中考數(shù)學(xué)知識(shí)點(diǎn)(精選21篇)
在年少學(xué)習(xí)的日子里,看到知識(shí)點(diǎn),都是先收藏再說(shuō)吧!知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。那么,都有哪些知識(shí)點(diǎn)呢?下面是小編幫大家整理的中考數(shù)學(xué)知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇1
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。
、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。
⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。
、山夥匠碳皺z驗(yàn)。
⑹答案。
綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1.行程問(wèn)題(勻速運(yùn)動(dòng))
基本關(guān)系:s=vt
、畔嘤鰡(wèn)題(同時(shí)出發(fā)):
⑵追及問(wèn)題(同時(shí)出發(fā)):
若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則
、撬泻叫校;
2.配料問(wèn)題:溶質(zhì)=溶液濃度
溶液=溶質(zhì)+溶劑
3.增長(zhǎng)率問(wèn)題:
4.工程問(wèn)題:基本關(guān)系:工作量=工作效率工作時(shí)間(常把工作量看著單位“1”)。
5.幾何問(wèn)題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
三注意語(yǔ)言與解析式的互化
如,“多”、“少”、“增加了”、“增加為(到)”、“同時(shí)”、“擴(kuò)大為(到)”、“擴(kuò)大了”、……
又如,一個(gè)三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,則這個(gè)三位數(shù)為:100a+10b+c,而不是abc。
四注意從語(yǔ)言敘述中寫(xiě)出相等關(guān)系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,“小時(shí)”“分鐘”的換算;s、v、t單位的一致等。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇2
二次根式的加減法
知識(shí)點(diǎn)1:同類二次根式
。á瘢⿴讉(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
。á颍┡袛嗤惗胃降姆椒ǎ海1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開(kāi)方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開(kāi)方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無(wú)關(guān)。
知識(shí)點(diǎn)2:合并同類二次根式的方法
合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開(kāi)方數(shù)都不變,不是同類二次根式的不能合并。
知識(shí)點(diǎn)3:二次根式的加減法則
二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。
知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開(kāi)方數(shù)相乘,與兩根式是否是同類根式無(wú)關(guān),加減法中,系數(shù)相加,被開(kāi)方數(shù)不變而且兩根式須是同類最簡(jiǎn)根式。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
確定函數(shù)定義域的方法
。1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);
。2)關(guān)系式含有分式時(shí),分式的分母不等于零;
。3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;
。4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;
。5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。
用待定系數(shù)法確定函數(shù)解析式的一般步驟
。1)根據(jù)已知條件寫(xiě)出含有待定系數(shù)的函數(shù)關(guān)系式;
。2)將x、y的幾對(duì)值或圖像上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程
。3)解方程得出未知系數(shù)的值;
。4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式。
中考數(shù)學(xué)知識(shí)點(diǎn)匯總
圓的定理:
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2圓的兩條平行弦所夾的弧相等。
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇3
直線(Straight line)是幾何學(xué)基本概念,是點(diǎn)在空間內(nèi)沿相同或相反方向運(yùn)動(dòng)的軌跡。或者定義為:曲率最小的曲線(以無(wú)限長(zhǎng)為半徑的圓弧)。
從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。
求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),二直線平行;有無(wú)窮多解時(shí),二直線重合;只有一解時(shí),二直線相交于一點(diǎn)。常用直線與 X 軸正向的夾角( 叫直線的傾斜角)或該角的正切(稱直線的斜率)來(lái)表示平面上直線(對(duì)于X軸)的傾斜程度?梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。
在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
空間直線的方向用一個(gè)與該直線平行的非零向量來(lái)表示,該向量稱為這條直線的一個(gè)方向向量。直線在空間中的位置, 由它經(jīng)過(guò)的空間一點(diǎn)及它的一個(gè)方向向量完全確定。在歐幾里得幾何學(xué)中,直線只是一個(gè)直觀的幾何對(duì)象。在建立歐幾里得幾何學(xué)的公理體系時(shí),直線與點(diǎn)、平面等都是不加定義的,它們之間的關(guān)系則由所給公理刻畫(huà)。
在非歐幾何中直線指連接兩點(diǎn)間最短的線,又稱短程線。
方向向量:截取直線l上兩點(diǎn)A(l,n,0)和B(k+l,m+n,1)方向向量為:AB=(k,m,1)
中考數(shù)學(xué)知識(shí)點(diǎn) 篇4
集合的運(yùn)算知識(shí):它包括有交換律、結(jié)合律、分配對(duì)偶律、對(duì)偶律、同一律等。
集合的運(yùn)算定律
交換律:A∩B=B∩A
A∪B=B∪A
結(jié)合律:A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩C
分配對(duì)偶律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
對(duì)偶律:(A∪B)^C=A^C∩B^C
(A∩B)^C=A^C∪B^C
同一律:A∪Φ=A
A∩U=A
求補(bǔ)律:A∪A=U
A∩A=Φ
對(duì)合律:(A)=A
等冪律:A∪A=A
A∩A=A
零一律:A∪U=U
A∩U=A
吸收律:A∪(A∩B)=A
A∩(A∪B)=A
德·摩根定律(反演律):(A∪B)=A∩B
(A∩B)=A∪B
知識(shí)拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)
中考數(shù)學(xué)知識(shí)點(diǎn) 篇5
一、比和比例的性質(zhì)
性質(zhì)1:若a: b=c:d,則(a + c):(b + d)= a:b=c:d;
性質(zhì)2:若a: b=c:d,則(a - c):(b - d)= a:b=c:d;
性質(zhì)3:若a: b=c:d,則(a +x c):(b +x d)=a:b=c:d;(x為常數(shù))
性質(zhì)4:若a: b=c:d,則ad = b(即外項(xiàng)積等于內(nèi)項(xiàng)積)
正比例:如果ab=k(k為常數(shù)),則稱a、b成正比;
反比例:如果ab=k(k為常數(shù)),則稱a、b成反比.
