- 相關(guān)推薦
六年級上冊數(shù)學人教版復習資料
六年級上冊數(shù)學人教版復習資料1
分數(shù)乘法
(一)分數(shù)乘法的意義:
1、分數(shù)乘整數(shù)與整數(shù)乘法的意義相同。都是求幾個相同加數(shù)的和的簡便運算。
例如:65×5表示求5個65的'和是多少? 1/3×5表示求5個1/3的和是多少?
2、一個數(shù)乘分數(shù)的意義是求一個數(shù)的幾分之幾是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分數(shù)乘法的計算法則:
1、分數(shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)
2、分數(shù)與分數(shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。注意:當帶分數(shù)進行乘法計算時,要先把帶分數(shù)化成假分數(shù)再進行計算。
3、為了計算簡便,能約分的要先約分,再計算。(盡量約分,不會約分的就不約,?嫉馁|(zhì)因數(shù)有11×11=121;13×13=169;17×17=289;19×19=361)
4、小數(shù)乘分數(shù),可以先把小數(shù)化為分數(shù),也可以把分數(shù)化成小數(shù)再計算(建議把小數(shù)化分數(shù)再計算)。
(三)、 乘法中比較大小的規(guī)律
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。
一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。
一個數(shù)(0除外)乘1,積等于這個數(shù)。
(四)、分數(shù)混合運算的運算順序和整數(shù)的運算順序相同。整數(shù)乘法的交換律、結(jié)合律和分配律,對于分數(shù)乘法也同樣適用。
乘法交換律: a × b = b × a
乘法結(jié)合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
六年級上冊數(shù)學人教版復習資料2
圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。用字母S表示。
2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
3、圓面積公式的推導:
。1)、用逐漸逼近的轉(zhuǎn)化思想:體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。
。2)、把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。
。3)、拼出的圖形與圓的周長和半徑的關(guān)系。
4、環(huán)形的`面積:
一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度。)
S環(huán)= πR?—πr?或
環(huán)形的面積公式:S環(huán)=π(R?—r?)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。
而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。
例如:
在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。
6、兩個圓:半徑比=直徑比=周長比;而面積比等于這比的平方。
例如:
兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
。1)、每條跑道的長度=兩個半圓形跑道合成的圓的周長+兩個直道的長度。
。2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)
(3)、每相鄰兩個跑道相隔的距離是:2×π×跑道的寬度
。4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
11、常用各π值結(jié)果:
2π = 6。28 3π = 9。42
4π = 12。56 5π = 15。7
6π = 18。84 7π = 21。98
8π = 25。12 9π = 28。26
10π = 31。4 16π = 50。24
25π = 78。5 36π = 113。04
64π = 200。96 96π = 301。44
六年級上冊數(shù)學人教版復習資料3
1、圓的定義:
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
2、圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,半圓既不是優(yōu)弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
3、圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4、內(nèi)心和外心:和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。
5、扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
6、圓的種類:整體圓形,弧形圓,扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。
7、圓和點的位置關(guān)系:圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),0≤PO
8、百分數(shù)的由來:200多年前,瑞士數(shù)學家歐拉,在《通用算術(shù)》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數(shù)來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數(shù),我們把它叫做分數(shù)。而后,人們在分數(shù)的基礎(chǔ)上又以100做基數(shù),發(fā)明了百分數(shù)。
數(shù)與代數(shù)
一、分數(shù)乘法
。ㄒ唬┓謹(shù)乘法的計算法則:
1、分數(shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)
