亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

初一數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2024-11-05 17:07:51 初一 我要投稿

[集合]初一數(shù)學(xué)知識(shí)點(diǎn)15篇

  在日常的學(xué)習(xí)中,相信大家一定都接觸過知識(shí)點(diǎn)吧!知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。為了幫助大家掌握重要知識(shí)點(diǎn),下面是小編幫大家整理的初一數(shù)學(xué)知識(shí)點(diǎn),僅供參考,歡迎大家閱讀。

[集合]初一數(shù)學(xué)知識(shí)點(diǎn)15篇

初一數(shù)學(xué)知識(shí)點(diǎn)1

  1、兩組對(duì)邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對(duì)邊相等且平行;

  (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ);

  (3)平行四邊形的對(duì)角線互相平分。

  3、判定:

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形:

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形;

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形;

  (4)兩組對(duì)角分別相等的'四邊形是平行四邊形:

  (5)對(duì)角線互相平分的四邊形是平行四邊形。

  4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形。

初一數(shù)學(xué)知識(shí)點(diǎn)2

  第一章有理數(shù)

  1.1正數(shù)和負(fù)數(shù)

  以前學(xué)過的0以外的數(shù)前面加上負(fù)號(hào)“—”的書叫做負(fù)數(shù)。

  以前學(xué)過的0以外的數(shù)叫做正數(shù)。

  數(shù)0既不是正數(shù)也不是負(fù)數(shù),0是正數(shù)與負(fù)數(shù)的分界。

  在同一個(gè)問題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義

  1.2有理數(shù)

  1.2.1有理數(shù)

  正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。

  整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

  1.2.2數(shù)軸

  規(guī)定了原點(diǎn)、正方向、單位長度的直線叫做數(shù)軸。

  數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表達(dá)。

  注意事項(xiàng):

 、艛(shù)軸的原點(diǎn)、正方向、單位長度三要素,缺一不可。

 、仆桓鶖(shù)軸,單位長度不能改變。

  一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長度;表示數(shù)—a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長度。

  1.2.3相反數(shù)

  只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

  數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

  在任意一個(gè)數(shù)前面添上“—”號(hào),新的數(shù)就表示原數(shù)的相反數(shù)。

  1.2.4絕對(duì)值

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。

  一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。

  在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

  比較有理數(shù)的大。

  ⑴正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

 、苾蓚(gè)負(fù)數(shù),絕對(duì)值大的反而小。

  1.3有理數(shù)的加減法

  1.3.1有理數(shù)的加法

  有理數(shù)的加法法則:

  ⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

  ⑵絕對(duì)值不相等的餓異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;橄喾磾(shù)的兩個(gè)數(shù)相加得0。

 、且粋(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

  兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。

  加法交換律:a+b.b+a

  三個(gè)數(shù)相加,先把前面兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。

  加法結(jié)合律:(a+b)+c.a+(b+c)

  1.3.2有理數(shù)的減法

  有理數(shù)的減法可以轉(zhuǎn)化為加法來進(jìn)行。

  有理數(shù)減法法則:

  減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。

  a—b.a+(—b)

  1.4有理數(shù)的乘除法

  1.4.1有理數(shù)的乘法

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

  任何數(shù)同0相乘,都得0。

  乘積是1的兩個(gè)數(shù)互為倒數(shù)。

  幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。

  兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。

  ab.ba

  三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。(ab)c.a(bc)

  一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。 a(b+c).ab+ac

  數(shù)字與字母相乘的書寫規(guī)范:

 、艛(shù)字與字母相乘,乘號(hào)要省略,或用“”

 、茢(shù)字與字母相乘,當(dāng)系數(shù)是1或—1時(shí),1要省略不寫。

 、菐Х?jǐn)?shù)與字母相乘,帶分?jǐn)?shù)應(yīng)當(dāng)化成假分?jǐn)?shù)。

  用字母x表示任意一個(gè)有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個(gè)式子的項(xiàng),2和3分別是著兩項(xiàng)的系數(shù)。

  一般地,合并含有相同字母因數(shù)的式子時(shí),只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即

  ax+bx.(a+b)x

  上式中x是字母因數(shù),a與b分別是ax與bx這兩項(xiàng)的系數(shù)。

  去括號(hào)法則:

  括號(hào)前是“+”,把括號(hào)和括號(hào)前的“+”去掉,括號(hào)里各項(xiàng)都不改變符號(hào)。括號(hào)前是“—”,把括號(hào)和括號(hào)前的“—”去掉,括號(hào)里各項(xiàng)都改變符號(hào)。括號(hào)外的因數(shù)是正數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。

  1.4.2有理數(shù)的除法

  有理數(shù)除法法則:

  除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。

  a÷b.a〃1

  b(b≠0)

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于

  0的數(shù),都得0。

  因?yàn)橛欣頂?shù)的除法可以化為乘法,所以可以利用乘法的運(yùn)算性質(zhì)簡化運(yùn)算。乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號(hào),最后求出結(jié)果。

  1.5有理數(shù)的乘方

  1.5.1乘方

  求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當(dāng)an看作a的`n次方的結(jié)果時(shí),也可以讀作a的n次冪。

  負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

  正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  有理數(shù)混合運(yùn)算的運(yùn)算順序:

 、畔瘸朔剑俪顺,最后加減;

  ⑵同極運(yùn)算,從左到右進(jìn)行;

 、侨缬欣ㄌ(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行

  1.5.2科學(xué)記數(shù)法

  把一個(gè)大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。

  用科學(xué)記數(shù)法表示一個(gè)n位整數(shù),其中10的指數(shù)是n—1。

  1.5.3近似數(shù)和有效數(shù)字

  接近實(shí)際數(shù)目,但與實(shí)際數(shù)目還有差別的數(shù)叫做近似數(shù)。

  精確度:一個(gè)近似數(shù)四舍五入到哪一位,就說精確到哪一位。

  從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字。

  對(duì)于用科學(xué)記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

  第二章整式加減

一、代數(shù)式與有理式

  1、用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。 2、整式和分式統(tǒng)稱為有理式。

  3、含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。

  二、整式和分式

  1、沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。

  2、有除法運(yùn)算并且除式中含有字母的有理式叫做分式。

  三、單項(xiàng)式與多項(xiàng)式

  1、沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積———包括單獨(dú)的一個(gè)數(shù)或字母)

  2、幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來看。

  單項(xiàng)式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。

  2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。

  3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。

  4、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。

  5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。

  6、單獨(dú)的一個(gè)數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。

  7、單獨(dú)的一個(gè)非零常數(shù)的次數(shù)是0。

  8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。

  9、單項(xiàng)式的系數(shù)包括它前面的符號(hào)。

  10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時(shí),應(yīng)化成假分?jǐn)?shù)。

  11、單項(xiàng)式的系數(shù)是1或―1時(shí),通常省略數(shù)字“1”。

  12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無關(guān)。

  多項(xiàng)式

  1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

  2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

  3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

  5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。

  6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  整式

  1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  2、單項(xiàng)式或多項(xiàng)式都是整式。

  3、整式不一定是單項(xiàng)式。

  4、整式不一定是多項(xiàng)式。

  5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

  四、整式的加減

  1、整式加減的理論根據(jù)是:去括號(hào)法則,合并同類項(xiàng)法則,以及乘法分配率。

  去括號(hào)法則:如果括號(hào)前是“十”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不變符號(hào);如果括號(hào)前是“一”號(hào),把括號(hào)和它前面的“一”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

  2、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。合并同類項(xiàng):

  1).合并同類項(xiàng)的概念:

  把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。

  2).合并同類項(xiàng)的法則:

  同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  3).合并同類項(xiàng)步驟:

  a.準(zhǔn)確的找出同類項(xiàng)。

  b.逆用分配律,把同類項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變。

  c.寫出合并后的結(jié)果。

  4).在掌握合并同類項(xiàng)時(shí)注意:

  a.如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后,結(jié)果為0.

  b.不要漏掉不能合并的項(xiàng)。

  c.只要不再有同類項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。說明:合并同類項(xiàng)的關(guān)鍵是正確判斷同類項(xiàng)。

  3、幾個(gè)整式相加減的一般步驟:

  1)列出代數(shù)式:用括號(hào)把每個(gè)整式括起來,再用加減號(hào)連接。

  2)按去括號(hào)法則去括號(hào)。 3)合并同類項(xiàng)。

  4、代數(shù)式求值的一般步驟:

 。1)代數(shù)式化簡

 。2)代入計(jì)算

 。3)對(duì)于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。

  第三章一元一次方程

  2.1從算式到方程2.1.1一元一次方程

  含有未知數(shù)的等式叫做方程。只含有一個(gè)未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

  分析實(shí)際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實(shí)際問題的一種方法。

  解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。

  2.1.2等式的性質(zhì)

  等式的性質(zhì)1等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。等式的性質(zhì)2等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。

  2.2從古老的代數(shù)書說起——一元一次方程的討論⑴

  把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

  2.3從“買布問題”說起——一元一次方程的討論⑵

  方程中有帶括號(hào)的式子時(shí),去括號(hào)的方法與有理數(shù)運(yùn)算中括號(hào)類似。解方程就是要求出其中的未知數(shù)(例如x),通過去分母、去括號(hào)、移項(xiàng)、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x.a的形式轉(zhuǎn)化,這個(gè)過程主要依據(jù)等式的性質(zhì)和運(yùn)算律等。

  去分母:

 、啪唧w做法:方程兩邊都乘各分母的最小公倍數(shù)⑵依據(jù):等式性質(zhì)2

  ⑶注意事項(xiàng):

 、俜肿哟蛏侠ㄌ(hào)

  ②不含分母的項(xiàng)也要乘

  2.4再探實(shí)際問題與一元一次方程

  2.5列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離.速度時(shí)間速度

 。2)工程問題:工作量.工效工時(shí)工效

  距離時(shí)間

  時(shí)間

  距離速度

  工作量工時(shí)

  工時(shí)

  工作量工效

 。3)比率問題:部分.全體比率比率

  部分全體

  全體

  部分比率

 。4)順逆流問題:順流速度.靜水速度+水流速度,逆流速度.靜水速度—水流速度;

  (5)商品價(jià)格問題:售價(jià).定價(jià)折1,利潤.售價(jià)—成本,10利潤率

  成本售價(jià)

  成本

  100%

 。6)周長、面積、體積問題:C圓.2πR,S圓.πR2,C長方形.2(a+b),S長方形.ab,C正方形.4a,S正方形.a2,S環(huán)形.π(R2—r2),V長方體.abc,V正方體.a3,V圓柱.πR2h,V圓錐.1πR2h.

  第四章圖形認(rèn)識(shí)初步

  3.1多姿多彩的圖形

  現(xiàn)實(shí)生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形。

  3.1.1立體圖形與平面圖形

  長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。

  長方形、正方形、三角形、圓等都是平面圖形。

  許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。

  3.1.2點(diǎn)、線、面、體

  幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。

  包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線。線和線相交的地方是點(diǎn)。

  幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)是構(gòu)成圖形的基本元素。

  3.2直線、射線、線段

  經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。兩點(diǎn)確定一條直線。

  點(diǎn)C線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。類似的還有線段的三等分點(diǎn)、四等分點(diǎn)等。

  直線桑一點(diǎn)和它一旁的部分叫做射線。

  兩點(diǎn)的所有連線中,線段最短。簡單說成:兩點(diǎn)之間,線段最短。

  3.3角的度量

  角也是一種基本的幾何圖形。

  度、分、秒是常用的角的度量單位。

  把一個(gè)周角360等分,每一份就是一度的角,記作1;把1度的角60等分,每份叫做1分的角,記作1;把1分的角60等分,每份叫做1秒的角,記作1。

  3.4角的比較與運(yùn)算

  3.4.1角的比較

  從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線,叫做這個(gè)角的平分線。類似的,還有叫的三等分線。

  3.4.2余角和補(bǔ)角

  如果兩個(gè)角的和等于90(直角),就說這兩個(gè)角互為余角。如果兩個(gè)角的和等于180(平角),就說這兩個(gè)角互為補(bǔ)角。等角的補(bǔ)角相等。等角的余角相等。本章知識(shí)結(jié)構(gòu)圖

