- 相關(guān)推薦
向量的加法說課稿
作為一名辛苦耕耘的教育工作者,就有可能用到說課稿,說課稿有助于順利而有效地開展教學活動。如何把說課稿做到重點突出呢?以下是小編整理的向量的加法說課稿,希望對大家有所幫助。
向量的加法說課稿1
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學情分析:
學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內(nèi)容的基礎(chǔ)。學生對數(shù)的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、通過對向量加法的探究,使學生掌握向量加法的概念,結(jié)合物理學實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數(shù)學方面的能力。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。
五、教學方法
本節(jié)采用以下教學方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數(shù)學思想的體現(xiàn):
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數(shù)的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設(shè)計意圖:本著從學生最熟悉、離學生最近的知識經(jīng)驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的.平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
因為=,所以從△OAC中可以看到,與首尾相接,而+恰好是由第一個向量的起點O指向第二個向量的終點C,即= +,與據(jù)平行四邊形法則所得結(jié)果相同。而、首尾相接后與+構(gòu)成三角形,所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑W生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則。對有如下規(guī)定:+ = + =
通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設(shè)計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質(zhì)的認識。
、诮Y(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。
接下來是對應(yīng)的兩個練習,運用交換律與結(jié)合律計算向量的和。
設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結(jié)合律還使學生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結(jié)
先由學生小結(jié),檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)內(nèi)容,使學生印象更深。
(1)平行四邊形法則:起點相同,適用于不共線向量的求和。
。2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
交換律:+ = +結(jié)合律:(+)+ = +(+)
4、作業(yè):P91,A組1、2、3。
文檔內(nèi)含有圖片、公式、特殊符號網(wǎng)頁頁面不顯示,請點擊免費下載完整WORD文檔。
向量的加法說課稿2
各位評委老師:
大家好!我今天說課的課題是《平面向量的加法、減法和數(shù)乘向量》、
下面我從教材分析、學情分析、教學目標及重難點等六個方面進行說明、
一、教材分析:
我選用的教材是由江蘇教育出版社出版,馬復教授主編的“江蘇省職業(yè)學校文化課教材《數(shù)學》(基礎(chǔ)模塊·下冊)”、