二、比和比例在行程問(wèn)題中的體現(xiàn)
在行程問(wèn)題中,因?yàn)橛兴俣,所以?/p>
當(dāng)一組物體行走速度相等,那么行走的路程比等于對(duì)應(yīng)時(shí)間的反比;
當(dāng)一組物體行走路程相等,那么行走的速度比等于對(duì)應(yīng)時(shí)間的反比;
當(dāng)一組物體行走時(shí)間相等,那么行走的速度比等于對(duì)應(yīng)路程的正比.
1.A和B兩個(gè)數(shù)的比是8:5,每一數(shù)都減少34后,A是B的2倍,試求這兩個(gè)數(shù).
中考數(shù)學(xué)知識(shí)點(diǎn) 篇6
實(shí)數(shù)與數(shù)軸
1、數(shù)軸:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線稱為數(shù)軸。
原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素。
2、數(shù)軸上的點(diǎn)和實(shí)數(shù)的對(duì)應(yīng)關(guān)系:數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),而每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的唯一的點(diǎn)來(lái)表示。
實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系。
相信上面對(duì)數(shù)學(xué)中實(shí)數(shù)與數(shù)軸知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),可以很好的幫助同學(xué)們對(duì)此知識(shí)點(diǎn)的鞏固學(xué)習(xí)吧,希望同學(xué)們會(huì)學(xué)習(xí)的更好。
中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)大小的比較
下面是對(duì)數(shù)學(xué)的學(xué)習(xí)中,關(guān)于實(shí)數(shù)大小的比較知識(shí)學(xué)習(xí),希望同學(xué)們很好的掌握。
實(shí)數(shù)大小的比較
1、在數(shù)軸上表示兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
2、正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小。
相信上面對(duì)數(shù)學(xué)中實(shí)數(shù)大小的比較知識(shí)點(diǎn)的講解學(xué)習(xí)之后,同學(xué)們對(duì)上面的知識(shí)已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)中的幾個(gè)概念
關(guān)于數(shù)學(xué)中隊(duì)友實(shí)數(shù)中的幾個(gè)概念知識(shí),我們做下面的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們的學(xué)習(xí)。
實(shí)數(shù)中的幾個(gè)概念
1、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。
。1)實(shí)數(shù)a的相反數(shù)是 -a;
。2)a和b互為相反數(shù) a+b=0
2、倒數(shù):
。1)實(shí)數(shù)a(a≠0)的倒數(shù)是 ;
。2)a和b 互為倒數(shù) ;
。3)注意0沒(méi)有倒數(shù)
3、絕對(duì)值:
。1)一個(gè)數(shù)a 的絕對(duì)值有以下三種情況:
。2)實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值,就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離。
。3)去掉絕對(duì)值符號(hào)(化簡(jiǎn))必須要對(duì)絕對(duì)值符號(hào)里面的實(shí)數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對(duì)值符號(hào)。
4、n次方根(
1)平方根,算術(shù)平方根:設(shè)a≥0,稱 叫a的平方根, 叫a的算術(shù)平方根。
(2)正數(shù)的平方根有兩個(gè),它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒(méi)有平方根。
。3)立方根: 叫實(shí)數(shù)a的立方根。
(4)一個(gè)正數(shù)有一個(gè)正的立方根;0的立方根是0;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根。
通過(guò)上面對(duì)實(shí)數(shù)中的幾個(gè)概念知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),希望同學(xué)們都能很好的掌握上面的知識(shí)點(diǎn),相信同學(xué)們會(huì)從中學(xué)習(xí)的更好的。
中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)的分類
下面是對(duì)數(shù)學(xué)中實(shí)數(shù)的分類知識(shí)點(diǎn)的內(nèi)容講解學(xué)習(xí),希望同學(xué)們對(duì)下面的知識(shí)點(diǎn)都能很好的掌握。
實(shí)數(shù)的分類:
1、有理數(shù):任何一個(gè)有理數(shù)總可以寫(xiě)成 的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。
2、無(wú)理數(shù):初中遇到的無(wú)理數(shù)有三種:開(kāi)不盡的方根,如 、 ;特定結(jié)構(gòu)的不限環(huán)無(wú)限小數(shù),如1.101001000100001……;特定意義的數(shù),如π、 °等。
