亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

物理 百文網手機站

大學物理基礎知識點

時間:2022-04-19 10:33:58 物理 我要投稿

大學物理基礎知識點

  在日常的學習中,說到知識點,大家是不是都習慣性的重視?知識點也不一定都是文字,數(shù)學的知識點除了定義,同樣重要的公式也可以理解為知識點。掌握知識點是我們提高成績的關鍵!下面是小編整理的大學物理基礎知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

大學物理基礎知識點

  大學物理基礎知識點1

  1、兩種電荷、電荷守恒定律、元電荷:(e=1、60×10—19C);帶電體電荷量等于元電荷的整數(shù)倍。

  2、庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9、0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}

  3、電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}

  4、真空點(源)電荷形成的電場E=kQ/r2{r:源電荷到該位置的距離(m),Q:源電荷的電量}

  5、勻強電場的場強E=UAB/d{UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}

  6、電場力:F=qE{F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}

  7、電勢與電勢差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q

  8、電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}

  9、電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}

  10、電勢能的變化ΔEAB=EB—EA{帶電體在電場中從A位置到B位置時電勢能的差值}

  11、電場力做功與電勢能變化ΔEAB=—WAB=—qUAB(電勢能的增量等于電場力做功的負值)

  12、電容C=Q/U(定義式,計算式){C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}

  13、平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數(shù))

  14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)

  類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)

  拋運動平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m

  注:

 。1)兩個完全相同的帶電金屬小球接觸時,電量分配規(guī)律:原帶異種電荷的先中和后平分,原帶同種電荷的總量平分;

 。2)電場線從正電荷出發(fā)終止于負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;

  (3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];

 。4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;

  (5)處于靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直于導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布于導體外表面;

 。6)電容單位換算:1F=106μF=1012PF;

  (7)電子伏(eV)是能量的單位,1eV=1、60×10—19J;

 。8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。

  大學物理基礎知識點2

  功(W)

  功是表示力作用一段位移(空間積累)效果的物理量。

  要深刻理解功的概念:

 、偃绻矬w在力的方向上發(fā)生了位移,就說這個力對物體做了功。因此,凡談到做功,一定要明確指出是哪個力對哪個物體做了功。

 、谧龉Τ霰仨毦哂袃蓚必要的因素;力和物體在力的方向上發(fā)生了位移。因此,如果力在物體發(fā)生的那段位移里做了功,則物體在發(fā)生那段位移的過程里始終受到該力的作用,力消失之時即停止做功之時。

  ③力做功是一個物理過程,做功的多少反映了在這物理過程中能量變化的多少。

  ④功可用公式W=Fscosα計算。當0<α<90°時,力做正功,當α=90°時,力不做功,當90°<α<180°時,力做負功(或說成物體克服該力做正功)。

 、莨κ菢肆,但功有正負。功的正負僅表示力在使物體移的過程中起了動力作用還是阻力作用。

 、藓屯饬ξ矬w所做的功等于各個外力對物體做功的代數(shù)和。

  大學物理基礎知識點3

  一、電荷量和點電荷

  1、電荷量:物體所帶電荷的多少,叫做電荷量,簡稱電量。單位為庫侖,簡稱庫,用符號C表示。

  2、點電荷:帶電體的形狀、大小及電荷量分布對相互作用力的影響可以忽略不計,在這種情況下,我們就可以把帶電體簡化為一個點,并稱之為點電荷。

  二、電荷量的檢驗

  1、檢測儀器:驗電器

  2、了解驗電器的工作原理

  三、庫侖定律

  1、內容:在真空中兩個靜止的點電荷間相互作用的庫侖力跟它們電荷量的乘積成正比,跟它們距離的平方成反比,作用力的方向在它們的連線上。

  2、大小:方向在兩個電電荷的`連線上,同性相斥,異性相吸。

  3、公式中k為靜電力常量,

  4、成立條件

  ①真空中(空氣中也近似成立)

 、邳c電荷

  大學物理基礎知識點4

  1、電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}

  2、歐姆定律:I=U/R{I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

  3、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

  4、純電阻電路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  5、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

  6、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

  7、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

  8、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外

  {I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}

  9、電路的串/并聯(lián)串聯(lián)電路(P、U與R成正比)并聯(lián)電路(P、I與R成反比)

  大學物理基礎知識點5

  1、1638年,意大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;并在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);

  2、1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗;

  3、1687年,英國科學家牛頓在《自然哲學的數(shù)學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。

  4、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,了亞里士多德的觀點:力是維持物體運動的原因。同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續(xù)以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。

  5、英國物理學家胡克對物理學的貢獻:胡克定律;經典題目:胡克認為只有在一定的條件下,彈簧的彈力才與彈簧的形變量成正比(對)

  6、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察—假設—數(shù)學推理的方法,詳細研究了拋體運動。17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續(xù)以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。

  7、人們根據日常的觀察和經驗,提出“地心說”,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了“日心說”,大膽反駁地心說。

  8、17世紀,德國天文學家開普勒提出開普勒三大定律;