2、分數(shù)與分數(shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數(shù)進行乘法計算時,要先把帶分數(shù)化成假分數(shù)再進行計算。
。ǘ┮(guī)律:(乘法中比較大小時)
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。
一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。
一個數(shù)(0除外)乘1,積等于這個數(shù)。
。ㄈ┓謹(shù)混合運算的運算順序和整數(shù)的運算順序相同。
。ㄋ模┱麛(shù)乘法的交換律、結(jié)合律和分配律,對于分數(shù)乘法也同樣適用。
乘法交換律:a×b=b×a
乘法結(jié)合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
二、分數(shù)乘法的解決問題(詳細見重難點分解)
。ㄒ阎獑挝弧1”的量(用乘法),求單位“1”的幾分之幾是多少)
1、找單位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一個數(shù)的幾倍:一個數(shù)×幾倍;求一個數(shù)的幾分之幾是多少:一個數(shù)×。
3、寫數(shù)量關(guān)系式技巧:
“的”相當于“×”(乘號)
“占”、“是”、“比”“相當于”相當于“=”(等號)
分率前是“的”:
單位“1”的量×分率=分率對應(yīng)量
分率前是“多或少”的意思:
單位“1”的量×(1±分率)=分率的對應(yīng)量
分數(shù)除法
。ㄒ唬┑箶(shù)
1、倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。
強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨存在。(要說清誰是誰的倒數(shù))。
2、求倒數(shù)的方法:(原數(shù)與倒數(shù)之間不要寫等號哦)
求分數(shù)的倒數(shù):交換分子分母的位置。
求整數(shù)的倒數(shù):把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。
求帶分數(shù)的倒數(shù):把帶分數(shù)化為假分數(shù),再求倒數(shù)。
。4)求小數(shù)的倒數(shù):把小數(shù)化為分數(shù),再求倒數(shù)。
3、因為1×1=1,1的倒數(shù)是1;
因為找不到與0相乘得1的數(shù)0沒有倒數(shù)。
4、對于任意數(shù)a(a≠0),它的倒數(shù)為1/a;非零整數(shù)a的倒數(shù)為1/a;分數(shù)b/a的倒數(shù)是a/b;
5、真分數(shù)的倒數(shù)大于1;假分數(shù)的倒數(shù)小于或等于1;帶分數(shù)的倒數(shù)小于1。
。ǘ┓謹(shù)除法
1、分數(shù)除法的意義:
分數(shù)除法與整數(shù)除法的意義相同,表示已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算。
2、分數(shù)除法的計算法則:除以一個不為0的數(shù),等于乘這個數(shù)的倒數(shù)。
3、規(guī)律(分數(shù)除法比較大小時):
當除數(shù)大于1,商小于被除數(shù);
當除數(shù)小于1(不等于0),商大于被除數(shù);
、當除數(shù)等于1,商等于被除數(shù)。
4、“[]”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的,再算中括號里面的。
。ㄈ┓謹(shù)除法解決問題(詳細見重難點分解)
。ㄎ粗獑挝弧1”的量(用除法):已知單位“1”的幾分之幾是多少,求單位“1”的量。)
1、數(shù)量關(guān)系式和分數(shù)乘法解決問題中的關(guān)系式相同:
分率前是“的”:
單位“1”的量×分率=分率對應(yīng)量
分率前是“多或少”的意思:
單位“1”的量×(1分率)=分率對應(yīng)量
2、解法:(建議:用方程解答)
方程:根據(jù)數(shù)量關(guān)系式設(shè)未知量為x,用方程解答。
算術(shù)(用除法):分率對應(yīng)量÷對應(yīng)分率=單位“1”的量
3、求一個數(shù)是另一個數(shù)的幾分之幾:就用一個數(shù)÷另一個數(shù)
4、求一個數(shù)比另一個數(shù)多(少)幾分之幾:
、偾蠖鄮追种畮祝捍髷(shù)÷小數(shù)–1
②求少幾分之幾:1—小數(shù)÷大數(shù)
或①求多幾分之幾(大數(shù)—小數(shù))÷小數(shù)
、谇笊賻追种畮祝海ù髷(shù)—小數(shù))÷大數(shù)
(四)比和比的應(yīng)用
1、比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。
2、在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值(比值通常用分數(shù)表示,也可以用小數(shù)或整數(shù)表示)。
例如
15:10=15÷10=1、5
∶∶∶∶
前項比號后項比值
3、比可以表示兩個相同量的.關(guān)系,即倍數(shù)關(guān)系。也可以表示兩個不同量的比,得到一個新量。
例:路程÷速度=時間。
4、區(qū)分比和比值
比:表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分數(shù)表示。
比值:相當于商,是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。
5、根據(jù)分數(shù)與除法的關(guān)系,兩個數(shù)的比也可以寫成分數(shù)形式。
6、比和除法、分數(shù)的聯(lián)系:
7、比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。
8、根據(jù)比與除法、分數(shù)的關(guān)系,可以理解比的后項不能為0。
體育比賽中出現(xiàn)兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關(guān)系。
(五)比的基本性質(zhì)
1、根據(jù)比、除法、分數(shù)的關(guān)系:
商不變的性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)時(0除外),分數(shù)值不變。