《平面向量》具有數(shù)形雙重性,不僅能方便地解決一些平面幾何問題,而且能幫助我們找到解析幾何中一些點的坐標之間的代數(shù)關(guān)系;平面向量的運算巧妙地把量的大小與方向結(jié)合到一起,為幾何圖形的角度計算提供了一個很好的代數(shù)工具;平面向量是《電工基礎(chǔ)》中交流電電路分析和《工程力學》中力的分析、計算的主要工具、
《平面向量》安排在第七章,前承三角函數(shù),后啟直線與圓的方程、第1節(jié)通過實例引入了向量的有關(guān)概念,為《平面向量的加法、減法和數(shù)乘向量》的學習奠定了基礎(chǔ)、本節(jié)介紹了是平面向量的三種運算,為進一步學習向量知識提供了準備、
二、學情分析:
我班學生是中職電子專業(yè)一年級學生,他們已初步了解了矢量的合成;學習了向量的有關(guān)概念;運用到了數(shù)形結(jié)合的方法;通過一學期的共同努力,學生已具有一定的自主學習與合作學習相結(jié)合的意識;但他們動手能力不夠強,數(shù)學表達和交流的能力欠缺、
三、教學目標:
結(jié)合教材和學情,我確定本節(jié)的教學目標為:
。1)理解平面向量的加法、減法和數(shù)乘向量的相關(guān)運算,并理解其代數(shù)、幾何意義,掌握各類運算的代數(shù)式運算的特點、
。2)通過動手作圖,進一步滲透數(shù)形結(jié)合的思想;通過學生探究,培養(yǎng)學生的合作意識、
重點:向量加法兩個運算法則,用代數(shù)式、三角形法則和平行四邊形法則求和向量,把減法運算轉(zhuǎn)化為加法運算,用運算律進行向量的數(shù)乘運算、
難點:把向量的減法運算轉(zhuǎn)化為加法運算,向量數(shù)乘的幾何意義、
四、教法學法:
根據(jù)教材和學生的具體學情,本節(jié)主要借助情境激趣、啟發(fā)引導等形式組織教學,并借助探究、小組合作、練習等方法組織學生學習、
五、教學過程:
為達成本節(jié)目標,將本節(jié)內(nèi)容分解成4個課時,五個任務(wù)、
安排了新課導入、任務(wù)落實、思考交流等七個環(huán)節(jié)來實施教學、
具體步驟如下:
1、首先,復習向量的有關(guān)概念,溫故而知新、再創(chuàng)設(shè)問題情境導入新課、
【通過位移的變化引出向量的加法,初步體會向量相加的概念、】
2、第2個環(huán)節(jié)是任務(wù)落實,目的是讓學生通過反復練習,在“做中學,學中做”,從而突出了重點、突破了難點、
任務(wù)1是“會用向量加法的三角形法則求和向量”
板書向量加法的定義,并結(jié)合圖形講解向量加法的.定義,從代數(shù)形式和幾何形式兩方面強調(diào)向量加法的三角形法則(首尾相接,自始至終)、
【板書能突出重點;借助圖形直觀理解向量加法的三角形法則(首尾相接,自始至終),滲透數(shù)形結(jié)合的思想、】
然后,通過試試看引出向量加法的交換律,讓學生類比實數(shù)加法的運算律,遷移出向量加法的運算律,并結(jié)合圖形講解、
【讓學生初步體驗向量加法的三角形法則(首尾相接,自始至終);借助圖形,理解向量加法的運算律,培養(yǎng)學生觀察、類比能力、】
接著通過2組例題“用向量加法的三角形法則作不共線向量和共線向量的和向量”,進一步感知、應(yīng)用向量加法的三角形法則、
【學生通過動手操作,體驗了“首尾相接,自始至終”,理解向量的加法運算;通過模仿練習,檢測學習效果,讓學生享受到成功的喜悅、】
課堂上部分學生平移時沒有注意“大小不變,方向不變”;作反向向量的和向量時出現(xiàn)了“搞不清和向量是哪一個”的現(xiàn)象,我在黑板上用不同顏色的粉筆標出向量,強調(diào)“首尾相接,自始至終”、
任務(wù)2是“會用向量加法的平行四邊形法則求和向量”
通過拉伸彈簧的實驗,遷移到向量加法的平行四邊形法則,教師動手作圖并讓學生模仿,強調(diào)“加向量共起點,和向量是以它們作為鄰邊的平行四邊形的共起點的對角線所在向量”,初步體會向量加法的平行四邊形法則、
然后,通過一組例題“用向量加法的平行四邊形法則作不共線向量的和向量”,讓學生通過動手操作,理解向量加法的平行四邊形法則,培養(yǎng)學生動手能力、
接著讓學生解決教材上的思考交流、通過學生思考、交流,教師啟發(fā)引導,得出平行四邊形法則和三角形法則的區(qū)別和聯(lián)系,比較得出用代數(shù)式求兩個和向量的特點、
任務(wù)3是“會用向量減法的三角形法則求差向量”
