- 相關推薦
八年級下冊數學知識重點總結(通用10篇)
總結就是把一個時間段取得的成績、存在的問題及得到的經驗和教訓進行一次全面系統(tǒng)的總結的書面材料,通過它可以全面地、系統(tǒng)地了解以往的學習和工作情況,為此我們要做好回顧,寫好總結。那么你真的懂得怎么寫總結嗎?以下是小編為大家收集的八年級下冊數學知識重點總結,僅供參考,希望能夠幫助到大家。
八年級下冊數學知識重點總結 1
八年級下冊數學知識
1、平均數
有n個數x1、x2、x3……xn,我們把叫做這n個數的算術平均數,簡稱平均數,記做(讀作“x拔”)
像這種形式的平均數叫做加權平均數,其中分母a1、a2……an表示各相同數據的個數,稱為權。權越大,對平均數的影響就越大,加權平均數的分母恰好為各權的和。
2、中位數和眾數
眾數:一組數據中出現次數最多的那個數據叫做這組數據的眾數。
中位數:將一組數據按從小到大(或從大到。┑捻樞蚺帕校挥谧钪虚g的一個數據(當數據個數為奇數時)或最中間兩個數的平均數(當數據個數為偶數時)叫做這組數據的中位數。
平均數、中位數和眾數都是數據的代表,它們從不同側面反映了數據的集中程度,但也存在各自的局限。如平均數容易受極端值得影響;眾數、中位數不能充分利用全部數據信息。
3、方差和標準差
在評價數據的穩(wěn)定性時,我們通常將各數據偏離平均數的波動程度作為指標。
各數據與平均數的差的平方的平均數叫做這組數據的方差。
方差越大,說明數據的波動越大,越不穩(wěn)定。
一組數據的方差的算術平方根稱為這組數據的標準差。
4、多邊形
在同一平面內,由不在同一條直線上的若干條線段(線段的條數不小于3)首尾順次相接形成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊。
邊數為n的多邊形叫n邊形(n為正整數,且n≥3)。
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形一邊的延長線與相鄰的另一邊所組成的角叫做多邊形的外角。多邊形每一個內角的頂點叫做多邊形的頂點,連結多邊形不相鄰兩個頂點的線段叫做多變形的對角線。
四邊形的內角和等于360o。
n邊形的內角和為(n—2)×180o(n≥3)。
任何多邊形的外角和為360o。
八年級必備數學知識
1、矩形
矩形:有一個角是直角的平行四邊形。
矩形的四個角都是直角,矩形的對角線相等。
有三個角是直角的四邊形是矩形。
對角線相等的平行四邊形是矩形。
2、菱形
菱形:有一組鄰邊相等的平行四邊形叫做菱形。
菱形的四條邊都相等。
菱形的對角線互相垂直,并且每條對角線平方一組對角。
四條邊相等的四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
3、正方形
正方形:有一組鄰邊相等,并且有一個角是直角的平行四邊形叫做正方形。
有一組鄰邊相等的'矩形是正方形。
有一個角是直角的菱形是正方形。
正方形的四個角都是直角,四條邊相等。
正方形的對角線相等,并且互相垂直平分,每條對角線平分一組對角。
4、反比例函數
函數叫做反比例函數,這里的x是自變量,y是關于x的函數,k叫做比例系數。
5、反比例函數的圖象和性質
反比例函數的圖象是由兩個分支組成的曲線。當k>0時,圖象在一、三象限;當k<0時,圖象在二、四象限。
反比例函數的圖象關于直角坐標系的原點成中心對稱。
當k>0時,在圖象所在的第一、三象限內,函數值y隨自變量x的增大而減;當k<0時,在圖象所在的第二、四象限內,函數值y隨自變量x的增大而增大。
6、反比例函數的應用
建立數學模型的過程,具體內容可概括為:
由實驗獲取數據——用描點法畫出圖象——根據圖象和數據判斷或估計函數的類別——用待定系數法求出函數關系式——用實驗數據驗證函數關系式——應用函數關系式解決問題
八年級下冊數學知識要點
三角形的初步知識
1.1認識三角形
三角形內角和為180度。
三角形任何兩邊之和大于第三邊。