比的基本性質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
2、最簡整數(shù)比:比的前項和后項都是整數(shù),并且是互質(zhì)數(shù),這樣的比就是最簡整數(shù)比。
3、根據(jù)比的基本性質(zhì),可以把比化成最簡單的整數(shù)比。
4、化簡比:
用比的基本性質(zhì)化簡
①用比的前項和后項同時除以它們的公因數(shù)。
②兩個分數(shù)的比:用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。
、蹆蓚小數(shù)的比:向右移動小數(shù)點的位置,先化成整數(shù)比再化簡。
用求比值的方法。注意:最后結(jié)果要寫成比的形式。
5、按比例分配:把一個數(shù)量按照一定的比來進行分配。這種方法通常叫做按比例分配。
如:已知兩個量之比為,則設(shè)這兩個量分別為。
6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)
工作總量一定,工作效率和工作時間成反比。
(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)
百分數(shù)
(一)百分數(shù)的意義和寫法
1、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。
百分數(shù)是指的兩個數(shù)的比,因此也叫百分率或百分比。
2、百分數(shù)和分數(shù)的主要聯(lián)系與區(qū)別:
聯(lián)系:都可以表示兩個量的倍比關(guān)系。
區(qū)別:
、僖饬x不同:百分數(shù)只表示兩個數(shù)的倍比關(guān)系,不能表示具體的數(shù)量,所以不能帶單位;
分數(shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關(guān)系,表示具本數(shù)時可以帶單位。
②、百分數(shù)的分子可以是整數(shù),也可以是小數(shù);
分數(shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。
3、百分數(shù)的寫法:通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。
(二)百分數(shù)與小數(shù)的互化:
1、小數(shù)化成百分數(shù):把小數(shù)點向右移動兩位,同時在后面添上百分號。
2、百分數(shù)化成小數(shù):把小數(shù)點向左移動兩位,同時去掉百分號。
。ㄈ┌俜謹(shù)的和分數(shù)的互化
1、百分數(shù)化成分數(shù):
先把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分母是否100的分數(shù),能約分要約成最簡分數(shù)。
2、分數(shù)化成百分數(shù):
、儆梅謹(shù)的基本性質(zhì),把分數(shù)分母擴大或縮小成分母是100的分數(shù),再寫成百分數(shù)形式。
、谙劝逊謹(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
(四)常見的分數(shù)與小數(shù)、百分數(shù)之間的互化
六年級上冊數(shù)學人教版復習資料4
一、學習目標:
1、使學生能在方格紙上用數(shù)對確定位置;
2、使學生理解分數(shù)乘法的意義,掌握分數(shù)乘法的計算法則,并能熟練地進行計算;
3、使學生理解倒數(shù)的意義,掌握求倒數(shù)的方法;
4、理解并掌握分數(shù)除法的計算方法,會進行分數(shù)除法計算;
5、理解比的意義,知道比與分數(shù)、除法的關(guān)系,并能類推出比的基本性質(zhì)。能夠正確地化簡比和求比值;
6、使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關(guān)系;理解圓周率的意義,掌握圓周率的近似值。
7、使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。
二、學習難點:
1、能用數(shù)對表示物體的位置,正確區(qū)分列和行的順序;
2、使學生理解分數(shù)乘整數(shù)的意義,掌握分數(shù)乘整數(shù)的計算方法;
3、掌握求倒數(shù)的方法;
4、圓的周長和圓周率的意義,圓周長公式的推導過程;
5、百分數(shù)的意義,求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題;
6、理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓;
7、理解比的意義。
三、知識點概念總結(jié):
1、分數(shù)乘法:分數(shù)的分子與分子相乘,分母與分母相乘,能約分的要先約分。
2、分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3、分數(shù)乘法意義:分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4、分數(shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸
5、倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
6、分數(shù)的倒數(shù):找一個分數(shù)的倒數(shù),例如3/4,把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/3,3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
7、整數(shù)的倒數(shù):找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。
8、小數(shù)的倒數(shù):
普通算法:找一個小數(shù)的倒數(shù),例如0、25,把0、25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1
9、用1計算法:也可以用1去除以這個數(shù),例如0、25,1/0、25等于4,所以0、25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。