通過相反向量和向量的加法運算引出向量的減法運算;板書向量減法的定義,并結(jié)合圖形講解,從代數(shù)形式和幾何形式兩方面強調(diào)向量減法的三角形法則(共起點,連終點,指向被減)、
【借助圖形直觀理解向量減法的三角形法則(共起點,連終點,指向被減),滲透數(shù)形結(jié)合的思想、】
然后,通過學生觀察作業(yè)評講中的圖形和向量減法的幾何圖形,并類比實數(shù)的加減運算,遷移出向量的減法是向量加法的逆運算、這里,我要求學生解決教材上的思考交流、
【借助圖形直觀感知,培養(yǎng)學生識圖能力;理清向量加減運算的關(guān)系,培養(yǎng)學生類比和遷移能力、】
例4是用向量減法的三角形法則作不共線向量的差向量,并讓學生用向量加法驗向量減法、
【學生通過動手操作,體驗了“共起點,連終點,指向被減”,提高了動手能力;借助向量加法驗向量減法,一方面檢查作圖正確性,另一方面深化對向量加減法的理解、】
通過模仿練習,檢測學習效果,讓學生享受到成功的喜悅、
這樣,對“把向量的減法運算轉(zhuǎn)化為加法運算”這個難點進行了突破、
例5是借助平行四邊形,鞏固向量減法的三角形法則,同時復習向量加法的平行四邊形法則,提高學生識圖能力、
模仿練習是通過學生自評,互評和師評的方式完成,充分體現(xiàn)學生的主體作用和教學評價的多樣化、
任務(wù)4是“形成向量數(shù)乘的概念,會作數(shù)乘向量”
通過質(zhì)點運動問題,從加法的特例(即幾個相同的向量相加)入手,師生共同歸納出向量數(shù)乘的概念,結(jié)合圖形讓學生直觀理解數(shù)乘向量的大小和方向;并用試試看進一步辨析數(shù)乘向量的概念,加深學生對數(shù)乘向量的大小和方向的理解、
然后,通過一組例題“在方格紙中作數(shù)乘向量”,進一步感知、應(yīng)用向量數(shù)乘的概念、
【學生通過動手操作,體驗了數(shù)乘向量的大小和方向,提高了動手能力;對“數(shù)乘向量的幾何意義”這個難點進行了突破、】
課堂上不少學生在作“”時無處下手,小組交流時有學生提出,其實就是作兩個向量的差向量;我當即肯定了他們,并提醒學生“共起點,連終點,指向被減”、
任務(wù)5是“會用運算律進行向量數(shù)乘運算”
借助填空的形式,師生共同探究出數(shù)乘向量滿足的運算律、
【體現(xiàn)了從特殊到一般的數(shù)學思想、】
接著,通過一組例題讓學生在“做中學,學中做”,會用運算律進行向量數(shù)乘運算、
課堂上不少學生出現(xiàn)了“解:=”和向量的書寫錯誤,我用實物投影反應(yīng)在屏幕上,讓學生糾錯,進一步樹立解題規(guī)范的思想、
3、思考交流:目的是【通過學生小組合作,深化對向量共線以及向量數(shù)乘的大小和方向的理解,培養(yǎng)學生數(shù)學交流和表達的能力、】
4、問題解決:【借助平行四邊形,鞏固向量加法、減法和數(shù)乘運算,培養(yǎng)學生識圖和綜合應(yīng)用知識的能力、】
5、課堂檢測:目的是【檢測本節(jié)重點內(nèi)容的掌握情況,以便查漏補缺、】
6、通過師生共同小結(jié),構(gòu)建完整的知識體系,培養(yǎng)學生歸納能力、
7、作業(yè)布置:【鞏固所學內(nèi)容,并對所學內(nèi)容的檢測與反饋、】
這是我的板書設(shè)計:
六、教學反思:
用口訣讓學生理解向量的加減運算法則;任務(wù)1中讓學生觀察圖形發(fā)現(xiàn)向量加法滿足的運算律,與課堂檢測前后呼應(yīng);任務(wù)3中設(shè)計巧妙,突破了“把向量的減法運算轉(zhuǎn)化為加法運算”這個重點和難點、
存在問題:對合作探究的能力上把握不夠準確,導致在導入環(huán)節(jié)所花時間與預(yù)設(shè)有所出入、
改進的措施:在以后的教學中,還需在學情把握上多下功夫、
我的說課到此結(jié)束,謝謝各位評委老師!
【向量的加法說課稿】相關(guān)文章:
有理數(shù)加法說課稿12-06
《有理數(shù)加法》說課稿06-20
有理數(shù)的加法說課稿10-06
《加法運算定律》說課稿10-13
小數(shù)加法和減法說課稿07-09
小數(shù)加法和減法說課稿09-26
加法的教學設(shè)計08-23
加法教學反思08-10
《加法》教學設(shè)計09-14