  9、牛頓于1687年正式發(fā)表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較準確地測出了引力常量;

  10、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈(勒維耶)應用萬有引力定律,計算并觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發(fā)現(xiàn)冥王星。

  11、我國宋朝發(fā)明的火箭是現(xiàn)代火箭的鼻祖,與現(xiàn)代火箭原理相同;但現(xiàn)代火箭結構復雜,其所能達到的速度主要取決于噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家。

  12、1957年10月,蘇聯(lián)發(fā)射第一顆人造地球衛(wèi)星;1961年4月,世界第一艘載人宇宙飛船“東方1號”帶著尤里加加林第一次踏入太空。

  13、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用于微觀粒子和高速運動物體。

  14、17世紀,德國天文學家開普勒提出開普勒三定律;牛頓于1687年正式發(fā)表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較準確地測出了引力常量(體現(xiàn)放大和轉換的思想);1846年,科學家應用萬有引力定律,計算并觀測到海王星。

  選修部分:(選修3—1、3—2、3—3、3—4、3—5)

  二、電磁學:(選修3—1、3—2)

  1、1785年法國物理學家?guī)靵隼门こ訉嶒灠l(fā)現(xiàn)了電荷之間的相互作用規(guī)律——庫侖定律,并測出了靜電力常量k的值。

  2、1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統(tǒng)一起來,并發(fā)明避雷針。

  3、1837年,英國物理學家法拉第最早引入了電場概念,并提出用電場線表示電場。

  4、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。

  5、1826年德國物理學家歐姆(1787—1854)通過實驗得出歐姆定律。

  6、1911年,荷蘭科學家昂尼斯(或昂納斯)發(fā)現(xiàn)大多數(shù)金屬在溫度降到某一值時,都會出現(xiàn)電阻突然降為零的現(xiàn)象——超導現(xiàn)象。

  7、19世紀,焦耳和楞次先后各自獨立發(fā)現(xiàn)電流通過導體時產生熱效應的規(guī)律,即焦耳——楞次定律。

  8、1820年,丹麥物理學家奧斯特發(fā)現(xiàn)電流可以使周圍的小磁針發(fā)生偏轉,稱為電流磁效應。

  9、法國物理學家安培發(fā)現(xiàn)兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,同時提出了安培分子電流假說;并總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。

  10、荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。

  11、英國物理學家湯姆生發(fā)現(xiàn)電子,并指出:陰極射線是高速運動的電子流。

  12、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。

  13、1932年,美國物理學家勞倫茲發(fā)明了回旋加速器能在實驗室中產生大量的高能粒子。(動能僅取決于磁場和D形盒直徑。帶電粒子圓周運動周期與高頻電源的周期相同;但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的回旋周期發(fā)生變化,進一步提高粒子的速率很困難。

  14、1831年英國物理學家法拉第發(fā)現(xiàn)了由磁場產生電流的條件和規(guī)律——電磁感應定律。

  15、1834年,俄國物理學家楞次發(fā)表確定感應電流方向的定律——楞次定律。

  16、1835年,美國科學家亨利發(fā)現(xiàn)自感現(xiàn)象(因電流變化而在電路本身引起感應電動勢的現(xiàn)象),日光燈的工作原理即為其應用之一,雙繞線法制精密電阻為消除其影響應用之一。

  大學物理基礎知識點6

  感應電流產生的磁場,總是在阻礙引起感應電流的原磁場的磁通量的變化。

  楞次定律的核心,也是最需要大家記住的是“阻礙”二字。

  在高中物理利用楞次定律解題,我們可以用十二個字來形象記憶:“增反減同,來拒去留,增縮減擴”。

  楞次定律(Lenzlaw)是一條電磁學的定律,從電磁感應得出感應電動勢的方向。其可確定由電磁感應而產生之電動勢的方向。它是由_理學家海因里!だ愦(HeinrichFriedrichLenz)在1834年發(fā)現(xiàn)的。

  楞次定律是能量守恒定律在電磁感應現(xiàn)象中的具體體現(xiàn)。楞次定律還可表述為:感應電流的效果總是反抗引起感應電流的原因。

  對楞次定律的正確理解與使用分析:

  第一,電磁感應楞次定律的核心內容是“阻礙”二字,這恰恰表明楞次定律實質上就是能的轉化和守恒定律在電磁感應現(xiàn)象中的特殊表達形式;

  第二,這里的“阻礙”,并非是阻礙引起感應電流的原磁場,而是阻礙(更確切來描述應該是“減緩”)原磁場磁通量的變化;

  第三,正因阻礙是的是“變化”,所以,當原磁場的磁通量增加(或減少)而引起感應電流時,則感應電流的磁場必與原磁場反向(或同向)而阻礙其磁通量的增加(或減少),概括起來就是,增加則反向,減少則同向。這就是老師總結的做題應用定律“增反減同”四字要領的由來。

  楞次定律阻礙的表現(xiàn)有哪些方式?