10、分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。
11、分數(shù)除法計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
12、分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
13、分數(shù)除法應(yīng)用題:先找單位1、單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。
14、比和比例:比和比例一直是學數(shù)學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。
所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個。
15、比的基本性質(zhì):比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。比的性質(zhì)用于化簡比。
比表示兩個數(shù)相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。
16、比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積。比例的性質(zhì)用于解比例。
17、比和比例的區(qū)別:
意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。a:b=3:4這是比例。
比的基本性質(zhì)和比例的基本性質(zhì)意義不同、應(yīng)用不同。比的性質(zhì):比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積相等。比例的性質(zhì)用于解比例。聯(lián)系:比例是由兩個相等的比組成。
18、比和比例的意義:
比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的.含義而另一種形式,分數(shù)有括號的含義!
19、比和比例的聯(lián)系:
比和比例有著密切聯(lián)系。比是研究兩個量之間的關(guān)系,所以它有兩項;比例是研究相關(guān)聯(lián)的兩種量中兩組相對應(yīng)數(shù)的關(guān)系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發(fā)展,如果把比例式中右邊的比看成一個數(shù),比和比例此時又可以統(tǒng)一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。
20、圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
21、圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示
22、直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
23、半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一。d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
24、圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
25、圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3、14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
26、圓的面積公式:圓所占平面的大小叫做圓的面積。πr2;用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
27、周長計算公式:
已知直徑:C=πd
已知半徑:C=2πr
已知周長:D=c/π
。4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
28、面積計算公式:
已知半徑:S=πr2
已知直徑:S=π(d/2)2
已知周長:S=π[c÷(2π)]2
29、百分數(shù)與分數(shù)的區(qū)別:
意義不同。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)!彼荒鼙硎緝蓴(shù)之間的倍數(shù)關(guān)系,不能表示某一具體數(shù)量。因此,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分數(shù)還可以表示兩數(shù)之間的倍數(shù)關(guān)系、
應(yīng)用范圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計、分析與比較。而分數(shù)常常是在測量、計算中,得不到整數(shù)結(jié)果時使用。
書寫形式不同。百分數(shù)通常不寫成分數(shù)形式,而采用百分號“%”來表示。因此,不論百分數(shù)的分子、分母之間有多少個公約數(shù),都不約分;百分數(shù)的分子可以是自然數(shù),也可以是小數(shù)。
而分數(shù)的分子只能是自然數(shù),它的表示形式有:真分數(shù)、假分數(shù)、帶分數(shù),計算結(jié)果不是最簡分數(shù)的一般要通過約分化成最簡分數(shù),是假分數(shù)的要化成帶分數(shù)。任何一個百分數(shù)都可以寫成分母是100的分數(shù),而分母是100的分數(shù)并不都具有百分數(shù)的意義、
。4)百分數(shù)不能帶單位名稱;當分數(shù)表示具體數(shù)時可帶單位名稱。
30、百分數(shù)應(yīng)用:
百分數(shù)一般有三種情況:①100%以上,如:增長率、增產(chǎn)率等。②100%以下,如:發(fā)芽率、成長率等。③剛好100%,如:正確率,合格率等。
31、百分數(shù)的意義:
百分數(shù)只可以表示分率,而不能表示具體量,所以不能帶單位。百分數(shù)概念的形成應(yīng)以學生實際生活中的事例或工農(nóng)業(yè)生產(chǎn)中的事例引入。
32、日常應(yīng)用:
每天在電視里的天氣預報節(jié)目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應(yīng)增加衣服。20%、10%讓人一目了然,既清楚又簡練。
六年級上冊數(shù)學人教版復習資料5