3、判斷一個(gè)實(shí)數(shù)的數(shù)性不能僅憑表面上的感覺(jué),往往要經(jīng)過(guò)整理化簡(jiǎn)后才下結(jié)論。
以上對(duì)數(shù)學(xué)中實(shí)數(shù)的分類知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們考試成功。
初中數(shù)學(xué)三角形內(nèi)角定理知識(shí)點(diǎn)講解
以下是對(duì)數(shù)學(xué)中三角形內(nèi)角定理知識(shí)的內(nèi)容講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對(duì)此知識(shí)點(diǎn)的鞏固學(xué)習(xí)吧。
三角形內(nèi)角定理
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1:直角三角形的兩個(gè)銳角互余
推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
通過(guò)上面對(duì)數(shù)學(xué)中三角形內(nèi)角定理知識(shí)點(diǎn)的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對(duì)此知識(shí)的學(xué)習(xí)了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)平行定理知識(shí)點(diǎn)講解
如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
平行定理
平行定理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯(cuò)角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
中考數(shù)學(xué)知識(shí)點(diǎn) 篇7
一、目標(biāo)與要求
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過(guò)解決簡(jiǎn)單的實(shí)際問(wèn)題,使學(xué)生自發(fā)地尋找不等式的解,會(huì)把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過(guò)程,經(jīng)歷探究不等式解與解集的不同意義的過(guò)程,滲透數(shù)形結(jié)合思想;
3、通過(guò)對(duì)不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,培養(yǎng)他們的合作交流意識(shí);讓學(xué)生充分體會(huì)到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個(gè)領(lǐng)域。
二、重點(diǎn)
理解并掌握不等式的性質(zhì);正確運(yùn)用不等式的性質(zhì);建立方程解決實(shí)際問(wèn)題,會(huì)解ax+b=cx+d類型的一元一次方程;尋找實(shí)際問(wèn)題中的不等關(guān)系,建立數(shù)學(xué)模型;一元一次不等式組的解集和解法。
三、難點(diǎn)
一元一次不等式組解集的理解;弄清列不等式解決實(shí)際問(wèn)題的思想方法,用去括號(hào)法解一元一次不等式;正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇8
科學(xué)記數(shù)法—表示較大的數(shù)
1.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法。(科學(xué)記數(shù)法形式:a×10n,其中1≤a<10,n為正整數(shù))
2.規(guī)律方法總結(jié):
①科學(xué)記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關(guān)鍵,由于10的指數(shù)比原來(lái)的整數(shù)位數(shù)少1,按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n;
②記數(shù)法要求是大于10的數(shù)可用科學(xué)記數(shù)法表示,實(shí)質(zhì)上絕對(duì)值大于10的負(fù)數(shù)同樣可用此法表示,只是前面多一個(gè)負(fù)號(hào)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇9
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
中考數(shù)學(xué)知識(shí)點(diǎn) 篇10
基于質(zhì)數(shù)定義的基礎(chǔ)之上而建立的問(wèn)題有很多世界級(jí)的難題,如哥德巴赫猜想等。
質(zhì)數(shù)
質(zhì)數(shù)又稱素?cái)?shù)。指在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。
素?cái)?shù)在數(shù)論中有著很重要的地位。比1大但不是素?cái)?shù)的數(shù)稱為合數(shù)。1和0既非素?cái)?shù)也非合數(shù)。質(zhì)數(shù)是與合數(shù)相對(duì)立的兩個(gè)概念,二者構(gòu)成了數(shù)論當(dāng)中最基礎(chǔ)的定義之一。
算術(shù)基本定理證明每個(gè)大于1的正整數(shù)都可以寫(xiě)成素?cái)?shù)的乘積,并且這種乘積的形式是唯一的。這個(gè)定理的重要一點(diǎn)是,將1排斥在素?cái)?shù)集合以外。如果1被認(rèn)為是素?cái)?shù),那么這些嚴(yán)格的闡述就不得不加上一些限制條件。
概念
只有1和它本身兩個(gè)約數(shù)的自然數(shù),叫質(zhì)數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個(gè)約數(shù),所以2就是質(zhì)數(shù)。與之相對(duì)立的是合數(shù):“除了1和它本身兩個(gè)約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)。”如:4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個(gè)約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)
