×n/2條對(duì)角線(xiàn)。
圓、弧、扇形
圓:平面上一條線(xiàn)段繞著固定的一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)稱(chēng)為圓心
。簣A上A、B兩點(diǎn)之間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。
扇形:由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形。
圓心角:頂點(diǎn)在圓心的角叫圓心角。
【有關(guān)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
數(shù)學(xué)相似知識(shí)點(diǎn)總結(jié)12-08
數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)08-04
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-26
高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)11-26
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-27
小學(xué)數(shù)學(xué)有關(guān)方向的知識(shí)點(diǎn)02-18
小升初數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-13
數(shù)學(xué)高中必修二知識(shí)點(diǎn)總結(jié)10-18