  (1)產生一個反變化的磁場。

  (2)導致物體運動。

  (3)導致圍成閉合電路的邊框發(fā)生形變。

  楞次定律的應用步驟

  具體應用包括以下四步:

  第一,明確引起感應電流的原磁場在被感應的回路上的方向;

  第二,搞清原磁場穿過被感應的回路中的磁通量增減情況;

  第三,根據楞次定律確定感應電流的磁場的方向;

  第四,運用安培定則判斷出感生電流的方向。

  高中物理網編輯提醒大家,楞次定律要靈活運用,有些題可以通過“感應電流的磁場阻礙相對運動”出發(fā)來判斷。

  在一些由于某種相對運動而引起感應電流的電磁感應現(xiàn)象中,如運用楞次定律從“感應電流的磁場總是阻礙引起感應電流的原磁場的磁通量變化”出發(fā)來判斷感應電流方向,往往會比較困難。

  對于這樣的問題,在運用楞次定律時,一般可以靈活處理,考慮到原磁場的磁通量變化又是由相對運動而引起的,于是可以從“感應電流的磁場阻礙相對運動”出發(fā)來判斷。

  大學物理基礎知識點7

  磁感應強度(magnetic fluxdensity),描述磁場強弱和方向的物理量,是矢量,常用符號B表示,國際通用單位為特斯拉(符號為T)。磁感應強度也被稱為磁通量密度或磁通密度。在物理學中磁場的強弱使用磁感應強度來表示,磁感應強度越大表示磁感應越強;磁感應強度越小,表示磁感應越弱。

  磁感應強度的定義公式

  磁感應強度公式B=F/(IL)

  磁感應強度是由什么決定的?磁感應強度的大小并不是由F、I、L來決定的,而是由磁極產生體本身的屬性。

  如果是一塊磁鐵,那么B的大小之和這塊磁鐵的大小和磁性強弱有關。

  如果是電磁鐵,那么B與I、匝數(shù)及有無鐵芯有關。

  物理網很多文章都建議同學們采用類比的方法來理解各個物理量。我們用電阻R來做個對比。

  R的計算公式是R=U/I;可一個導體的電阻R大小并不是由U或者I來決定的。而是由其導體自身屬性決定的,包括電阻率、長度、橫截面積。同樣,磁感應強度B也不是由F、I、L來決定的,而是由磁極產生體本身的屬性。

  如果同學們有時間,可以把靜電場中電容的兩個公式來對比著復習、鞏固下。

  B為矢量,方向與磁場方向相同,并不是在該處電流的受力方向,運算時遵循矢量運算法則(左手定則)。

  描述磁感應強度的磁感線

  在磁場中畫一些曲線,用(虛線或實線表示)使曲線上任何一點的切線方向都跟這一點的磁場方向相同(且磁感線互不交叉),這些曲線叫磁感線。

  磁感線是閉合曲線。規(guī)定小磁針的北極所指的方向為磁感線的方向。磁鐵周圍的磁感線都是從N極出來進入S極,在磁體內部磁感線從S極到N極。

  磁感線都有哪些性質呢?

  ⒈磁感線是徦想的,用來對磁場進行直觀描述的曲線,它并不是客觀存在的。

  ⒉磁感線是閉合曲線;磁鐵的磁感線,外部從N指向S,內部從S指向N;

 、炒鸥芯的疏密表示磁感應強度的強弱,磁感線上某點的切線方向表示該點的磁場方向。

 、慈魏蝺蓷l磁感線都不會相交,也不能相切。

  磁感線(不是磁場線)的性質與電場線的性質對比來記憶。

  磁感應強度B的所有計算式

  磁感應強度B=F/IL

  磁感應強度B=F/qv

  磁感應強度B=ξ/Lv

  磁感應強度B=Φ/S

  磁感應強度B=E/v

  其中,F(xiàn):洛倫茲力或者安培力

  q:電荷量

  v:速度

  ξ:感應電動勢

  E:電場強度

  Φ:磁通量

  S:正對面積

  磁通量

  磁通量是閉合線圈中磁感應強度B的累積。

  ⒈定義一:φ=BS,S是與磁場方向垂直的面積,如果平面與磁場方向不垂直,應把面積投影到與磁場垂直的方向上,求出投影面積;

 、捕x二:表示穿過某一面積磁感線條數(shù);此時,我們認為B代表的意義是單位面積內的磁感線密度。

  磁通量是標量,但有正、負,正、負號不代表方向,僅代表磁感線穿入或穿出。同學們能不能想到其他類似的物理量呢?比如,電流,也是有“運動方向”的標量。

  當一個面有兩個方向的磁感線穿過時,磁通量的計算應算“純收入”,即ф=ф-ф(ф為正向磁感線條數(shù),ф為反向磁感線條數(shù)。)

【大學物理基礎知識點】相關文章:

大學物理知識點歸納04-01

大學物理電磁學知識點04-13

大學物理光學部分知識點03-10

php基礎知識點09-03

會計從業(yè)《會計基礎》知識點04-06

基礎會計之賬戶知識點03-26

護考基礎知識點08-28

小升初語文基礎知識點總結12-20

小升初語文基礎知識點歸納12-19