100以內(nèi)的質(zhì)數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內(nèi)共有25個(gè)質(zhì)數(shù)。
注:1既不是質(zhì)數(shù)也不是合數(shù)。因?yàn)樗募s數(shù)有且只有1這一個(gè)約數(shù)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇11
不等式與不等式組
1.定義:
用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
2.性質(zhì):
、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)方向不變。
②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
3.分類:
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦剑缓幸粋(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
、谝辉淮尾坏仁浇M:
a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
4.考點(diǎn):
、俳庖辉淮尾坏仁(組)
、诟鶕(jù)具體問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問(wèn)題
、塾脭(shù)軸表示一元一次不等式(組)的解集
中考數(shù)學(xué)知識(shí)點(diǎn) 篇12
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的.線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意(1)要把三角形的中位線與三角形的中線區(qū)分開(kāi)。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)三角形的中位線就變成梯形的中位線。
中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
中位線定理推廣
三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇13
一、數(shù)與代數(shù)
Ⅰ、數(shù)與式
1.有理數(shù)的加法、乘法運(yùn)算
同號(hào)相加一邊倒,異號(hào)相加“大”減“小”;符號(hào)跟著大的跑,絕對(duì)值相等“零”正好。
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。【注】“大”減“小”是指絕對(duì)值的大小。
2.合并同類項(xiàng)
合并同類項(xiàng),法則不能忘;只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。
3.去、添括號(hào)法則
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào);括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào);
括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
4.單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清;系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
5.分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減;乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先;分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
6.平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差;積化和差變兩項(xiàng),完全平方不是它。
7.完全平方公式
首平方又末平方,二倍首末在中央;和的平方加再加,先減后加差平方。
8.因式分解
一提二套三分組,十字相乘也上數(shù);四種方法都不行,拆項(xiàng)添項(xiàng)去重組;重組無(wú)望試求根,
換元或者算余數(shù);多種方法靈活選,連乘結(jié)果是基礎(chǔ);同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)
9.二次三項(xiàng)式的因式分解
先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。
10.比和比例
兩數(shù)相除也叫比,兩比相等叫比例;基本性質(zhì)第一條,外項(xiàng)積等內(nèi)項(xiàng)積;
前后項(xiàng)和比后項(xiàng),組成比例叫合比;前后項(xiàng)差比后項(xiàng),組成比例是分比;
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比;前項(xiàng)和比后項(xiàng)和,比值不變叫等比;
商定變量成正比,積定變量成反比;判斷四數(shù)成比例,兩端積等中間積。
11.根式和無(wú)理式
表示方根代數(shù)式,都可稱其為根式;根式異于無(wú)理式,被開(kāi)方式無(wú)限制;
無(wú)理式都是根式,區(qū)分它們有標(biāo)志;被開(kāi)方式有字母,才能稱為無(wú)理式。
12.最簡(jiǎn)根式的條件
最簡(jiǎn)根式三條件:號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇14
代數(shù)式求值
1.代數(shù)式的值:用數(shù)值代替代數(shù)式里的字母,計(jì)算后所得的結(jié)果叫做代數(shù)式的值。
2.代數(shù)式的求值:求代數(shù)式的值可以直接代入、計(jì)算。如果給出的代數(shù)式可以化簡(jiǎn),要先化簡(jiǎn)再求值。
