亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

中考備考 百文網(wǎng)手機站

數(shù)學中考的知識點

時間:2022-08-13 15:28:19 中考備考 我要投稿

數(shù)學中考的知識點大全

  在我們平凡的學生生涯里,大家都背過各種知識點吧?知識點是指某個模塊知識的重點、核心內(nèi)容、關(guān)鍵部分。相信很多人都在為知識點發(fā)愁,以下是小編為大家收集的數(shù)學中考的知識點,希望能夠幫助到大家。

數(shù)學中考的知識點大全

數(shù)學中考的知識點1

  1.有理數(shù)的加法運算:同號相加一邊倒;異號相加大減小,符號跟著大的跑;絕對值相等零正好!咀ⅰ看鬁p小是指絕對值的大小。

  2.合并同類項:合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  3.去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。

  4.一元一次方程:已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

  5.恒等變換:兩個數(shù)字來相減,互換位置最常見,正負只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

  6.平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  7.完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  8.因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

  9.代入口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分數(shù)或負數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小-中-大)

  10.單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。

  11.一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了。

數(shù)學中考的知識點2

  1、加法:

  (1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;

  (2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?墒褂眉臃ń粨Q律、結(jié)合律。

  2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。

  3、乘法:

  (1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘。

  (2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負。

  (3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。

  4、除法:

  (1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。

  (2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。

  (3)0除以任何數(shù)都等于0,0不能做被除數(shù)。

  5、乘方與開方:乘方與開方互為逆運算。

  6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。

數(shù)學中考的知識點3

  1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據(jù)圖形的特殊性質(zhì),找準討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最后要綜合。這是中考數(shù)學的注意點之一。

  2、討論點的位置,一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。

  3、圖形的對應關(guān)系多涉及到三角形的全等或相似問題,對其中可能出現(xiàn)的有關(guān)角、邊的可能對應情況加以分類討論

  4、代數(shù)式變形中如果有絕對值、平方時,里面的數(shù)開出來要注意正負號的取舍。

  5、考查點的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應十分注意性質(zhì)、定理的使用條件及范圍.

  6、函數(shù)題目中如果說函數(shù)圖象與坐標軸有交點,那么一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。這也是中考數(shù)學的注意點。

  7、由動點問題引出的函數(shù)關(guān)系,當運動方式改變后(比如從一條線段移動到另一條線段)是,所寫的函數(shù)應該進行分段討論。

數(shù)學中考的知識點4

  初中數(shù)學多項式的加法中考知識點

  多項式和單項式一起被稱為整式,整式的運算離不開加法,多項式也是如此。

  多項式的加法

  有限個單項式之和稱為多元多項式,簡稱多項式。不同類的單項式之和表示的多項式,其中系數(shù)不為零的單項式的最高次數(shù),稱為此多項式的次數(shù)。

  多項式的加法,是指多項式中同類項的系數(shù)相加,字母保持不變(即合并同類項)。多項式的乘法,是指把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之后合并同類項。

  F上x1,x2,…,xn的多項式全體所成的集合F[x1,x2,…,xn],對于多項式的加法和乘法成為一個環(huán),是具有單位元素的整環(huán)。 域上的多元多項式也有因式分解惟一性定理。

  關(guān)于多項式的加法計算的中考知識要領已經(jīng)為大家整合出來了,請同學們相應做好筆記了。

數(shù)學中考的知識點5

  圓的初步認識

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關(guān)系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長C=2πr=πd 2.圓的面積S=s=πr? 3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2 5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

  (x-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  鏈接:圓與直線的位置關(guān)系(一.5)

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1不在同一直線上的三點確定一個圓。

  2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2 圓的兩條平行弦所夾的弧相等

  3圓是以圓心為對稱中心的中心對稱圖形

  4圓是定點的距離等于定長的點的集合

  5圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6圓的外部可以看作是圓心的距離大于半徑的點的集合

  7同圓或等圓的半徑相等

  8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19如果兩個圓相切,那么切點一定在連心線上

  20①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22定理 把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27正三角形面積√3a/4 a表示邊長

  28如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29弧長計算公式:L=n兀R/180

  30扇形面積公式:S扇形=n兀R^2/360=LR/2

  31內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  小編導語:每一門功課都有它自身的規(guī)律,有它自身的特點,數(shù)學當然也不例外。下面是有關(guān)中考數(shù)學考試知識點分析:三角函數(shù)的內(nèi)容,供你學習參考!