圓的認識
一、認識圓形
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。直徑是一個圓內(nèi)最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同一個圓內(nèi)或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的1/2。用字母表示為:d=2r或r=d/2
8、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。只有2條對稱軸的圖形是:長方形;只有3條對稱軸的圖形是:等邊三角形;只有4條對稱軸的圖形是:正方形;有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。
11、畫對稱軸要用鉛筆畫,同時要用尺子(三角板)畫出虛線,這條虛線兩端要超出圖形一點。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:(滾動法)在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,得到圓的周長。或者用線圍繞圓形紙片一周量出線的長度就是圓的周長(測繩法)。
發(fā)現(xiàn),圓周長與它直徑的比值(圓周長除以直徑)是一個固定數(shù)即3倍多一點,我們把它叫做圓周率用字母π表示。
3、圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。用字母π(pai)表示。世界上第一個把圓周率算出來的人是我國的數(shù)學家祖沖之。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π≈3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
4、圓的周長公式:圓的周長等于圓周率乘直徑用字母表示C=πd
(1)、已知圓的周長求直徑用圓的周長除以圓周率,用字母表示
d=C÷π或圓的周長等于2乘圓周率乘半徑,用字母表示C=2πr
(2)、已知圓的周長求半徑用圓的周長除以圓周率的2倍,
用字母表示r=C÷2π(r=C/2π)
5、在一個正方形里畫一個的圓,圓的直徑等于正方形的邊長。在一個長方形里畫一個的圓,圓的直徑等于長方形的寬。
6、區(qū)分周長的一半和半圓的周長:
(1)、周長的一半:等于圓的周長÷2
計算方法:2πr÷2即C半=πr
(2)半圓的周長:等于圓的周長的一半加直徑。計算方法:半圓的周長=5.14r(推導過程C半=2πr÷2+d=πr+d=πr+2r=5.14r)
三、圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。用字母S表示。
2、圓面積公式的推導:(1)把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的'圖像越接近長方形。長方形的長相當于圓的周長的一半,長方形的寬相當于圓的半徑。
(2)拼出的圖形與圓的周長和半徑的關(guān)系。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
3、圓面積的計算方法:因為:長方形面積=長×寬
所以:圓的面積=圓周長的一半×圓的半徑
即S圓=C÷2×r=πr×r=πr
圓的面積公式:S圓=πr→r=S圓÷π
4、環(huán)形的面積:一個環(huán)形,外圓的半徑用字母R表示,內(nèi)圓的半徑用字母r表示。(R=r+環(huán)的寬度.)
S環(huán)=πR-πr或環(huán)形的面積公式:S環(huán)=π(R-r)(建議用這個公式)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。
例如:在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大3的平方倍得到9倍。
6、兩個圓:半徑比=直徑比=周長比;而面積比等于這比的平方。
例如:兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓的周長最短。
9、常用各π值結(jié)果:π=3.14;2π=6.28;5π=15.7
10、外方內(nèi)圓(內(nèi)切圓)公式S=0.86r推導過程:S=S正-S圓=d-πr=2r×2r-πr=4r-πr=r×(4-π)=0.86r
11、外圓內(nèi)方(外切圓)公式S=1.14r推導過程:S=S圓-S正=πr-dr/2×2=2r×r/2×r=πr-2r=r×(π-2)=1.14r(把正方形看成兩個面積相等的三角形,三角形的底就是直徑,高是半徑)
12、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。扇形的面積與圓心角大小和半徑長短有關(guān)。
13、S扇=S圓×n/360;S扇環(huán)=S環(huán)×n/360
14、扇形也是軸對稱圖形,有一條對稱軸。
15、常見半徑與直徑的周長和面積的結(jié)果。
半徑半徑的平方直徑周長面積
1126.283.14
24412.5612.56
39618.8428.26
416825.1250.24
5251031.478.5
6361237.68113.04
7491443.96153.86
8641650.24200.96
9811856.52254.34
101002062.8314
1.52.2539.427.065
2.56.25515.719.625
3.512.25721.9838.465
4.520.35928.2663.585
5.530.251134.5494.985
7.556.251547.1176.625
六年級上冊數(shù)學人教版復習資料6
圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。 用字母S表示。
2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
3、圓面積公式的推導:
(1)、用逐漸逼近的轉(zhuǎn)化思想: 體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。
(2)、把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。
(3)、拼出的圖形與圓的周長和半徑的關(guān)系。
4、環(huán)形的面積:
一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度.)