3.題型簡(jiǎn)單總結(jié)以下三種:
①已知條件不化簡(jiǎn),所給代數(shù)式化簡(jiǎn);
、谝阎獥l件化簡(jiǎn),所給代數(shù)式不化簡(jiǎn);
③已知條件和所給代數(shù)式都要化簡(jiǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇15
等式的性質(zhì)
1.等式的性質(zhì):
①等式兩邊加同一個(gè)數(shù)(或式子)結(jié)果仍得等式;
、诘仁絻蛇叧送粋(gè)數(shù)或除以一個(gè)不為零的數(shù),結(jié)果仍得等式。
2.利用等式的性質(zhì)解方程利用等式的性質(zhì)對(duì)方程進(jìn)行變形,使方程的形式向x=a的形式轉(zhuǎn)化。
3.應(yīng)用時(shí)要注意把握兩關(guān):
、僭鯓幼冃;
②變形時(shí)只有做到步步有據(jù),才能保證是正確的。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇16
有理數(shù)的混合運(yùn)算
1.有理數(shù)混合運(yùn)算順序:先算乘方,再算乘除,最后算加減;同級(jí)運(yùn)算,應(yīng)按從左到右的順序進(jìn)行計(jì)算;如果有括號(hào),要先做括號(hào)內(nèi)的運(yùn)算。
2.進(jìn)行有理數(shù)的混合運(yùn)算時(shí),注意各個(gè)運(yùn)算律的運(yùn)用,使運(yùn)算過(guò)程得到簡(jiǎn)化。
3.有理數(shù)混合運(yùn)算的四種運(yùn)算技巧:
①轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算;
、跍愓ǎ涸诩訙p混合運(yùn)算中,通常將和為零的兩個(gè)數(shù),分母相同的兩個(gè)數(shù),和為整數(shù)的兩個(gè)數(shù),乘積為整數(shù)的兩個(gè)數(shù)分別結(jié)合為一組求解;
③分拆法:先將帶分?jǐn)?shù)分拆成一個(gè)整數(shù)與一個(gè)真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算;
、芮捎眠\(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡(jiǎn)便。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇17
三角形的重心
已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長(zhǎng)線交AB于F。求證:F為AB中點(diǎn)。
證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。
重心的幾條性質(zhì):
1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3 縱坐標(biāo):(Y1+Y2+Y3)/3 豎坐標(biāo):(Z1+Z2+Z3)/3
4.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。
5.重心是三角形內(nèi)到三邊距離之積最大的點(diǎn)。
如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇18
中考難點(diǎn)數(shù)學(xué)知識(shí)點(diǎn)
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
中考數(shù)學(xué)最易出錯(cuò)的知識(shí)點(diǎn)
數(shù)與式
易錯(cuò)點(diǎn)1:有理數(shù)、無(wú)理數(shù)以及實(shí)數(shù)的有關(guān)概念理解錯(cuò)誤,相反數(shù)、倒數(shù)、絕對(duì)值的意義概念混淆。以及絕對(duì)值與數(shù)的分類。每年選擇必考。
易錯(cuò)點(diǎn)2:實(shí)數(shù)的運(yùn)算要掌握好與實(shí)數(shù)有關(guān)的概念、性質(zhì),靈活地運(yùn)用各種運(yùn)算律,關(guān)鍵是把好符號(hào)關(guān);在較復(fù)雜的運(yùn)算中,不注意運(yùn)算順序或者不合理使用運(yùn)算律,從而使運(yùn)算出現(xiàn)錯(cuò)誤。
易錯(cuò)點(diǎn)3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯(cuò)點(diǎn)4:求分式值為零時(shí)學(xué)生易忽略分母不能為零。
易錯(cuò)點(diǎn)5:分式運(yùn)算時(shí)要注意運(yùn)算法則和符號(hào)的變化。當(dāng)分式的分子分母是多項(xiàng)式時(shí)要先因式分解,因式分解要分解到不能再分解為止,注意計(jì)算方法,不能去分母,把分式化為最簡(jiǎn)分式。填空題必考。
易錯(cuò)點(diǎn)6:非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為0,每個(gè)式子都為0;整體代入法;完全平方式。
易錯(cuò)點(diǎn)7:計(jì)算第一題必考。五個(gè)基本數(shù)的計(jì)算:0指數(shù),三角函數(shù),絕對(duì)值,負(fù)指數(shù),二次根式的化簡(jiǎn)。
易錯(cuò)點(diǎn)8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個(gè)上海還沒(méi)有考過(guò),知道就好!
易錯(cuò)點(diǎn)9:代入求值要使式子有意義。各種數(shù)式的計(jì)算方法要掌握,一定要注意計(jì)算順序。
方程(組)與不等式(組)
易錯(cuò)點(diǎn)1:各種方程(組)的解法要熟練掌握,方程(組)無(wú)解的意義是找不到等式成立的條件。
易錯(cuò)點(diǎn)2:運(yùn)用等式性質(zhì)時(shí),兩邊同除以一個(gè)數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個(gè)帶X公因式要回頭檢驗(yàn)!