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin)等于對邊比斜邊;sinA=a/c

  余弦(cos)等于鄰邊比斜邊;cosA=b/c

  正切(tan)等于對邊比鄰邊;tanA=a/b

  余切(cot)等于鄰邊比對邊;cotA=b/a

  正割(sec)等于斜邊比鄰邊;secA=c/b

  余割(csc)等于斜邊比對邊。cscA=c/a

  互余角的三角函數(shù)間的關(guān)系

  sin(90°-α)=cosα, cos(90°-α)=sinα,

  tan(90°-α)=cotα, cot(90°-α)=tanα.

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  積的關(guān)系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  銳角三角函數(shù)公式

  兩角和與差的三角函數(shù):

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB ?

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

  三角和的三角函數(shù):

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  輔助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  三倍角公式:

  sin(3α)=3sinα-4sin^3(α)

  cos(3α)=4cos^3(α)-3cosα

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  萬能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  積化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化積公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  推導公式:

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  其他:

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  函數(shù)名 正弦 余弦 正切 余切 正割 余割

  在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉(zhuǎn)角為θ,設OP=r,P點的坐標為(x,y)有

  正弦函數(shù) sinθ=y/r

  余弦函數(shù) cosθ=x/r

  正切函數(shù) tanθ=y/x

  余切函數(shù) cotθ=x/y

  正割函數(shù) secθ=r/x

  余割函數(shù) cscθ=r/y

  正弦(sin):角α的對邊比上斜邊

  余弦(cos):角α的鄰邊比上斜邊

  正切(tan):角α的對邊比上鄰邊

  余切(cot):角α的鄰邊比上對邊

  正割(sec):角α的斜邊比上鄰邊

  余割(csc):角α的斜邊比上對邊

  三角函數(shù)萬能公式

  萬能公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

  (4)對于任意非直角三角形,總有

  tanA+tanB+tanC=tanAtanBtanC

  證:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得證

  同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  萬能公式為:

  設tan(A/2)=t

  sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)

  tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)

  cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)

  就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數(shù)式最值的時候,就可以用萬能公式,推導成只含有一個變量的函數(shù),最值就很好求了.

  三角函數(shù)關(guān)系

  倒數(shù)關(guān)系

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的關(guān)系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關(guān)系

  對角線上兩個函數(shù)互為倒數(shù);

  商數(shù)關(guān)系

  六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

  平方關(guān)系

  在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  兩角和差公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

  二倍角的正弦、余弦和正切公式

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/(1-tan^2(α))

  tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α

  半角的正弦、余弦和正切公式

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

  萬能公式

  sinα=2tan(α/2)/(1+tan^2(α/2))

  cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

  tanα=(2tan(α/2))/(1-tan^2(α/2))

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  誘導公式

  誘導公式的本質(zhì)

  所謂三角函數(shù)誘導公式,就是將角n·(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。

  常用的誘導公式

  公式一: 設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα k∈z

  cos(2kπ+α)=cosα k∈z

  tan(2kπ+α)=tanα k∈z

  cot(2kπ+α)=cotα k∈z

  公式二: 設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  每一門功課都有它自身的規(guī)律,有它自身的特點,數(shù)學當然也不例外。下面是有關(guān)中考數(shù)學考試知識點分析:一次函數(shù)的內(nèi)容,供你學習參考!

  一次函數(shù)的定義

  一次函數(shù),也作線性函數(shù),在x,y坐標軸中可以用一條直線表示,當一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。

  函數(shù)的表示方法

  列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。

  解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。

  圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關(guān)系。

  一次函數(shù)的性質(zhì)

  一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)

  注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)

  a).k不為0

  b).x的指數(shù)是1

  c).b取任意實數(shù)

  一次函數(shù)y=kx+b的圖像是經(jīng)過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移)具體如下:

  正比例函數(shù)和一次函數(shù)

  確定函數(shù)定義域的方法

  (1)關(guān)系式為整式時,函數(shù)定義域為全體實數(shù);

  (2)關(guān)系式含有分式時,分式的分母不等于零;

  (3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;

  (4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;

  (5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。

  用待定系數(shù)法確定函數(shù)解析式的一般步驟

  (1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;

  (2)將x、y的幾對值或圖像上的幾個點的坐標代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程

  (3)解方程得出未知系數(shù)的值;

