亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

初一數(shù)學(xué)知識點總結(jié)

時間:2024-09-09 09:18:06 初一 我要投稿

初一數(shù)學(xué)知識點總結(jié)(匯編15篇)

  總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的總結(jié),它可以提升我們發(fā)現(xiàn)問題的能力,快快來寫一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?下面是小編為大家整理的初一數(shù)學(xué)知識點總結(jié),僅供參考,歡迎大家閱讀。

初一數(shù)學(xué)知識點總結(jié)(匯編15篇)

初一數(shù)學(xué)知識點總結(jié)1

  1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。

  2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。

  3、換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、構(gòu)造法;在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的.數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

  5、反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個反例,就達到了證明的目的。

初一數(shù)學(xué)知識點總結(jié)2

  初一數(shù)學(xué)下冊期末考試知識點總結(jié)一(蘇教版)

  第七章 平面圖形的認識(二) 1

  第八章 冪的運算 2

  第九章 整式的乘法與因式分解 3

  第十章 二元一次方程組 4

  第十一章 一元一次不等式 4

  第十二章 證明 9

  第七章 平面圖形的認識(二)

  一、知識點:

  1、“三線八角”

 、 如何由線找角:一看線,二看型。

  同位角是“F”型;

  內(nèi)錯角是“Z”型;

  同旁內(nèi)角是“U”型。

 、 如何由角找線:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。

  簡述:平行于同一條直線的兩條直線平行。

  補充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。

  簡述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質(zhì):

  判定定理 性質(zhì)定理

  條件 結(jié)論 條件 結(jié)論

  同位角相等 兩直線平行 兩直線平行 同位角相等

  內(nèi)錯角相等 兩直線平行 兩直線平行 內(nèi)錯角相等

  同旁內(nèi)角互補 兩直線平行 兩直線平行 同旁內(nèi)角互補

  4、圖形平移的性質(zhì):

  圖形經(jīng)過平移,連接各組對應(yīng)點所得的'線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關(guān)系:

  三角形的任意兩邊之和大于第三邊;

  三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,

  則

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:①三角形的高、角平分線、中線都是線段。

 、诟、角平分線、中線的應(yīng)用。

  7、三角形的內(nèi)角和:

  三角形的3個內(nèi)角的和等于180°;

  直角三角形的兩個銳角互余;

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和;

  三角形的一個外角大于與它不相鄰的任意一個內(nèi)角。

  8、多邊形的內(nèi)角和:

  n邊形的內(nèi)角和等于(n-2)180°;

  任意多邊形的外角和等于360°。

  第八章 冪的運算

  冪(p5

初一數(shù)學(xué)知識點總結(jié)3

  有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).

  注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的`數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);

  a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).

初一數(shù)學(xué)知識點總結(jié)4

  一、目標(biāo)與要求

  1、通過處理實際問題,讓學(xué)生體驗從算術(shù)方法到代數(shù)方法是一種進步;

  2、初步學(xué)會如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念;

  3、培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。

  二、重點

  從實際問題中尋找相等關(guān)系;

  建立列方程解決實際問題的思想方法,學(xué)會合并同類項,會解ax+bx=c類型的一元一次方程。

  三、難點

  從實際問題中尋找相等關(guān)系;

  分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學(xué)生逐步建立列方程解決實際問題的思想方法。

  四、知識框架

  五、知識點、概念總結(jié)

  1、一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  2、一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)。

  3、條件:一元一次方程必須同時滿足4個條件:

 。1)它是等式;

  (2)分母中不含有未知數(shù);

 。3)未知數(shù)最高次項為1;

  (4)含未知數(shù)的項的系數(shù)不為0。

  4、等式的性質(zhì):

  等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。

  等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。

  等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。

  解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。

  5、合并同類項

 。1)依據(jù):乘法分配律

  (2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項

 。3)合并時次數(shù)不變,只是系數(shù)相加減。

  6、移項

 。1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。

 。2)依據(jù):等式的性質(zhì)

 。3)把方程一邊某項移到另一邊時,一定要變號。

  7、一元一次方程解法的一般步驟:

  使方程左右兩邊相等的未知數(shù)的'值叫做方程的解。

  一般解法:

 。1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);

  (2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)

  (3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號

 。4)合并同類項:把方程化成ax=b(a0)的形式;

  (5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a。

  8、同解方程

  如果兩個方程的解相同,那么這兩個方程叫做同解方程。

  9、方程的同解原理:

 。1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。

 。2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。

  10、列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于和,差,倍,分問題

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套—————,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

  (2)畫圖分析法:多用于行程問題

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  11、列方程解應(yīng)用題的常用公式:

  12、做一元一次方程應(yīng)用題的重要方法:

  (1)認真審題(審題)

 。2)分析已知和未知量

 。3)找一個合適的等量關(guān)系

  (4)設(shè)一個恰當(dāng)?shù)奈粗獢?shù)

 。5)列出合理的方程(列式)

 。6)解出方程(解題)

 。7)檢驗

  (8)寫出答案(作答)

  一元一次方程牽涉到許多的實際問題,例如工程問題、種植面積問題、比賽比分問題、路程問題,相遇問題、逆流順流問題、相向問題分段收費問題、盈虧、利潤問題。

初一數(shù)學(xué)知識點總結(jié)5

  1、 我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometric figure).

  2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內(nèi),它們是立體圖形(solidfigure).

  3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內(nèi),它們是平面圖形(planefigure).

  4、將由平面圖形圍成的立體圖形表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖(net).

  5、幾何體簡稱為體(solid).

  6、包圍著體的是面(surface),面有平的面和曲的面兩種.

  7、面與面相交的地方形成線(line),線和線相交的地方是點(point).

  8、點動成面,面動成線,線動成體.

  9、經(jīng)過探究可以得到一個基本事實:經(jīng)過兩點有一條直線,并且只有一條直線.簡述為:兩點確定一條直線(公理).

  10、當(dāng)兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection).

  11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center).

  12、經(jīng)過比較,我們可以得到一個關(guān)于線段的基本事實:兩點的'所有連線中,線段最短.簡單說成:兩點之間,線段最短.(公理)

  13、連接兩點間的線段的長度,叫做這兩點的距離(distance).

  14、角∠(angle)也是一種基本的幾何圖形.

  15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″.

  16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector).

  17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementaryangle),即其中的每一個角是另一個角的余角.

  18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementaryangle),即其中一個角是另一個角的補角

  19、等角的補角相等,等角的余角相等.

初一數(shù)學(xué)知識點總結(jié)6

  第五章《相交線與平行線》

  一、知識點

  5.1相交線5.1.1相交線

  有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

  兩條直線相交有4對鄰補角。

  有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

  5.1.2兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

  注意:⑴垂線是一條直線。

  ⑵具有垂直關(guān)系的兩條直線所成的4個角都是90。

  ⑶垂直是相交的特殊情況。

  ⑷垂直的記法:a⊥b,AB⊥CD。

  畫已知直線的垂線有無數(shù)條。

  過一點有且只有一條直線與已知直線垂直。

  連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

  5.2平行線5.2.1平行線

  在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。在同一平面內(nèi)兩條直線的關(guān)系只有兩種:相交或平行。

  平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。5.2.2直線平行的條件

  兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個角叫做內(nèi)錯角。

  兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內(nèi)角。判定兩條直線平行的方法:

  方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。

  方法2兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行。

  方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行。

  5.3平行線的性質(zhì)

  平行線具有性質(zhì):

  性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。

  性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。判斷一件事情的語句叫做命題。5.4平移

 、虐岩粋圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

 、菩聢D形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點,連接各組對應(yīng)點的線段平行且相等。

  圖形的這種移動,叫做平移變換,簡稱平移。

  第六章《平面直角坐標(biāo)系》

  一、知識點

  6.1平面直角坐標(biāo)系

  6.1.1有序數(shù)對

  有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對。

  6.1.2平面直角坐標(biāo)系

  平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向為正方向;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面上的任意一點都可以用一個有序數(shù)對來表示。