易錯(cuò)點(diǎn)3:運(yùn)用不等式的性質(zhì)3時(shí),容易忘記改不改變符號(hào)的方向而導(dǎo)致結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項(xiàng)系數(shù)不為0導(dǎo)致出錯(cuò)。
易錯(cuò)點(diǎn)5:關(guān)于一元一次不等式組有解無(wú)解的條件易忽視相等的情況。
易錯(cuò)點(diǎn)6:解分式方程時(shí)首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號(hào),易忘記根檢驗(yàn),導(dǎo)致運(yùn)算結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)7:不等式(組)的解得問(wèn)題要先確定解集,確定解集的方法運(yùn)用數(shù)軸。
易錯(cuò)點(diǎn)8:利用函數(shù)圖象求不等式的解集和方程的解。
中考數(shù)學(xué)易出錯(cuò)的知識(shí)點(diǎn)
函數(shù)
易錯(cuò)點(diǎn)1:各個(gè)待定系數(shù)表示的的意義。
易錯(cuò)點(diǎn)2:熟練掌握各種函數(shù)解析式的求法,有幾個(gè)的待定系數(shù)就要幾個(gè)點(diǎn)值。
易錯(cuò)點(diǎn)3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。
易錯(cuò)點(diǎn)4:兩個(gè)變量利用函數(shù)模型解實(shí)際問(wèn)題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領(lǐng)域的問(wèn)題。
易錯(cuò)點(diǎn)5:利用函數(shù)圖象進(jìn)行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯(cuò)點(diǎn)6:與坐標(biāo)軸交點(diǎn)坐標(biāo)一定要會(huì)求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。
易錯(cuò)點(diǎn)7:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會(huì)從復(fù)雜圖形分解為簡(jiǎn)單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯(cuò)點(diǎn)8:自變量的取值范圍有:二次根式的被開(kāi)方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實(shí)數(shù)。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇19
分類的原則:
(1)分類中的每一部分是相互獨(dú)立的;
(2)一次分類按一個(gè)標(biāo)準(zhǔn);
(3)分類討論應(yīng)逐級(jí)有序進(jìn)行。以探尋直角坐標(biāo)系中等腰直角三角形存在的問(wèn)題來(lái)說(shuō),如果給定兩個(gè)點(diǎn)A、B,需要在X軸上找第三個(gè)點(diǎn)C使得這個(gè)三角形ABC是等腰直角三角形,這個(gè)時(shí)候同學(xué)們可以線段來(lái)分類討論:AB為斜邊時(shí),AC為斜邊或時(shí)BC為斜邊時(shí)點(diǎn)C的坐標(biāo)。這樣討論保證不會(huì)丟掉任何一種可能性,并且效率較高。當(dāng)然也可以按照角來(lái)討論,但是注意不要兩種分類方法穿插進(jìn)行。有些時(shí)候有可能會(huì)進(jìn)行二次討論,這個(gè)時(shí)候?qū)τ谕瑢W(xué)們的條理性要求就更大了,例如探討含有30°角的直角三角形時(shí),要先討論那個(gè)角是直角,在討論哪個(gè)角是30°或60°。
第三、在列出所有需要討論的可能性之后,要仔細(xì)審查是否每種可能性都會(huì)存在,是否有需要舍去的,最常見(jiàn)的就是一元二次方程如果有兩個(gè)不等實(shí)根,那么我們就要看看是不是這兩個(gè)根都能保留。同樣有些時(shí)候也需要注意是否有些討論結(jié)果重復(fù),需要進(jìn)行合并。例如直角坐標(biāo)系中求能夠成等腰三角形的點(diǎn)坐標(biāo),如果按照一定的原則分類討論后,有可能會(huì)出現(xiàn)同一個(gè)點(diǎn)上可以構(gòu)成兩個(gè)等腰三角形的情況,這種情況下就要進(jìn)行合并。也就是說(shuō)找到的三角形的個(gè)數(shù)和點(diǎn)的個(gè)數(shù)是不一樣的。