  (4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式。

數(shù)學中考的知識點6

  (一)小學數(shù)學的干擾

  在初中一開始,學生學習小學數(shù)學形成的某些認識會妨礙他們學習代數(shù)初步知識,使其產(chǎn)生解題錯誤。

  例如,在小學數(shù)學中,解題結(jié)果常常是一個確定的數(shù)。受此影響,學生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設m為第n排的座位數(shù),那么m是多少?求a=20,n=19時,m的值。學生在解答上述問題時,受結(jié)果是確定的數(shù)的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。

  又如,小學數(shù)學中形成的一些結(jié)論都只是在沒有學負數(shù)的情況下成立的。在小學,學生對數(shù)之和不小于其中任何一個加數(shù),即a+ba是堅信不疑的,但是,學了負數(shù)后,a+b

  再有,學生習慣于算術(shù)解法解應用題,這會對學生學習代數(shù)方法列方程解應用題產(chǎn)生干擾。例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經(jīng)過多少小時相遇?),列出的“方程”為x=360/48+72.由此可以看出學生拘泥于算術(shù)解法的痕跡。而初中需要列出 48x+72x=360 這樣的方程,這表明學生對已知數(shù)和未知數(shù)之間的相等關(guān)系的把握程度。

  總之,初中開始階段,學生解題錯誤的原因常可追溯到小學數(shù)學知識對其新學知識的影響。講清新學知識的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負數(shù))、方法(代數(shù)和、代數(shù)方法) 與舊有知識(具體數(shù)字、非負數(shù)、加減運算、算術(shù)方法)的不同,有助于克服干擾,減少初始 階段的錯誤。

  (二)初中數(shù)學前后知識的干擾

  隨著初中知識的展開,初中數(shù)學知識本身也會前后相互干擾。

  例如,在學有理數(shù)的減法時,教師反復強調(diào)減去一個數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數(shù)和,又要強調(diào)把3-7看成正 3與負7之和,“-”又成了負號。學生不禁產(chǎn)生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學生就會產(chǎn)生運算錯誤。

  又如,了解不等式的解集以及運用不等式基本性質(zhì)3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數(shù)以及方程的解是一個數(shù)有關(guān) .事實也證明,把不等式的有關(guān)內(nèi)容與等式及方程的相應內(nèi)容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內(nèi)容。

  學生在解決單一問題與綜合問題時的表現(xiàn)也可以說明這個問題。學生在解答單一問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產(chǎn)生錯誤的可能性小;而遇到綜合問題,在知識的選取、運用上受到的干擾大,容易出錯。

數(shù)學中考的知識點7

  單項式的`計算包括了基本的加減乘除運算,這也是代數(shù)式中的基本運算要求。

  單項式的計算

  單項式加減法則

  單項式加減即合并同類項,也就是合并前各同類項系數(shù)的和,字母不變。

  例如:3a+4a=7a,9a-2a=7a等

  單項式乘法法則

  單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式

  例如:3a·4a=12a^2

  單項式除法法則

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

  例如:9a^10÷3a^5=3a^5

  上述的例子就是單項式的加減乘除運算解析,相信聰明的大家都熟記了吧。

數(shù)學中考的知識點8

  第二章 代數(shù)式

  重點代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運算

  ☆內(nèi)容提要☆

  一、重要概念

  分類:

  1。代數(shù)式與有理式

  用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨

  的一個數(shù)或字母也是代數(shù)式。

  整式和分式統(tǒng)稱為有理式。

  2。整式和分式

  含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

  沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

  有除法運算并且除式中含有字母的有理式叫做分式。

  3。單項式與多項式

  沒有加減運算的整式叫做單項式。(數(shù)字與字母的積包括單獨的一個數(shù)或字母)

  幾個單項式的和,叫做多項式。

  說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,

  =x, =│x│等。

  4。系數(shù)與指數(shù)

  區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看

  5。同類項及其合并

  條件:①字母相同;②相同字母的指數(shù)相同

  合并依據(jù):乘法分配律

  6。根式

  表示方根的代數(shù)式叫做根式。

  含有關(guān)于字母開方運算的代數(shù)式叫做無理式。

  注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。

  7。算術(shù)平方根

  ⑴正數(shù)a的正的平方根( [a與平方根的區(qū)別]);