  建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點不屬于任何象限。

  6.2坐標(biāo)方法的簡單應(yīng)用

  6.2.1用坐標(biāo)表示地理位置

  利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些地點分布情況平面圖的過程如下:

 、沤⒆鴺(biāo)系,選擇一個適當(dāng)?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;

  ⑵根據(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;

  ⑶在坐標(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。6.2.2用坐標(biāo)表示平移

  在平面直角坐標(biāo)系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應(yīng)點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應(yīng)點(x,y+b)(或(x,y-b))。

  在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度。

  第七章《三角形》

  一、知識點

  7.1與三角形有關(guān)的線段

  7.1.1三角形的邊

  由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。

  頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。三角形兩邊的和大于第三邊。7.1.2三角形的高、中線和角平分線7.1.3三角形的穩(wěn)定性

  三角形具有穩(wěn)定性。7.2與三角形有關(guān)的角7.2.1三角形的內(nèi)角

  三角形的內(nèi)角和等于180。

  7.2.2三角形的外角

  三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。三角形的'一個外角大于與它不相鄰的任何一個內(nèi)角。

  7.3多邊形及其內(nèi)角和7.3.1多邊形

  在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。n邊形的對角線公式:

  n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7.3.2多邊形的內(nèi)角和

  n邊形的內(nèi)角和公式:180(n-2)多邊形的外角和等于360。

  7.4課題學(xué)習(xí)鑲嵌

  1三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。☆2判斷三條線段能否組成三角形。

  ①a+b>c(ab為最短的兩條線段)②a-b

  a-b

  進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

  兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。

  第九章《不等式與不等式組》

  一、知識點

  9.1不等式

  9.1.1不等式及其解集

  用“<”或“>”號表示大小關(guān)系的式子叫做不等式。使不等式成立的未知數(shù)的值叫做不等式的解。

  能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集。含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。

  9.1.2不等式的性質(zhì)

  不等式有以下性質(zhì):

  不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。9.2實際問題與一元一次不等式

  解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為x<a(或x>a)的形式。

  9.3一元一次不等式組

  把兩個不等式合起來,就組成了一個一元一次不等式組。

  幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。

  對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。9.4課題學(xué)習(xí)利用不等關(guān)系分析比賽

初一數(shù)學(xué)知識點總結(jié)7

  一、一元一次不等式的解法:

  一元一次不等式的解法與一元一次方程的解法類似,其步驟為:

  1、去分母;

  2、去括號;

  3、移項;

  4、合并同類項;

  5、系數(shù)化為1

  二、不等式的基本性質(zhì):

  1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;

  2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;

  3、不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。

  三、不等式的解:

  能使不等式成立的未知數(shù)的值,叫做不等式的解。

  四、不等式的解集:

  一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

  五、解不等式的依據(jù)不等式的基本性質(zhì):

  性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的.方向不變,

  性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,

  性質(zhì)3:不等式兩邊乘以(或除以)同一個負數(shù),不等號的方向改變,

  常見考法

 。1)考查一元一次不等式的解法;

 。2)考查不等式的性質(zhì)。

  誤區(qū)提醒

  忽略不等號變向問題。

  初中數(shù)學(xué)重點知識點歸納

  有理數(shù)乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  單項式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項式。

  注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

  多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

  2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

  提高數(shù)學(xué)思維的方法

  轉(zhuǎn)化思維

  轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。

  創(chuàng)新思維

  創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解

  要培養(yǎng)質(zhì)疑的習(xí)慣

  在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。

  在孩子放學(xué)回家后,讓孩子回顧當(dāng)天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當(dāng)孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。

  有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。

初一數(shù)學(xué)知識點總結(jié)8

  1 過兩點有且只有一條直線

  2 兩點之間線段最短

  3 同角或等角的補角相等

  4 同角或等角的余角相等

  5 過一點有且只有一條直線和已知直線垂直

  6 直線外一點與直線上各點連接的所有線段中,垂線段最短

  7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內(nèi)錯角相等,兩直線平行

  11 同旁內(nèi)角互補,兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內(nèi)錯角相等

  14 兩直線平行,同旁內(nèi)角互補

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180

  18 推論1 直角三角形的兩個銳角互余

  19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21 全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

  29 角的平分線是到角的兩邊距離相等的所有點的集合

  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60

  34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35 推論1 三個角都相等的`三角形是等邊三角形

  36 推論 2 有一個角等于60的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

  43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

初一數(shù)學(xué)知識點總結(jié)9

  整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.