在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
連結三角形的一個頂點與該頂點的對邊中點的線段,叫做三角形的中線。
從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線。
1.2定義與命題
定義:能清楚地規(guī)定某一名稱或術語的意義的句子叫做該名稱或術語的定義。
命題:判斷某一件事情的句子叫命題。
在數學上,命題一般由條件和結論兩部分組成,條件是已知事項,結論由已知事項得到的事項。
可以寫成“如果……那么……”的形式,其中以“如果”開始的部分是條件,“那么”后面的部分是結論。
正確的命題成為真命題,不正確的命題稱為假命題。
用推理的方法判斷為正確的命題叫做定理,定理也可以作為判斷其他命題真假的依據。
1.3證明
要判斷一個命題是真命題,往往需要從命題的條件出發(fā),根據已知的定義、基本事實、定理(包括推論),一步步推得結論成立。這樣的推理過程叫做證明。
三角形一邊的延長線和另一條相鄰的邊組成的角,叫做該三角形的外角。
三角形的外角和等于它不相鄰的兩個內角的和。
1.4全等三角形
能夠重合的兩個圖形稱為全等圖形。
能夠重合的兩個三角形叫做全等三角形。
兩個全等三角形重合時,能互相重合的頂點叫做全等三角形的對應頂點,互相重合的邊叫做全等三角形的對應邊,互相重合的角叫做全等三角形的對應角。
全等三角形的對應邊相等,對應角相等。
1.5三角形全等的判定
三邊對應相等的兩個三角形全等(簡寫成“邊邊邊”或“SSS”)
當三角形的三條邊長確定時,三角形的形狀、大小完全確定,這個性質叫做三角形的穩(wěn)定性,這是三角形特有的性質。
兩邊及其夾角對應相等的兩個三角形全等(簡寫成“邊角邊”或“SAS”)
垂直于一條線段,并且平分這條線段的直線叫做這條線段的垂直平分線,簡稱中垂線。
線段垂直平分線上的點到線段兩端的距離相等。
兩個角及其夾邊對應相等的兩個三角形全等(簡寫成“角邊角”或“ASA”)
兩角及其中一個角的對邊對應相等的兩個三角形全等(簡寫成“角角邊”或“AAS”)
八年級下冊數學知識重點總結 2
全等三角形知識點
1.全等圖形:能夠完全重合的兩個圖形就是全等圖形。
2.全等圖形的性質:全等多邊形的對應邊、對應角分別相等。
3.全等三角形:三角形是特殊的多邊形,因此,全等三角形的對應邊、對應角分別相等。同樣,如果兩個三角形的邊、角分別對應相等,那么這兩個三角形全等。
說明:
全等三角形對應邊上的高,中線相等,對應角的平分線相等;全等三角形的周長,面積也都相等。
這里要注意:
(1)周長相等的兩個三角形,不一定全等;
(2)面積相等的兩個三角形,也不一定全等。
小練習
1.下列說法中正確的說法為()
、偃葓D形的形狀相同、大小相等;②全等三角形的對應邊相等;③全等三角形的對應角相等;④全等三角形的周長、面積分別相等,A.①②③④B.①③④C.①②④D.②③④
2.一個正方形的側面展開圖有()個全等的正方形.
A.2個B.3個C.4個D.6個
3.對于兩個圖形,給出下列結論,其中能獲得這兩個圖形全等的結論共有()
、賰蓚圖形的周長相等;②兩個圖形的面積相等;③兩個圖形的周長和面積都相等;④兩個圖形的形狀相同,大小也相等.
A.1個B.2個C.3個D.4個
三角形全等的判定知識點
1、三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”,兩邊和它們的夾角對應相等的兩個三角形全等(“邊角邊”或“SAS”)。
(2)“角邊角”簡稱“ASA”,兩個角和它們的夾邊分別對應相等的兩個三角形全等(“角邊角”或“ASA”)。
(3)“邊邊邊”簡稱“SSS”,三邊對應相等的兩個三角形全等(“邊邊邊”或“SSS”)。
(4)“角角邊”簡稱“AAS”,有兩角和其中一角的對邊對應相等的兩個三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等.