以下幾點(diǎn)是需要大家注意分類討論的
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對(duì)稱性,根據(jù)圖形的特殊性質(zhì),找準(zhǔn)討論對(duì)象,逐一解決。在探討等腰或直角三角形存在時(shí),一定要按照一定的原則,不要遺漏,最后要綜合。
2、討論點(diǎn)的位置,一定要看清點(diǎn)所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對(duì)應(yīng)關(guān)系多涉及到三角形的全等或相似問(wèn)題,對(duì)其中可能出現(xiàn)的有關(guān)角、邊的可能對(duì)應(yīng)情況加以分類討論。
4、代數(shù)式變形中如果有絕對(duì)值、平方時(shí),里面的數(shù)開(kāi)出來(lái)要注意正負(fù)號(hào)的取舍。
5、考查點(diǎn)的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應(yīng)十分注意性質(zhì)、定理的使用條件及范圍。
6、函數(shù)題目中如果說(shuō)函數(shù)圖象與坐標(biāo)軸有交點(diǎn),那么一定要討論這個(gè)交點(diǎn)是和哪一個(gè)坐標(biāo)軸的哪一半軸的交點(diǎn)。
7、由動(dòng)點(diǎn)問(wèn)題引出的函數(shù)關(guān)系,當(dāng)運(yùn)動(dòng)方式改變后(比如從一條線段移動(dòng)到另一條線段)是,所寫(xiě)的函數(shù)應(yīng)該進(jìn)行分段討論。
由于考試題目千變?nèi)f化,上面所列的項(xiàng)目不一定全面,所以還需要同學(xué)們?cè)谄綍r(shí)做題的時(shí)候多多積累。
中考數(shù)學(xué)知識(shí)點(diǎn) 篇20
新初三學(xué)生已經(jīng)開(kāi)學(xué)一個(gè)月的時(shí)間了,學(xué)生開(kāi)始面臨中考的壓力,在所有學(xué)科中,很多學(xué)生最擔(dān)心的就是數(shù)學(xué)成績(jī)的提高,不少學(xué)生早早的開(kāi)始了中考數(shù)學(xué)的復(fù)習(xí)。但如何讓中考數(shù)學(xué)復(fù)習(xí)能夠有效果呢?復(fù)習(xí)可以通過(guò)掌握以下幾個(gè)關(guān)鍵,來(lái)提升自己的成績(jī)。
一、模擬訓(xùn)練關(guān)鍵是選好模擬試題,要按照初中畢業(yè)生學(xué)業(yè)考試說(shuō)明要求,結(jié)合中考數(shù)學(xué)試卷的結(jié)構(gòu)特點(diǎn)和命題趨勢(shì),選擇真正具有模擬性的模擬試題。時(shí)間的安排,題量的多少,低、中、高檔題的比例,總體難度的控制等都要符合中考要求。
二、模擬測(cè)試后,要及時(shí)對(duì)答案,趁熱打鐵,有利于及時(shí)查漏補(bǔ)缺,復(fù)習(xí)效果明顯提高。同事要對(duì)自己做的卷子評(píng)分,嚴(yán)格按照中考評(píng)分要求,以便掌握自身的復(fù)習(xí)水平。
三、留給自己一定的糾錯(cuò)和消化時(shí)間。教師講過(guò)的內(nèi)容,要整理下來(lái);教師沒(méi)講的自己解錯(cuò)的題要糾錯(cuò);與之相關(guān)的基礎(chǔ)知識(shí)要再記憶再鞏固。
四、適當(dāng)?shù)摹敖夥拧,特別是在時(shí)間安排上。經(jīng)過(guò)一段時(shí)間的考、考、考,幾乎所有的學(xué)生心身都會(huì)感到疲勞,如果把這種疲勞的狀態(tài)帶進(jìn)中考考場(chǎng),那肯定是個(gè)較差的結(jié)果。但要注意,解放不是放松,必須保證有個(gè)適度緊張的精神狀態(tài)。實(shí)踐證明,適度緊張是正;蛘叱0l(fā)揮的最佳狀態(tài)。調(diào)節(jié)的生物鐘,盡量把學(xué)習(xí)、思考的時(shí)間調(diào)整得與中考答卷時(shí)間相吻合,關(guān)注的心態(tài)和信心調(diào)整,此時(shí)此刻學(xué)生的信心的作用變?yōu)榱俗畲蟆?/p>
中考數(shù)學(xué)知識(shí)點(diǎn) 篇21
打好基礎(chǔ)提高能力初三復(fù)習(xí)時(shí)間緊、任務(wù)重,在短短的時(shí)間內(nèi),如何提高復(fù)習(xí)的效率和質(zhì)量,是每位初三學(xué)生所關(guān)心的。
一、扎扎實(shí)實(shí)打好基礎(chǔ)