  2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

  3.多項式:幾個單項式的和叫多項式.

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.

  整式

  1.整式:單項式和多項式的統(tǒng)稱叫整式。

  2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。

  3.系數(shù);一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  4、次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

  5.多項式:幾個單項式的和叫做多項式。

  6.項:組成多項式的每個單項式叫做多項式的項。

  7.常數(shù)項:不含字母的項叫做常數(shù)項。

  8.多項式的次數(shù):多項式中,次數(shù)的項的次數(shù)叫做這個多項式的次數(shù)。

  9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。

  相交線

  1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

  2、注意:

 、糯咕是一條直線。

 、凭哂写怪标P(guān)系的兩條直線所成的4個角都是90。

 、谴怪笔窍嘟坏奶厥馇闆r。

 、却怪钡挠浄ǎ篴⊥b,AB⊥CD。

  3、畫已知直線的垂線有無數(shù)條。

  4、過一點有且只有一條直線與已知直線垂直。

  5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

  6、直線外一點到這條直線的.垂線段的長度,叫做點到直線的距離。

  7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

  兩條直線相交有4對鄰補角。

  8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。

  單項式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。

  2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。

  3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。

  4、單獨一個數(shù)或一個字母也是單項式。

  5、只含有字母因式的單項式的系數(shù)是1或―1。

  6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。

  7、單獨的一個非零常數(shù)的次數(shù)是0。

  8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

  9、單項式的系數(shù)包括它前面的符號。

  10、單項式的系數(shù)是帶分數(shù)時,應(yīng)化成假分數(shù)。

  11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。

  12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。

  數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法

  1、預(yù)習(xí)很重要:

  往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。

  2、聽講有學(xué)問:

  聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

  3、做好錯題本:

  每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。

  4、用好課外書:

  正確認識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。

  5、注意總結(jié)和反思:

  知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。

  6、接受數(shù)學(xué)思想方法的指導(dǎo):

  要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠。

  關(guān)于數(shù)學(xué)常見誤區(qū)有哪些

  1、被動學(xué)習(xí)

  許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。

  2、學(xué)不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  4、進一步學(xué)習(xí)條件不具備

  高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

  如何整理數(shù)學(xué)學(xué)科課堂筆記

  一、內(nèi)容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。

  二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時,受到時空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。

  三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。

  五、錯誤反思。學(xué)習(xí)過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學(xué)常用解題技巧有哪些

  第一,應(yīng)堅持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關(guān)鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應(yīng)運用最好的解題方法。因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。

初一數(shù)學(xué)知識點總結(jié)10

  第一章整式的運算

  一、單項式、單項式的次數(shù):

  只含有數(shù)字與字母的積的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  二、多項式

  1、多項式、多項式的次數(shù)、項

  幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

  三、整式:單項式和多項式統(tǒng)稱為整式。

  四、整式的加減法:

  整式加減法的一般步驟:(1)去括號;(2)合并同類項。五、冪的運算性質(zhì):1、同底數(shù)冪的乘法:a

  2、冪的乘方:3、積的乘方:

  4、同底數(shù)冪的除法:

  六、零指數(shù)冪和負整數(shù)指數(shù)冪:1、零指數(shù)冪:2、負整數(shù)指數(shù)冪:

  七、整式的乘除法:

  1、單項式乘以單項式:

  法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。

  2、單項式乘以多項式:

  法則:單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  3、多項式乘以多項式:

  多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

  4、單項式除以單項式:

  單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。

  5、多項式除以單項式:

  多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  八、整式乘法公式:

  1、平方差公式:2、完全平方公式:

  第二章平行線與相交線

  一、余角和補角:

  1、余角:

  定義:如果兩個角的和是直角,那么稱這兩個角互為余角。性質(zhì):同角或等角的余角相等。2、補角:

  定義:如果兩個角的和是平角,那么稱這兩個角互為補角。

  性質(zhì):同角或等角的補角相等。

  二、對頂角:

  我們把兩條直線相交所構(gòu)成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。

  對頂角的性質(zhì):對頂角相等。

  三、同位角、內(nèi)錯角、同旁內(nèi)角:

  直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構(gòu)成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個角叫做內(nèi)錯角;∠3與∠6在直線AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個角叫做同旁內(nèi)角。

  四、平行線的判定:

  1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。

  2、兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。簡稱:內(nèi)錯角相等,兩直線平行。

  3、兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。簡稱:同旁內(nèi)角互補,兩直線平行。

  補充平行線的判定方法:

  (1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。

  五、平行線的性質(zhì):

 。1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯角相等。(3)兩直線平行,同旁內(nèi)角互補。

  六、尺規(guī)作圖:

  1、作一條線段等于已知線段。2、作一個角等于已知角。

  第三章生活中的數(shù)據(jù)

  一、科學(xué)記數(shù)法:

  一般地,一個絕對值較小的數(shù)可以表示成a10的形式,其中1a10,n是負整數(shù)。

  二、近似數(shù)和有效數(shù)字:

  1、近似數(shù):

  利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。

  2、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個近似數(shù)的有效數(shù)字。

  三、形象統(tǒng)計圖:

  第四章概率

  一、事件發(fā)生的可能性;

  人們通常用1(或100)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。

  二、游戲是否公平:

  游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。三、摸到紅球的概率:1、概率的意義

  P(摸到紅球=

  摸到紅球可能出現(xiàn)的結(jié)果數(shù)

  摸出一球可能出現(xiàn)的結(jié)果數(shù)2、確定事件和不確定事件的概率:

 。1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0

  (2)三角形按角分類:

  直角三角形(有一個角為直角的三角形)

  三角形銳角三角形(三個角都是銳角的三角形)斜三角形

  鈍角三角形(有一個角為鈍角的三角形)

  把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

  7、三角形的三種重要線段:(1)三角形的角平分線:

  定義:在三角形中,一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

  性質(zhì):三角形的三條角平分線交于一點。交點在三角形的內(nèi)部。(2)三角形的中線:

  定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。性質(zhì):三角形的三條中線交于一點,交點在三角形的內(nèi)部。(3)三角形的'高線:

  定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

  性質(zhì):三角形的三條高所在的直線交于一點。銳角三角形的三條高線的交點在它的內(nèi)部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部;

  8、三角形的面積:

  三角形的面積=

  1×底×高2二、全等圖形:

  定義:能夠完全重合的兩個圖形叫做全等圖形。性質(zhì):全等圖形的形狀和大小都相同。三、全等三角形

  1、全等三角形及有關(guān)概念:

  能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。

  2、全等三角形的表示:

  全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。3、全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。4、三角形全等的判定:

 。1)邊邊邊:有三邊對應(yīng)相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。

 。2)角邊角:兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)角角邊:兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“角角邊”或“AAS”)(4)邊角邊:兩邊和它們的夾角對應(yīng)相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)直角三角形全等的判定:

  對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)

  第六章變量之間的關(guān)系

  1、變量、自變量、因變量:2、函數(shù)的三種表示法:

 。1)關(guān)系式法(2)列表法

  (3)圖像法

  第五章生活中的軸對稱

  一、軸對稱

  1、軸對稱圖形:

  如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

  2、軸對稱:

  對于兩個圖形,如果沿一條直線對折后,它們能夠完全重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。

  3、性質(zhì):

 。1)對應(yīng)點所連的線段被對稱軸垂直平分

 。2)對應(yīng)線段相等,對應(yīng)角相等。

  二、角平分線的性質(zhì):

  角平分線上的點到這個角的兩邊的距離相等。

  三、線段的垂直平分線(簡稱中垂線):

  定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等。四、等腰三角形

  1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。

  2、等腰三角形的性質(zhì):

 。1)等腰三角形的兩個底角相等

  (2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),

 。3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。

  3、等腰三角形的判定:

  (1)有兩條邊相等的三角形是等腰三角形。

  (2)如果一個三角形有兩個角相等,那么它們所對的邊也相等五、等邊三角形:

  1、等邊三角形:三邊都相等的三角形叫做等邊三角形。2、等邊三角形的性質(zhì):

 。1)具有等腰三角形的所有性質(zhì)。

 。2)等邊三角形的各個角都相等,并且每個角都等于60°。

  3、等邊三角形的判定

 。1)三邊都相等的三角形是等邊三角形。

 。2):三個角都相等的三角形是等邊三角形

  (3):有一個角是60°的等腰三角形是等邊三角形。

初一數(shù)學(xué)知識點總結(jié)11

  有理數(shù)

  1.1 正數(shù)與負數(shù)

  在以前學(xué)過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。

  與負數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。

  1.2 有理數(shù)

  正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。

  整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。

  通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。

  數(shù)軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。

  只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)

  數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的`掌握,同學(xué)們認真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

  ②不準(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

初一數(shù)學(xué)知識點總結(jié)12

  拋物線的性質(zhì):

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標(biāo)為P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的`位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  焦半徑:

  焦半徑:拋物線y2=2px(p>0)上一點P(x0,y0)到焦點Fè÷p2,0的距離|PF|=x0+p2.

  求拋物線方程的方法:

  (1)定義法:根據(jù)條件確定動點滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程。

  (2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式。從簡單化角度出發(fā),焦點在x軸的,設(shè)為y2=ax(a≠0),焦點在y軸的,設(shè)為x2=by(b≠0).

初一數(shù)學(xué)知識點總結(jié)13

  第一章有理數(shù)

  1、大于0的數(shù)是正數(shù)。

  2、有理數(shù)分類:正有理數(shù)、0、負有理數(shù)。

  3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負整數(shù))、分數(shù)(正分數(shù)、負分數(shù))

  4、規(guī)定了原點,單位長度,正方向的直線稱為數(shù)軸。

  5、數(shù)的大小比較:

 、僬龜(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

 、趦蓚負數(shù)比較,絕對值大的反而小。

  6、只有符號不同的兩個數(shù)稱互為相反數(shù)。

  7、若a+b=0,則a,b互為相反數(shù)

  8、表示數(shù)a的點到原點的距離稱為數(shù)a的絕對值

  9、絕對值的三句:正數(shù)的絕對值是它本身,

  負數(shù)的絕對值是它的相反數(shù),

  0的絕對值是0。

  10、有理數(shù)的計算:先算符號、再算數(shù)值。

  11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

  12、乘除:同號得正,異號的負

  13、乘方:表示n個相同因數(shù)的乘積。

  14、負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

  15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。

  16、科學(xué)計數(shù)法:用ax10n 表示一個數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù))

  17、左邊第一個非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。

  【知識梳理】

  1.數(shù)軸:數(shù)軸三要素:原點,正方向和單位長度;數(shù)軸上的點與實數(shù)是一一對應(yīng)的。

  2.相反數(shù)實數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個點位于原點的兩側(cè),并且到原點的距離相等。

  3.倒數(shù):若兩個數(shù)的積等于1,則這兩個數(shù)互為倒數(shù)。

  4.絕對值:代數(shù)意義:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0;

  幾何意義:一個數(shù)的絕對值,就是在數(shù)軸上表示這個數(shù)的點到原點的距離.

  5.科學(xué)記數(shù)法:,其中。

  6.實數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。

  7.在實數(shù)范圍內(nèi),加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數(shù)不能開偶次方。實數(shù)的運算基礎(chǔ)是有理數(shù)運算,有理數(shù)的一切運算性質(zhì)和運算律都適用于實數(shù)運算。正確的確定運算結(jié)果的符號和靈活的使用運算律是掌握好實數(shù)運算的關(guān)鍵。

  初一數(shù)學(xué)二單元知識點歸納

  (一)正負數(shù)

  1.正數(shù):大于0的數(shù)。

  2.負數(shù):小于0的數(shù)。

  3.0即不是正數(shù)也不是負數(shù)。

  4.正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  (二)有理數(shù)