 、扑阈g(shù)平方根與絕對值

 、俾(lián)系:都是非負數(shù), =│a│

 、趨^(qū)別:│a│中,a為一切實數(shù);中,a為非負數(shù)。

  8。同類二次根式、最簡二次根式、分母有理化

  化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

  滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

  把分母中的根號劃去叫做分母有理化。

  9。指數(shù)

 、 ( 冪,乘方運算)

 、 a0時, ②a0時, 0(n是偶數(shù)), 0(n是奇數(shù))

 、屏阒笖(shù): =1(a0)

  負整指數(shù): =1/ (a0,p是正整數(shù))

  二、運算定律、性質(zhì)、法則

  1。分式的加、減、乘、除、乘方、開方法則

  2。分式的性質(zhì)

  ⑴基本性質(zhì): = (m0)

 、品柗▌t:

  ⑶繁分式:①定義;②化簡方法(兩種)

  3。整式運算法則(去括號、添括號法則)

  4。冪的運算性質(zhì):① ② ③ = ;④ = ;⑤

  技巧:

  5。乘法法則:⑴單⑵單⑶多多。

  6。乘法公式:(正、逆用)

  (a+b)(a-b)=

  (ab) =

  7。除法法則:⑴單⑵多單。

  8。因式分解:⑴定義;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分組分解法;E。求根公式法。

  9。算術(shù)根的性質(zhì): = ; ; (a0); (a0)(正用、逆用)

  10。根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. 。

  11。科學記數(shù)法: (110,n是整數(shù)=

  三、應用舉例(略)

  四、數(shù)式綜合運算(略)

數(shù)學中考的知識點9

  橢圓知識:平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。

  橢圓的第一定義

  即:│PF1│+│PF2│=2a

  其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。

  長軸為 2a; 短軸為 2b。

  橢圓的第二定義

  平面內(nèi)到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。

  橢圓的其他定義

  根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等于-1。

  簡單幾何性質(zhì)

  1、范圍

  2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點中心對稱。

  3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

  4、離心率:e=c/a

  5、離心率范圍 0

  知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  初中數(shù)學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準丟字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

  ③雙重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項負號放括號外

 、呃ㄌ杻(nèi)同類項合并。

數(shù)學中考的知識點10

  1.平面向量的數(shù)量積

  平面向量數(shù)量積的定義

  已知兩個非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos 叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos ,規(guī)定0a=0.

  2.向量數(shù)量積的運算律

  (1)ab=ba

  (2)(a)b=(ab)=a(b)

  (3)(a+b)c=ac+bc

  [探究] 根據(jù)數(shù)量積的運算律,判斷下列結(jié)論是否成立.

  (1)ab=ac,則b=c嗎?

  (2)(ab)c=a(bc)嗎?

  提示:(1)不一定,a=0時不成立,

  另外a0時,ab=ac.由數(shù)量積概念可知b與c不能確定;

  (2)(ab)c=a(bc)不一定相等.

  (ab)c是c方向上的向量,而a(bc)是a方向上的向量,當a與c不共線時它們必不相等.

數(shù)學中考的知識點11

  一、目標與要求

  1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;

  2、經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;

  3、通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應用到生活的各個領域。

  二、重點

  理解并掌握不等式的性質(zhì);

  正確運用不等式的性質(zhì);

  建立方程解決實際問題,會解"ax+b=cx+d"類型的一元一次方程;

  尋找實際問題中的不等關(guān)系,建立數(shù)學模型;

  一元一次不等式組的解集和解法。

  三、難點

  一元一次不等式組解集的理解;

  弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;

  正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。

  小編導語:每一門功課都有它自身的規(guī)律,有它自身的特點,數(shù)學當然也不例外。下面是有關(guān)中考數(shù)學考試知識點分析:矩形的內(nèi)容,供你學習參考!