1、重視課本,系統(tǒng)復(fù)習(xí)。初中數(shù)學(xué)基礎(chǔ)包括基礎(chǔ)知識(shí)和基本技能兩方面,F(xiàn)在中考命題仍然以基礎(chǔ)知識(shí)題為主,有些基礎(chǔ)題是課本上的原題或改造,后面的大題雖是高于教材,但原型一般還是教材中的例題式習(xí)題,是教材中題目的引申、變形或組合,復(fù)習(xí)時(shí)應(yīng)以課本為主。
2、夯實(shí)基礎(chǔ),學(xué)會(huì)思考。中考有近70分為基礎(chǔ)題,若把中檔題和較難題中的基礎(chǔ)分計(jì)入,占的比值會(huì)更大。所以在應(yīng)用基礎(chǔ)知識(shí)時(shí)應(yīng)做到熟練、正確、迅速。上課不能只聽(tīng)老師講,要敢于質(zhì)疑,積極思考方法和策略,應(yīng)通過(guò)老師的教,自己悟出來(lái),自己學(xué)出來(lái),尤其在解決新情景問(wèn)題的過(guò)程中,應(yīng)感悟出如何正確思考。
3、重視基礎(chǔ)知識(shí)的理解和方法的學(xué)習(xí);A(chǔ)知識(shí)既是初中所涉及的概念、公式、公理、定理等。掌握基礎(chǔ)知識(shí)之間的聯(lián)系,要做到理清知識(shí)結(jié)構(gòu),形成整體知識(shí),并能綜合運(yùn)用。例如:中考涉及的動(dòng)點(diǎn)問(wèn)題,既是方程、不等式與函數(shù)問(wèn)題的結(jié)合,同時(shí)也常涉及到幾何中的相似三角形、比例推導(dǎo)等等。
中考數(shù)學(xué)命題除了重視基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查。如:配方法、換元法、判別式等操作性較強(qiáng)的方法。
二、綜合運(yùn)用知識(shí),提高自身各種能力
1、初中數(shù)學(xué)基本能力有運(yùn)算能力、思維能力、空間想像能力以及體現(xiàn)數(shù)學(xué)與生產(chǎn)、生活相關(guān)學(xué)科相聯(lián)系的能力等等。提高綜合運(yùn)用數(shù)學(xué)知識(shí)解題的能力。要求同學(xué)們必須做到能把各個(gè)章節(jié)中的知識(shí)聯(lián)系起來(lái),并能綜合運(yùn)用,做到觸類旁通。目前階段應(yīng)根據(jù)自身實(shí)際,有針對(duì)性地復(fù)習(xí),查漏補(bǔ)缺做好知識(shí)歸納、解題方法的歸納。
縱觀中考中對(duì)能力的考查,大致可分成兩個(gè)階段:一是考查運(yùn)算能力、空間想像能力和邏輯思維能力及解決純數(shù)學(xué)問(wèn)題的能力;二是強(qiáng)調(diào)閱讀能力、創(chuàng)新探索能力和數(shù)學(xué)應(yīng)用能力。平時(shí)做題時(shí)應(yīng)做到:
1)深刻理解知識(shí)本質(zhì),平時(shí)加強(qiáng)自己審題能力的鍛煉,才能做到變更命題的表達(dá)形式后不慌不忙,得心應(yīng)手。2)尋求不同的解題途徑與變通思維方式。注重自己思維的廣闊性,對(duì)于同一題目,尋找不同的方法,做到一題多解,這樣才有利于打破思維定勢(shì),開(kāi)拓思路,優(yōu)化解題方法。3)變換幾何圖形的位置、形狀、大小后能找到圖形之間的聯(lián)系,知道哪些量沒(méi)變、哪些量已改變。例如:折疊問(wèn)題中折疊前后圖形全等是解決問(wèn)題的關(guān)鍵。
2、狠抓重點(diǎn)內(nèi)容,適當(dāng)練習(xí)熱點(diǎn)題型。多年來(lái),初中數(shù)學(xué)的方程、函數(shù)、直線型一直是中考重點(diǎn)內(nèi)容。方程思想、函數(shù)思想貫穿于試卷始終。另外,開(kāi)放題、探索題、閱讀理解題、方案設(shè)計(jì)、動(dòng)手操作等問(wèn)題也是近幾年中考的熱點(diǎn)題型,這些中考題大部分來(lái)源于課本,有的對(duì)知識(shí)性要求不同,但題型新穎,背景復(fù)雜,文字冗長(zhǎng),不易梳理,所以應(yīng)重視這方面的學(xué)習(xí)和訓(xùn)練,以便熟悉、適應(yīng)這類題型。
【中考數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
數(shù)學(xué)中考的知識(shí)點(diǎn)01-25
數(shù)學(xué)中考的知識(shí)點(diǎn)11-22
中考數(shù)學(xué)的知識(shí)點(diǎn)02-22
數(shù)學(xué)中考知識(shí)點(diǎn)02-17
中考數(shù)學(xué)精選必考知識(shí)點(diǎn)09-17
中考數(shù)學(xué)最熱的知識(shí)點(diǎn)11-19
中考數(shù)學(xué)知識(shí)點(diǎn)10-31
中考數(shù)學(xué)必考知識(shí)點(diǎn)01-27