斜邊和一條直角邊對應相等的兩個直角三角形全等(“斜邊、直角邊”或“HL”).
注意:兩邊一對角(SSA)和三角(AAA)對應相等的兩個三角形不一定全等。
小練習
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可補充的條件是______
核心考點:全等三角形的判定
2、王師傅在做完門框后,常常在門框上斜釘兩根木條,這樣做的數學原理是______
核心考點:三角形的穩(wěn)定性
3、將兩根鋼條AA’、BB’的中點O連在一起,使AA’、BB’可以繞著點O自由旋轉,就做成了一個測量工件,則A’B’的長等于內槽寬AB,那么判定△OAB≌△OA’B’的理由是______
核心考點:全等三角形的判定
角的平分線的性質知識點
1.角平分線推論:角的內部到角的兩邊的距離相等的`點在叫的平分線上。
2.判定定理:到角的兩邊距離相等的點在該角的角平分線上。
3.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題)
數學最常用且非常實用的學習方法
1、預習很重要:
往往被忽略,理由:沒時間,看不懂,不必要等。預習是學習的必要過程,還是提高自學能力的好方法。
2、聽講有學問:
聽分析、聽思路、聽應用,關鍵內容一字不漏,注意記錄。
3、做好錯題本:
每個會學習的學生都會有。最好再加個“好題本”。發(fā)現許多同學沒有錯題本,或者是只做不用。這樣學習效果都不好。
4、用好課外書:
正確認識網絡課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學習的替代品。
5、注意總結和反思:
知識點、解題方法和技巧、經驗和教訓。
6、接受數學思想方法的指導:
要注意數學思想和方法的指導,站得高,才能看得遠。
關于數學常見誤區(qū)有哪些
1、被動學習
許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。
2、學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進一步學習條件不具備
高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。
如二次函數在閉區(qū)間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節(jié)內容,如不采取補救措施,查缺補漏,分化是不可避免的。
如何整理數學學科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構;A差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。
八年級下冊數學知識重點總結 3
函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
如何提高解答數學題的能力
數學的解答能力,主要通過實際的練習來提高。數學練習應注意以下幾點:
(1)、端正態(tài)度,充分認識到數學練習的重要性。實際練習不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習中出現。
(2)、要有自信心與意志力。數學練習常有繁雜的計算,深奧的證明,自己應有充足的信心,頑強的意志,耐心細致的習慣。
(3)、要養(yǎng)成先思考,后解答,再檢查的良好習慣,遇到一個題,不能盲目地進行練習,無效計算,應先深入領會題意,認真思考,抓住關鍵,再作解答。解答后,還應進行檢查。
初中數學學習方法
歌訣記憶
就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準頂點,零線對著一邊,另一邊看度數!痹偃纾迭c位置移動引起數的大小變化,“小數點請你跟我走,走路先要找準‘左’和‘右’;橫撇帶口是個you,擴大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數位不夠找‘0’拉拉鉤!辈捎眠@種方法來記憶,學生不僅喜歡記,而且記得牢。
規(guī)律記憶
即根據事物的內在聯(lián)系,找出規(guī)律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法;ê途鄯ㄊ腔ツ媛(lián)系,即高級單位的數值率=低級單位的數值,低級單位的數值÷進率=高級單位的數值。掌握了這兩條規(guī)律,化聚問題就迎刃而解了。規(guī)律記憶,需要學生開動腦筋對所學的有關材料進行加工和組織,因而記憶牢固。
初中數學學習技巧
養(yǎng)成良好的學習數學習慣
多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的'特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
及時了解、掌握常用的數學思想和方法
中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。記數學筆記,特別是對概念理解的不同側面和數學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
要建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
八年級下冊數學知識重點總結 4
1、四邊形在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內角和定理:n邊形的內角和等于(n?2)?180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設多邊形的邊數為n,則多邊形的對角線共有n(n?