  1、矩形的概念

  有一個角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

  (1)具有平行四邊形的一切性質(zhì)(2)矩形的四個角都是直角

  (3)矩形的對角線相等(4)矩形是軸對稱圖形

  3、矩形的判定

  (1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形

  (3)定理2:對角線相等的平行四邊形是矩形

  4、矩形的面積S矩形=長×寬=ab

  據(jù)日本《中文導報》報道,日本法務省入國管理局近期發(fā)表的“在留外國人登錄者統(tǒng)計”結(jié)果顯示,雖然總數(shù)略有增長,但從在留資格來看,自2011年東日本大地震以后,赴日留學、工作的中國人呈現(xiàn)逐漸減少趨勢。

  自1959年日本開始統(tǒng)計外國人人口以來,在日中國人在2007年躍居首位,2012年在全體外國人中所占比例曾經(jīng)高達32%,也就是每三個在日外國人當中就有一人是中國人。但最新統(tǒng)計顯示,中國人在外國人比例中降至30.2%。

  中國留學生逐漸減少

  過去,因為留學日本簽證較容易、花費較少、容易就業(yè),日本被認為是“性價比高”的地方。自上世紀90年代末日本放寬自費留學政策后,赴日留學的中國人越來越多,但近年卻不慍不火。

  2012年末,全日本在籍中國人留學生為113,980人;2015年6月末,該數(shù)字減至104,051人。日本學生支援機構(gòu)今年初公布了截止去年5月的日本各大學等(不含語言學校等)的在籍外國留學生人數(shù)。整體為139,185人,比上年增加了2.7%。其中,來自中國的留學生為77,792人,同比減少5%。韓國為13,940人,同比減少9%。越南為11,174人,增至上一年的1.8倍。

  務工者人數(shù)降幅明顯

  技能實習生,實際上已經(jīng)成為日本為解決人口老齡化、勞動力不足,接收外國勞動者而采取的一種變通方法。近年來,由于日本經(jīng)濟不景氣,在日外國技能實習生工作條件惡劣。最近受到日元持續(xù)貶值影響,外國研修生原本不高的收入進一步縮水。另外,隨著中國收入的逐漸提高,愿意赴日本的中國人也越來越少。

  截至2015年6月,中國人技能實習生有9萬,6120人 ,與2012年末的111,395人相比,降幅較明顯。

  另外,持有技能簽證(廚師等擁有熟練技術(shù)業(yè)務者)同期也從19,023人下降至16,715人 。

  生活穩(wěn)定層人數(shù)穩(wěn)步上升

  “技術(shù)·國際業(yè)務·人文知識”在留資格,是將“技術(shù)”和“國際業(yè)務·人文知識”合并后的一個簽證類型,主要是在公司里擔任文案或技術(shù)類職務,通常留學生大學畢業(yè)在日本就職以后就是持此類簽證。

  過去學文科是給“國際業(yè)務·人文知識”,學理科是給“技術(shù)”簽證。有了此類簽證,在日生活就逐漸邁向“穩(wěn)定”。2012年末,持有此類簽證的中國人有54,461人,到2015年6月,已增至59,755人。

  另外,從2012年末至2015年6月,持有“經(jīng)營管理”在留資格的中國人從4423人增長至7318人。

  事實上,在此期間還有不少人或取得“永住”簽證,或加入日本國籍。從2012年末至2015年6月,在日中國人“永住者”從191,958人增至219,557人。從法務省的另外一份統(tǒng)計顯示,自2012年至2014年的三年間,加入日本國籍的中國人有9503人。

  男女比例失調(diào)

  從統(tǒng)計還可以看出一個有趣的現(xiàn)象,即男女比例失調(diào)。截止2015年6月,持有在留資格的中國女性有380,928人,而男性僅為271,667人。

  另外,從年齡層看,在日中國人19至40歲占大多數(shù),40歲上人數(shù)呈下降態(tài)勢。值得留意的是,80歲以上的老人有2181人。

  主要分布在三大都市圈

  日本的人口·企業(yè)活動·大學等教育機關(guān)主要集中在三大都市圈。全日本約一半人口集中在從三大都市圈,即從東京、名古屋、大阪三都市的市中心延伸50公里內(nèi)的范圍內(nèi)。從分布區(qū)域來看,在日中國人也主要集中在這些區(qū)域。

  統(tǒng)計顯示,超過1萬中國人的都道府縣有13個,依次為:東京都157,559人,神奈川縣57,242人,埼玉縣53,847人,大阪府51,845人,愛知縣45,433人,千葉縣42,336人,兵庫縣22,353人,福岡縣19,027人,廣島縣13,939人,岐阜縣12,887人,茨城縣12,760人,京都府11,915人,靜岡縣11,334人。

數(shù)學中考的知識點12

  初中數(shù)學長方形的中考知識點集錦

  長方形也就是我們所說的矩形,是基礎的平面圖形。

  長方形

  有一個角是直角的平行四邊形叫做長方形 (rectangle)。又叫矩形。

  長方形長與寬的定義:

  第一種意見:長方形長的那條邊叫長,短的那條邊叫寬。

  第二種意見:和水平面同方向的叫做長,反之就叫做寬。長方形的長和寬是相對的,不能絕對的說“長比寬長”,但習慣地講,長的為長,短的為寬。

  長方形的性質(zhì)

 、賰蓷l對角線相等;

 、趦蓷l對角線互相平分;

 、蹆山M對邊分別平行;

 、軆山M對邊分別相等 ;

 、菟膫角都是直角;

  ⑥有2條對稱軸(正方形有4條)。

  以上的內(nèi)容是長方形的性質(zhì)及定義,請大家做好筆記了。

數(shù)學中考的知識點13

  角度制知識:用度(°)、分(′)、秒(″)來測量角的大小的制度叫做角度制。

  角度制

  角度制:規(guī)定周角的360分之一為1度的角,用度作為單位來度量角的單位制叫做角度制。

  角度制中單位的換算。

  角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

  角度制就是運用60進制的例子。

  角度制中角度的運算。

  兩個角相加時,°與°相加,′與′相加,″與″相加,其中如果滿60則進1。

  兩個角相減時,°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個單位退1當作60。

  測量角的大小的另外一個方法,角度制與弧度制的換算。

  主要把握180°=π rad這個關(guān)系式。

  例如:1度=π /180 弧度30度轉(zhuǎn)換成弧度值:弧度=30*π /180終邊相同的角的表示β=α+k360°k屬于整數(shù)。

  知識歸納:除了角度制可以測量角的大小,還有一種——弧度制也可以測量角的大小。

數(shù)學中考的知識點14

  第1課 實數(shù)的有關(guān)概念

  考查重點:

  1. 有理數(shù)、無理數(shù)、實數(shù)、非負數(shù)概念;

  2.相反數(shù)、倒數(shù)、數(shù)的絕對值概念;

  3.在已知中,以非負數(shù)a2、|a|、a (a≥0)之和為零作為條件,解決有關(guān)問題。

  實數(shù)的有關(guān)概念

  (1)實數(shù)的組成

  (2)數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注童上述規(guī)定的三要素缺一不可),

  實數(shù)與數(shù)軸上的點是一一對應的。 數(shù)軸上任一點對應的數(shù)總大于這個點左邊的點對應的數(shù),

  (3)相反數(shù): 實數(shù)的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù),叫做互為相反數(shù),零的相反效是零).

  從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關(guān)于原點對稱.

  (4)絕對值

  從數(shù)軸上看,一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離

  (5)倒數(shù): 實數(shù)a(a≠0)的倒數(shù)是(乘積為1的兩個數(shù),叫做互為倒數(shù));零沒有倒數(shù).

  第2課 實數(shù)的運算

  考查重點:

  1. 考查近似數(shù)、有效數(shù)字、科學計算法;

  2. 考查實數(shù)的運算;

  3. 計算器的使用。

  實數(shù)的運算

  (1)加法: 同號兩數(shù)相加,取原來的符號,并把絕對值相加;

  異號兩數(shù)相加。取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值;

  任何數(shù)與零相加等于原數(shù)。

  (2)減法 a-b=a+(-b)

  (3)乘法: 兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;零乘以任何數(shù)都得零.

  (4)除法

  (5)乘方

  (6)開方 如果x2=a且x≥0,那么 =x; 如果x3=a,那么

  在同一個式于里,先乘方、開方,然后乘、除,最后加、減.有括號時,先算括號里面.

  實數(shù)的運算律

  (1)加法交換律 a+b=b+a

  (2)加法結(jié)合律 (a+b)+c=a+(b+c)

  (3)乘法交換律 ab=ba.

  (4)乘法結(jié)合律 (ab)c=a(bc)

  (5)分配律 a(b+c)=ab+ac

  其中a、b、c表示任意實數(shù).運用運算律有時可使運算簡便.