S環(huán) = πR2-πr2或
環(huán)形的面積公式: S環(huán)=π(R2-r2)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。
而面積擴大或縮小的倍數(shù)是這倍數(shù)的.平方倍。
例如:
在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。
6、兩個圓:半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。
例如:
兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π
8、當長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。
(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)
(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度
(4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
11、常用各π值結(jié)果:
2π = 6.28 3π = 9.42
4π = 12.56 5π = 15.7
6π = 18.84 7π = 21.98
8π = 25.12 9π = 28.26
10π = 31.4 16π = 50.24
25π = 78.5 36π = 113.04
64π = 200.96 96π = 301.44
六年級上冊數(shù)學人教版復習資料7
認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等。
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內(nèi)最長的線段。
5、圓心確定圓的.位置,半徑確定圓的大小。
6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的 。
用字母表示為:d=2r或r=d/2
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。
折痕所在的這條直線叫做對稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是:長方形
只有3條對稱軸的圖形是:等邊三角形
只有4條對稱軸的圖形是:正方形
有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。
六年級上冊數(shù)學人教版復習資料8
(一)、比的意義
1、比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。
2、在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
例如15:10=15÷10=3/2(比值通常用分數(shù)表示,也可以用小數(shù)或整數(shù)表示)
15∶10=3/2
前項比號后項比值
3、比可以表示兩個相同量的關(guān)系,即倍數(shù)關(guān)系。例:長是寬的幾倍。
也可以表示兩個不同量的比,得到一個新量。例:路程÷速度=時間。
4、區(qū)分比和比值
比:表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分數(shù)表示。
比值:相當于商,是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。
5、根據(jù)分數(shù)與除法的關(guān)系,兩個數(shù)的比也可以寫成分數(shù)形式。
6、比和除法、分數(shù)的聯(lián)系:
比前項比號“:”后項比值
除法被除數(shù)除號“÷”除數(shù)商
分數(shù)分子分數(shù)線“—”分母分數(shù)值
7、比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。
8、根據(jù)比與除法、分數(shù)的關(guān)系,可以理解比的后項不能為0。
9、體育比賽中出現(xiàn)兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關(guān)系。
10、求比值:用前項除以后項,結(jié)果是寫為分數(shù)(不會約分的就不約分)
例如:15∶10=15÷10=15/10=3/2
(二)、比的基本性質(zhì)
1、根據(jù)比、除法、分數(shù)的關(guān)系:
商不變的性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)時(0除外),分數(shù)值不變。
比的'基本性質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
2、最簡整數(shù)比:比的前項和后項都是整數(shù),并且是互質(zhì)數(shù),這樣的比就是最簡整數(shù)比。
3、根據(jù)比的基本性質(zhì),可以把比化成最簡單的整數(shù)比。
4.化簡比:
(2)用求比值的方法。注意:最后結(jié)果要寫成比的形式。
例如:15∶10=15÷10=15/10=3/2=3∶2
還可以15∶10=15÷10=3/2最簡整數(shù)比是3∶2
5、比中有單位的,化簡和求比值時要把單位化相同再化簡和求比值,結(jié)果沒有單位。
6.按比例分配:把一個數(shù)量按照一定的比來進行分配。這種方法通常叫做按比例分配。一般有兩種解題法
1,用分率解:按比例分配通常把總量看作單位一,即轉(zhuǎn)化成分率。要先求出總份數(shù),再求出幾份占總份數(shù)的幾分之幾,最后再用總量分別乘幾分之幾。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
1+4=5糖占1/5用25×1/5得到糖的數(shù)量,水占4/5用25×4/5得到水的數(shù)量。
2,用份數(shù)解:要先求出總份數(shù),再求出每一份是多少,最后分別求出幾份是多少。
例如:有糖水25克,糖和水的比為1:4,糖和水分別有幾克?