3)條。從n邊形的一個頂點出2
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質
(1)平行四邊形的對邊平行且相等。
(2)平行四邊形相鄰的角互補,對角相等
(3)平行四邊形的對角線互相平分。
(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。
常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段
的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對角分別相等的.四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
一、函數:
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
二、自變量取值范圍
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優(yōu)缺點
(1)關系式(解析)法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變量x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。
特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。
2、一次函數的圖像:所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特征:一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。
1、二元一次方程
含有兩個未知數,并且所含未知數的項的次數都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
1、刻畫數據的集中趨勢(平均水平)的量:平均數、眾數、中位數
2、平均數
(2)加權平均數:
3、眾數
一組數據中出現次數最多的那個數據叫做這組數據的眾數。
4、中位數
一般地,將一組數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
八年級下冊數學知識重點總結 5
第一章勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等于斜邊的平方。
判定:如果三角形的三邊長a,b,c滿足a+b=c,那么這個三角形是直角三角形。定義:滿足a+b=c的三個正整數,稱為勾股數。
第二章實數
定義:任何有限小數或無限循環(huán)小數都是有理數。無限不循環(huán)小數叫做無理數(有理數總可以用有限小數或無限循環(huán)小數表示)
一般地,如果一個正數x的平方等于a,那么這個正數x就叫做a的算術平方根。特別地,我們規(guī)定0的算術平方根是0。
一般地,如果一個數x的平方等于a,那么這個數x就叫做a的平方根(也叫二次方根)一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根。求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。
一般地,如果一個數x的立方等于a,那么這個數x就叫做a的立方根(也叫做三次方根)。正數的立方根是正數;0的立方根是0;負數的立方根是負數。求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。有理數和無理數統(tǒng)稱為實數,即實數可以分為有理數和無理數。
每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。
在數軸上,右邊的點表示的數比左邊的點表示的數大。
第三章圖形的平移與旋轉
定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。
經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。
任意一對對應點與旋轉中心的`連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
第四章四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形.。對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內角是直角的平行四邊形(平行四邊形的性質)。對角線相等,四個角都是直角。有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質。一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。等腰梯形:兩條腰相等的梯形。同一底上的兩個內角相等,對角線相等。兩腰相等的梯形是等腰梯形,
同一底上兩個內角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等于(n-2)180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等于360。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
第五章位置的確定
位置表示方法:方位角加距離;坐標;經緯度
定義:在平面內,兩條互相垂直且有公共原點的書軸組成平面直角坐標系。
通常,兩條數軸分別至于水平位置與鉛直位置,取向右與向上方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,鉛直的數軸叫做y軸或縱軸,x軸和y統(tǒng)稱坐標軸,它們的公共原點O稱為直角坐標系的原點。
圖形隨坐標變化:向上/下/左/右平移X個單位長度、橫向/縱向拉長X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關于x/y軸成軸對稱、關于原點O成中心對稱
第六章一次函數
定義:一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中是x自變量,y是因變量。
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。
把一個函數的自變量x與對應的因變量y的值分別作為點的橫坐標和縱坐標,在直角坐標系中描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。正比例函數y=kx的圖象是經過原點(0,0)的一條直線。在一次函數y=kx+b中,