  1.有理數(shù):由整數(shù)和分數(shù)組成的數(shù)。包括:正整數(shù)、0、負整數(shù),正分數(shù)、負分數(shù)?梢詫懗蓛蓚整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)

  2.整數(shù):正整數(shù)、0、負整數(shù),統(tǒng)稱整數(shù)。

  3.分數(shù):正分數(shù)、負分數(shù)。

  (三)數(shù)軸

  1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。)

  2.數(shù)軸的三要素:原點、正方向、單位長度。

  3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。

  4.絕對值:正數(shù)的'絕對值是它本身,負數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負數(shù),絕對值大的反而小。

  (四)有理數(shù)的加減法

  1.先定符號,再算絕對值。

  2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。

  3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。

  4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。5.a?b=a+(?b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  (五)有理數(shù)乘法(先定積的符號,再定積的大小)

  1.同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。

  2.乘積是1的兩個數(shù)互為倒數(shù)。

  3.乘法交換律:ab=ba

  4.乘法結(jié)合律:(ab)c=a(bc)

  5.乘法分配律:a(b+c)=ab+ac

  (六)有理數(shù)除法

  1.先將除法化成乘法,然后定符號,最后求結(jié)果。

  2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  3.兩數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。(七)乘方1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))2.負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3.同底數(shù)冪相乘,底不變,指數(shù)相加。

  4.同底數(shù)冪相除,底不變,指數(shù)相減。

  (八)有理數(shù)的加減乘除混合運算法則

  1.先乘方,再乘除,最后加減。

  2.同級運算,從左到右進行。

  3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

  (九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。

初一數(shù)學(xué)知識點總結(jié)14

  填空題答題技巧

  要求熟記的基本概念、基本事實、數(shù)據(jù)公式、原理,復(fù)習(xí)時要特別細心,注意記熟,做到臨考前能準(zhǔn)確無誤、清晰回憶。

  對那些起關(guān)鍵作用的,或最容易混淆記錯的'概念、符號或圖形要特別注意,因為考查的往往就是它們。如區(qū)間的端點開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個單調(diào)區(qū)間取了并集等等。

  解答題答題技巧

 。1)仔細審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。

 。2)規(guī)范表述。分清層次,要注意計算的準(zhǔn)確性和簡約性、邏輯的條理性和連貫性。

 。3)給出結(jié)論。注意分類討論的問題,最后要歸納結(jié)論。

 。4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗算時間。

初一數(shù)學(xué)知識點總結(jié)15

  二元一次方程組

  1、二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程。注意:一般說二元一次方程有無數(shù)個解。

  2、二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組。

  3、二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解。注意:一般說二元一次方程組只有解(即公共解)。

  4、二元一次方程組的解法:

 。1)代入消元法;

 。2)加減消元法;

 。3)注意:判斷如何解簡單是關(guān)鍵。

  ※5、一次方程組的應(yīng)用:

 。1)對于一個應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

  (2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;

 。3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知數(shù)的關(guān)系。

  一元一次不等式(組)

  1、不等式:用不等號,把兩個代數(shù)式連接起來的式子叫不等式。

  2、不等式的基本性質(zhì):

  不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;

  不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;

  不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變。

  3、不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的`解;不等式所有解的集合,叫做這個不等式的解集。

  4、一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b0或ax+b0,(a0)。

  5、一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點。

【初一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

數(shù)學(xué)初一知識點總結(jié)07-04

初一數(shù)學(xué)下冊知識點總結(jié)11-29

初一數(shù)學(xué)下知識點總結(jié)12-07

初一數(shù)學(xué)知識點總結(jié)07-11

初一數(shù)學(xué)棱錐知識點總結(jié)11-29

初一數(shù)學(xué)知識點的總結(jié)11-07

人教版初一數(shù)學(xué)知識點總結(jié)04-24

初一數(shù)學(xué)知識點總結(jié)[精]08-29

(薦)初一數(shù)學(xué)知識點總結(jié)07-12

【必備】初一數(shù)學(xué)重要的知識點總結(jié)11-21