糖和水的份數(shù)一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
六年級上冊數(shù)學人教版復習資料9
百分數(shù)
一、百分數(shù)的意義和寫法
(一)、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。百分數(shù)是指的兩個數(shù)的比,因此也叫百分率或百分比。
(二)、百分數(shù)和分數(shù)的.主要聯(lián)系與區(qū)別:
聯(lián)系:都可以表示兩個量的倍比關(guān)系。
區(qū)別:①、意義不同:百分數(shù)只表示兩個數(shù)的倍比關(guān)系,不能表示具體的數(shù)量,所以不能帶單位;
分數(shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關(guān)系,表示具體數(shù)時可以帶單位。
②、百分數(shù)的分子可以是整數(shù),也可以是小數(shù);
分數(shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。
3、百分數(shù)的寫法:通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示,讀作百分之。
二、百分數(shù)和分數(shù)、小數(shù)的互化
(一)百分數(shù)與小數(shù)的互化:
1、小數(shù)化成百分數(shù):把小數(shù)點向右移動兩位(數(shù)位不夠用0補足),同時在后面添上百分號。
2.百分數(shù)化成小數(shù):把小數(shù)點向左移動兩位(數(shù)位不夠用0補足),同時去掉百分號。
(二)百分數(shù)的和分數(shù)的互化
1、百分數(shù)化成分數(shù):先把百分數(shù)改寫成分母是100的分數(shù),能約分要約成最簡分數(shù)。
2、分數(shù)化成百分數(shù):
、儆梅謹(shù)的基本性質(zhì),把分數(shù)分母擴大或縮小成分母是100的分數(shù),再寫成百分數(shù)形式。
、谙劝逊謹(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。(建議用這種方法)
(三)常見分數(shù)小數(shù)百分數(shù)之間的互化;
六年級上冊數(shù)學人教版復習資料10
扇形統(tǒng)計圖
一、扇形統(tǒng)計圖的意義:
用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分數(shù)量同總數(shù)之間的關(guān)系。
也就是各部分數(shù)量占總數(shù)的百分比(因此也叫百分比圖)。
二、常用統(tǒng)計圖的優(yōu)點:
1、條形統(tǒng)計圖:可以清楚的看出各種數(shù)量的多少。
2、折線統(tǒng)計圖:不僅可以看出各種數(shù)量的'多少,還可以清晰看出數(shù)量的增減變化情況。
3、扇形統(tǒng)計圖:能夠清楚的反映出各部分數(shù)量同總數(shù)之間的關(guān)系。
三、扇形的面積大。涸谕粋圓中,扇形的大小與這個扇形的圓心角的大小有關(guān),圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數(shù)占圓周角度數(shù)的百分比。)
六年級上冊數(shù)學人教版復習資料11
圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(shù)(π)。
3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。用字母π(pai) 表示。
(1)一個圓的周長總是它直徑的`3倍多一些,這個比值是一個固定的數(shù)。圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π ≈ 3.14。
(2)在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)世界上第一個把圓周率算出來的人是我國的數(shù)學家祖沖之。