數(shù)學中考的知識點15

  實數(shù)與數(shù)軸

  1、數(shù)軸:規(guī)定了原點、正方向、單位長度的直線稱為數(shù)軸。

  原點、正方向、單位長度是數(shù)軸的三要素。

  2、數(shù)軸上的點和實數(shù)的對應關(guān)系:數(shù)軸上的每一個點都表示一個實數(shù),而每一個實數(shù)都可以用數(shù)軸上的唯一的點來表示。

  實數(shù)和數(shù)軸上的點是一一對應的關(guān)系。

  相信上面對數(shù)學中實數(shù)與數(shù)軸知識點的內(nèi)容總結(jié)學習,可以很好的幫助同學們對此知識點的鞏固學習吧,希望同學們會學習的更好。

  中考數(shù)學知識點之實數(shù)大小的比較

  下面是對數(shù)學的學習中,關(guān)于實數(shù)大小的比較知識學習,希望同學們很好的掌握。

  實數(shù)大小的比較

  1、在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  2、正數(shù)大于0;負數(shù)小于0;正數(shù)大于一切負數(shù);兩個負數(shù)絕對值大的反而小。

  相信上面對數(shù)學中實數(shù)大小的比較知識點的講解學習之后,同學們對上面的知識已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  中考數(shù)學知識點之實數(shù)中的幾個概念

  關(guān)于數(shù)學中隊友實數(shù)中的幾個概念知識,我們做下面的講解學習,相信可以很好的幫助同學們的學習。

  實數(shù)中的幾個概念

  1、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。(1)實數(shù)a的相反數(shù)是 -a; (2)a和b互為相反數(shù) a+b=0

  2、倒數(shù):(1)實數(shù)a(a≠0)的倒數(shù)是 ;(2)a和b 互為倒數(shù) ;(3)注意0沒有倒數(shù)

  3、絕對值:(1)一個數(shù)a 的絕對值有以下三種情況: (2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的點到原點的距離。(3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實數(shù)進行數(shù)性(正、負)確認,再去掉絕對值符號。

  4、n次方根(1)平方根,算術(shù)平方根:設a≥0,稱 叫a的平方根, 叫a的算術(shù)平方根。(2)正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根。(3)立方根: 叫實數(shù)a的立方根。(4)一個正數(shù)有一個正的立方根;0的立方根是0;一個負數(shù)有一個負的立方根。

  通過上面對實數(shù)中的幾個概念知識點的內(nèi)容總結(jié)學習,希望同學們都能很好的掌握上面的知識點,相信同學們會從中學習的更好的。

  中考數(shù)學知識點之實數(shù)的分類

  下面是對數(shù)學中實數(shù)的分類知識點的內(nèi)容講解學習,希望同學們對下面的知識點都能很好的掌握。

  實數(shù)的分類:

  1、有理數(shù):任何一個有理數(shù)總可以寫成 的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。

  2、無理數(shù):初中遇到的無理數(shù)有三種:開不盡的方根,如 、 ;特定結(jié)構(gòu)的不限環(huán)無限小數(shù),如1.101001000100001……;特定意義的數(shù),如π、 °等。

  3、判斷一個實數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結(jié)論。

  以上對數(shù)學中實數(shù)的分類知識點的內(nèi)容總結(jié)學習,相信同學們已經(jīng)能很好的掌握了吧,希望同學們考試成功。

  初中數(shù)學三角形內(nèi)角定理知識點講解

  以下是對數(shù)學中三角形內(nèi)角定理知識的內(nèi)容講解學習,相信可以很好的幫助同學們對此知識點的鞏固學習吧。

  三角形內(nèi)角定理

  定理:三角形兩邊的和大于第三邊

  推論:三角形兩邊的差小于第三邊

  三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1:直角三角形的兩個銳角互余

  推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  通過上面對數(shù)學中三角形內(nèi)角定理知識點的講解學習,相信可以很好的幫助同學們對此知識的學習了吧,希望同學們都能考試成功。

  初中數(shù)學平行定理知識點講解

  如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  平行定理

  平行定理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  證明兩直線平行定理:

  同位角相等,兩直線平行

  內(nèi)錯角相等,兩直線平行

  同旁內(nèi)角互補,兩直線平行

  兩直線平行推論:

  兩直線平行,同位角相等

【數(shù)學中考的知識點】相關(guān)文章:

數(shù)學中考的知識點01-25

數(shù)學中考的知識點11-22

數(shù)學中考知識點02-17

中考數(shù)學的知識點02-22

數(shù)學中考知識點匯總10-26

中考數(shù)學知識點10-31

數(shù)學中考知識點集錦11-02

中考數(shù)學精選必考知識點09-17

中考數(shù)學必考的知識點10-03

中考數(shù)學圓知識點10-07