當k0時,的值隨值的增大而增大;當k0時,的值隨值的增大而減小。
第七章二元一次方程組
定義:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。解二元一次方程組的基本思路是“消元”把“二元”變?yōu)椤耙辉薄R砸粋未知數代另一個未知數的解法稱為代入消元法,簡稱代入法。通過兩式加減消去其中一個未知數的解法稱做加減消元法,簡稱加減法。
第八章數據的代表
定義:一般地,對于n個數X1,X2,Xn,我們把1/n(X1+X2++Xn)叫做這個數的算術平均數,簡稱平均數,記為X。
為A的三項測試成績的加權平均數。
一般地,個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數,一組數據出現次數最多的那個數據叫做這組數據的眾數。
八年級下冊數學知識重點總結 6
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。
3、點的.坐標的概念
對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有,分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特征
(1)、各象限內點的坐標的特征
點P(x,y)在第一象限:x0
點P(x,y)在第二象限:x0
點P(x,y)在第三象限:x0
點P(x,y)在第四象限:x0
(2)、坐標軸上的點的特征
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
(5)、關于x軸、y軸或原點對稱的點的坐標的特征
點P與點p關于x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P(x,-y)
點P與點p關于y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P(-x,y)
點P與點p關于原點對稱橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P(-x,-y)
(6)、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等于|y|;
(2)點P(x,y)到y(tǒng)軸的距離等于|x|;
(3)點P(x,y)到原點的距離等于根號x*x+y*y
三、坐標變化與圖形變化的規(guī)律:
坐標(x,y)的變化
圖形的變化
xa或ya
被橫向或縱向拉長(壓縮)為原來的a倍
xa,ya
放大(縮小)為原來的a倍
x(-1)或y(-1)
關于y軸或x軸對稱
x(-1),y(-1)
關于原點成中心對稱
x+a或y+a
沿x軸或y軸平移a個單位
x+a,y+a
沿x軸平移a個單位,再沿y軸平移a個單
八年級下冊數學知識重點總結 7
一次函數
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;
(2)正比例函數圖像特征:一些過原點的直線;
(3)圖像性質:
①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小;
(4)求正比例函數的解析式:已知一個非原點即可;
(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;
(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)
(8)一次函數圖像特征:一些直線;
(9)性質:
、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)
、诋攌>0時,直線y=kx+b由左至右上升,即y隨著x的.增大而增大;
、郛攌<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;
、墚攂>0時,直線y=kx+b與y軸正半軸有交點為(0,b);
、莓攂<0時,直線y=kx+b與y軸負半軸有交點為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫一次函數的圖像:已知兩點;
用函數觀點看方程(組)與不等式
(1)解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值;從圖像上看,這相當于已知直線y=kx+b,確定它與x軸交點的橫坐標的值;
(2)解一元一次不等式可以看作:當一次函數值大(小)于0時,求自變量相應的取值范圍;
(3)每個二元一次方程都對應一個一元一次函數,于是也對應一條直線;
(4)一般地,每個二元一次方程組都對應兩個一次函數,于是也對應兩條直線。從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線交點的坐標;
八年級下冊數學知識重點總結 8
第十三章實數知識要點歸納
一、實數的分類:
正整數
整數零負整數有限小數或無限循環(huán)小數
正分數
分數
負分數小數
1.正無理數
無理數無限不循環(huán)小數
負無理數
2、數軸:規(guī)定了(畫數軸時,要注童上述規(guī)定的三要素缺一個不可),
實數與數軸上的點是一一對應的。
數軸上任一點對應的數總大于這個點左邊的點對應的數。
3、相反數與倒數;?a(a?0)4、絕對值?|a|??0(a?0)
5、近似數與有效數字;??a(a?0)?
6、科學記數法
7、平方根與算術平方根、立方根;
8、非負數的性質:若幾個非負數之和為零,則這幾個數都等于零。
二、復習
1.無理數:無限不循環(huán)小數
算術平方根定義如果一個非負數x的平方等于a,即x2?a
那么這個非負數x就叫做a的算術平方根,記為a,
算術平方根為非負數a?0
正數的平方根有2個,它們互為相反數????平方根?0的平方根是0?????負數沒有平方根??22.無理數的表示?定義:如果一個數的平方等于a,即x?a,那么這個數就
叫做a的平方根,記為?a?
正數的立方根是正數???立方根?負數的立方根是負數????0的.立方根是0???
定義:如果一個數x的立方等于a,即x3?a,那么這個數x?
就叫做a的立方根,記為3a.?
概念有理數和無理數統(tǒng)稱實數
正數?????有理數?分類或??0?無理數????負數???3.實數及其相關概念?
絕對值、相反數、倒數的意義同有理數
實數與數軸上的點是一一對應
實數的運算法則、運算規(guī)律與有理數的運算法則?