4、圓的周長公式
5、在一個正方形里畫一個的圓,圓的直徑等于正方形的邊長。
在一個長方形里畫一個的圓,圓的直徑等于長方形的寬。
6、區(qū)分周長的一半和半圓的周長:
(1)周長的一半:等于圓的周長÷2
計算方法:2πr÷2 即 πr
(2)半圓的周長:等于圓的周長的一半加直徑。
計算方法:πr+2r
六年級上冊數(shù)學人教版復習資料12
用百分數(shù)解決問題
(一)一般應(yīng)用題
1、常見的百分率的計算方法:
一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。
2、求一個數(shù)是另一個數(shù)的百分之幾用一個數(shù)除以另一個數(shù),結(jié)果寫為百分數(shù)形式。
例如:例如:男生有20人,女生有15人,女生人數(shù)占男生人數(shù)的百分之幾。
列式是:15÷20=15/20=75﹪
3、已知單位“1”的量(用乘法),求單位“1”的百分之幾是多少的.問題,數(shù)量關(guān)系式和分數(shù)乘法解決問題中的關(guān)系式相同:
(1)百分率前是“的”:單位“1”的量×百分率=百分率對應(yīng)量
(2百分率前是“多或少”的數(shù)量關(guān)系:
單位“1”的量×(1±百分率)=百分率對應(yīng)量
4、未知單位“1”的量(用除法),已知單位“1”的百分之幾是多少,求單位“1”。方法與分數(shù)的方法相同。
解法:(1)方程:根據(jù)數(shù)量關(guān)系式設(shè)未知量為X,用方程解答。
(2)算術(shù)(用除法):百分率對應(yīng)量÷對應(yīng)百分率=單位“1”的量
5、求一個數(shù)比另一個數(shù)多(少)百分之幾的方法與分數(shù)的方法相同。只是結(jié)果要寫為百分數(shù)形式。看百分率前有沒有比多或比少的問題;
百分率前是“多或少”的關(guān)系式:
(比少):具體量÷(1-百分率)=單位“1”的量;
例如:大米有50千克,比面粉樹少50﹪,面粉有多少千克。
列式是:50÷(1-50﹪)
(比多):具體量÷(1+百分率)=單位“1”的量
例如:工人做110個零件,比原計劃多做了10﹪,原計劃做多少個?
列式是:110÷(1+10﹪)
6、求一個數(shù)比另一個數(shù)多百分之幾的方法:方法與分數(shù)的方法相同。
用兩個數(shù)的相差量÷單位“1”的量=百分之幾
即①求一個數(shù)比另一個數(shù)多百分之幾:用(大數(shù)–小數(shù))÷另一個數(shù)(比那個數(shù)就除以那個數(shù)),結(jié)果寫為百分數(shù)形式。
甲比乙多幾分之幾的問題,方法A,(甲-乙)÷乙(建議用)
方法B,甲÷乙-100﹪
例如:老師計劃改40本作業(yè),實際改了50本,實際比計劃多改了百分之幾?
列式是:(50-40)÷40=0.25=25﹪
②求一個數(shù)比另一個數(shù)少幾分之幾:用(大數(shù)–小數(shù))÷另一個數(shù)(比那個數(shù)就除以那個數(shù)),結(jié)果寫為百分數(shù)形式。
乙比甲少幾分之幾的問題,方法A,(甲-乙)÷甲(建議用)
方法B,100﹪-乙÷甲
例如:張三家用了100度電,李四家用了90度電,李四家比張三家少用百分之幾?
(100-90)÷100=0.1=10﹪
說明:多百分之幾不等于少百分之幾,因為單位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之幾,用a﹪÷(1±a﹪)
8、求價格先降a﹪又上升a﹪后的價格:1×(1-a﹪)×(1+a﹪)(假設(shè)原來的價格為“1”。求變化幅度(求降價后的價格是漲價后價格的百分之幾)用1-降價后又上升的百分率。
【六年級上冊數(shù)學復習資料】相關(guān)文章:
六年級上冊語文期末復習資料01-27
初一數(shù)學上冊知識點復習資料01-20
數(shù)學整理復習資料02-23
人教版六年級上冊英語期末復習資料12-16
二年級上冊數(shù)學總復習資料10-27
四年級上冊數(shù)學的期末復習資料01-21
初一上冊地理復習資料02-13
六年級上冊語文第一單元復習資料整理01-19
數(shù)學整理復習資料7篇02-24