運算規(guī)律相同。
八年級下冊數學知識重點總結 9
一、平方根
1、平方根的定義:如果一個數的平方等于a,那么這個數叫做a的平方根。(也叫做二次方根)
即:若x2=a,則x叫做a的平方根。
2、平方根的性質:
(1)一個正數有兩個平方根。它們互為相反數;
(2)零的平方根是零;
(3)負數沒有平方根。
二、算術平方根
1、算術平方根的定義:正數a的正的平方根,叫做a的算術平方根。
2、算術平方根的性質:
(1)一個正數的算術平方根只有一個且為正;
(2)零的算術平方根是零;
(3)負數沒有算術平方根;
(4)算術平方根的非負性:a≥0。
三、平方根和算術平方根是記號:平方根—±a(讀作:正負根號a);算術平方根—a(讀作根號a)
即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算術平方根,或者表示求a的算術平方根。
其中a叫做被開方數!哓摂禌]有平方根,∴被開方數a必須為非負數,即:a≥0。
四、開平方:求一個非負數的平方根的.運算,叫做開平方。其實質就是:已知指數和二次冪求底數的運算。
五、立方根
1、立方根的定義:如果一個數的立方等于a,那么這個數叫做a的立方根。(也叫做三次方根)
即:若x3=a,則x叫做a的立方根。
2、立方根的性質:
(1)一個正數的立方根為正;
(2)一個負數的立方根為負;(3)零的立方根是零。
3、立方根的記號:a(讀作:三次根號a),a稱為被開方數,“3”稱為根指數。
a中的被開方數a的取值范圍是:a為全體實數。
六、開立方:求一個數的立方根的運算,叫做開立方。其實質就是:已知指數和三次冪求底數的運算。
七、注意事項:
1、“±a”、“a”、“a”的實質意義:“±a”→問:哪個數的平方是a;“a”→問:哪個非負數的平方是a;“a”→問:哪個數的立方是a。
2、注意a和a中的a的取值范圍的應用。
如:若x?3有意義,則x取值范圍是。(∵x-3≥0,∴x≥3)(填:x≥3)
若?x2009有意義,則x取值范圍是。(填:全體實數)3、?a??a。如:∵27??3,?27??3,∴?27??27
4、對于幾個算數平方根比較大小,被開方數越大,其算數平方根的值也越大。?7?6?5?2等。23和32怎么比較大小?(你知道嗎?不知道就問!)
5、算數平方根取值范圍的確定方法:關鍵:找鄰近的“完全平方數的算數平方根”作參照。如:確定7的取值范圍!4<7<,∴2<<3。
6、幾個常見的算數平方根的值:2?1.414,3?1.732,5?2.236,?2.449,?2.646。
八、補充的二次根式的部分內容1、二次根式的定義:形如a(a≥0)的式子,叫做二次根式。
2、二次根式的性質:(1)ab?a?b(a≥0,b≥0);
(2)≥0,b>0);
(3)(a)2?a(a≥0);
(4)a2?|a|
3、二次根式的乘除法:
(1)乘法:a??ab(a≥0,b≥0);
(2)除法:aa(a?ba(a≥0,b>0)b§
八年級下冊數學知識重點總結 10
實數
無理數:無限不循環(huán)小數叫無理數
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
相信通過上面的學習,同學們對實數知識點可以很好的掌握了,希望同學們在考試中取得好成績。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的`一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負號放括號外
、呃ㄌ杻韧愴椇喜ⅰ
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
【八年級下冊數學知識重點總結】相關文章:
八年級上冊數學知識重點歸納07-06
八年級下冊數學知識點總結07-14
八年級下冊地理期中復習重點04-29
八年級下冊政治重點知識歸納01-31
八年級下冊數學知識點歸納07-27
八年級下冊數學重點知識歸納06-27
八年級下冊數學知識點15篇03-12
新人教版八年級英語下冊第四單元重點短語02-25
八年級上冊政治知識重點總結09-19
初一數學下冊重點知識點總結02-17