  從不同方向看立體圖形立體圖形展開立體圖形幾何圖形平面圖形角的度量角角的大小比較余角和補(bǔ)角角的平分線等角的補(bǔ)角相等等角的余角相等平面圖形直線、射線、線段

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+ bx+ c.0(a、 b、 c屬于R,a≠0)根的判別,. b2—4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。

  數(shù)學(xué)經(jīng)常遇到的問題解答

  1、要提高數(shù)學(xué)成績首先要做什么

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)

  對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績。

  4、做題總是粗心怎么辦

  很多學(xué)生成績不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問題時(shí)更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。

  學(xué)好數(shù)學(xué)要重視“四個(gè)依據(jù)”是什么

  讀好一本教科書——它是教學(xué)、考試的主要依據(jù);

  記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;

  做好一本習(xí)題集——它是知識(shí)的拓寬;

  記好一本心得筆記——它是你自己的知識(shí)。

初一數(shù)學(xué)知識(shí)點(diǎn)3

  第一章中華文明的起源(1—12)

  1、我國境內(nèi)已知的最早人類是元謀人,距今170萬年P(guān)2

  2、人與動(dòng)物的根本區(qū)別是會(huì)不會(huì)制造工具P2

  3、北京人和山頂洞人生活的時(shí)間和地點(diǎn)P1.3.4

  4、從猿到人的演變過程中,勞動(dòng)起了決定作用。P2

  5、北京人使用天然火,山頂洞人懂得人工取火并已經(jīng)掌握了磨光和鉆孔技術(shù)。P4—5

  6、北京人過群居生活,山頂洞人過氏族生活P5

  7、河姆渡人生活在長江流域、半坡人生活在黃河流域,都已經(jīng)使用磨制石器P7—8

  8、河姆渡人栽培水稻,半坡人種粟,我國是世界上最早種植水稻和粟的國家。P7—8

  9、大汶口文化晚期中出現(xiàn)了私有財(cái)產(chǎn)和貧富分化。P7—P8

  10、炎帝、黃帝部落結(jié)成聯(lián)盟,形成了日后的華夏族,炎帝、黃帝被尊奉為華夏族的祖先。P12

  11、被稱為中華民族“人文初祖”的是黃帝。P13

  12、堯舜禹的“禪讓”:民主推選部落聯(lián)盟首領(lǐng)的方法。P14

  第二章夏商西周春秋戰(zhàn)國(13—40)

  1、公元前20xx年,禹建立夏朝,這是我國歷第一個(gè)奴隸制王朝。P15

  2、湯滅夏,建立商朝,盤庚遷殷后,商朝統(tǒng)治穩(wěn)定。P21

  3、公元前1046年,周武王經(jīng)牧野之戰(zhàn)滅商,建立周朝,定都鎬。P23

  4、西周實(shí)行分封制,加強(qiáng)了對(duì)各地的統(tǒng)治。P23—24

  5、公元前771年,西周滅亡。P24

  6、商朝的司母戊鼎是世界上已發(fā)現(xiàn)的的`青銅器,湖南寧鄉(xiāng)出土了造型奇特的四羊方尊P26

  7、“三星堆”文化遺址出土的青銅面具、大型青銅立人像、青銅神樹等引起了中外人士的矚目。P27

  8、農(nóng)業(yè)、畜牧業(yè)、手工業(yè)和商業(yè)的繁榮,形成了我國夏、商西周燦爛的青銅文明。P27

  9、公元前770年,周平王東遷洛,史稱“東周”。東周分為春秋和戰(zhàn)國兩個(gè)時(shí)期。P30

  10、春秋五霸:齊桓公、晉文公、楚莊王、吳王夫差、越王勾踐。P30—32

  11、齊桓公提出“尊王攘夷”的口號(hào)。P31

  12、決定晉文公成為中原霸主的戰(zhàn)役是城濮之戰(zhàn)。P32

初一數(shù)學(xué)知識(shí)點(diǎn)4

  1、三角形的分類

  三角形按邊的關(guān)系分類如下:

  三角形包括不等邊三角形和等腰三角形

  等腰三角形 包括底和腰不相等的等腰三角形和等邊三角形

  三角形按角的關(guān)系分類如下:

  三角形包括 直角三角形(有一個(gè)角為直角的三角形)和斜三角形

  斜三角形 包括 銳角三角形(三個(gè)角都是銳角的三角形)和 鈍角三角形(有一個(gè)角為鈍 角的三角形)

  把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

  2、三角形的三邊關(guān)系定理及推論

  (1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。

  推論:三角形的兩邊之差小于第三邊。

  3、三角形的內(nèi)角和定理及推論

  三角形的內(nèi)角和定理:三角形三個(gè)內(nèi)角和等于180°。

  推論:

 、僦苯侨切蔚膬蓚(gè)銳角互余。

 、谌切蔚囊粋(gè)外角等于和它不相鄰的來兩個(gè)內(nèi)角的和。

 、廴切蔚囊粋(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

  注:在同一個(gè)三角形中:等角對(duì)等邊;等邊對(duì)等角;大角對(duì)大邊;大邊對(duì)大角。

  4、三角形的面積

  三角形的面積=×底×高

  全等三角形

  1、全等三角形的概念

  能夠完全重合的兩個(gè)三角形叫做全等三角形。。

  2、三角形全等的判定

  三角形全等的判定定理:

  (1)邊角邊定理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊角邊”或“SAS”)

  (2)角邊角定理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“角邊角”或“ASA”)

  (3)邊邊邊定理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊邊邊”或“SSS”)。

  直角三角形全等的判定:

  對(duì)于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)

  3、全等變換

  只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。

  全等變換包括一下三種:

  (1)平移變換:把圖形沿某條直線平行移動(dòng)的變換叫做平移變換。

  (2)對(duì)稱變換:將圖形沿某直線翻折180°,這種變換叫做對(duì)稱變換。

  (3)旋轉(zhuǎn)變換:將圖形繞某點(diǎn)旋轉(zhuǎn)一定的角度到另一個(gè)位置,這種變換叫做旋轉(zhuǎn)變換。

  等腰三角形

  1、等腰三角形的性質(zhì)

  (1)等腰三角形的性質(zhì)定理及推論:

  定理:等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角)

  推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的.中線、底邊上的高重合。

  推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。

  2、三角形中的中位線

  連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

  (1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。

  (2)要會(huì)區(qū)別三角形中線與中位線。

  三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

  三角形中位線定理的作用:

  位置關(guān)系:可以證明兩條直線平行。

  數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

  常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:

  結(jié)論1:三條中位線組成一個(gè)三角形,其周長為原三角形周長的一半。

  結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。

  結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。

  結(jié)論4:三角形一條中線和與它相交的中位線互相平分。

  結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。

初一數(shù)學(xué)知識(shí)點(diǎn)5

  1、有序數(shù)對(duì)

  有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì),叫做有序數(shù)對(duì)。

  2、平面直角坐標(biāo)系

  平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向?yàn)檎较?兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面上的任意一點(diǎn)都可以用一個(gè)有序數(shù)對(duì)來表示。

  建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。

  3、坐標(biāo)方法的'簡單應(yīng)用

  用坐標(biāo)表示地理位置

  利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些地點(diǎn)分布情況平面圖的過程如下:

 、沤⒆鴺(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;

 、聘鶕(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;

  ⑶在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱。

  4、用坐標(biāo)表示平移

  在平面直角坐標(biāo)系中,將點(diǎn)(x,y)向右(或左)平移a個(gè)單位長度,可以得到對(duì)應(yīng)點(diǎn)(x+a,y)(或(x—a,y));將點(diǎn)(x,y)向上(或下)平移b個(gè)單位長度,可以得到對(duì)應(yīng)點(diǎn)(x,y+b)(或(x,y—b))。

  在平面直角坐標(biāo)系內(nèi),如果把一個(gè)圖形各個(gè)點(diǎn)的橫坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個(gè)單位長度;如果把它各個(gè)點(diǎn)的縱坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個(gè)單位長度。

初一數(shù)學(xué)知識(shí)點(diǎn)6

  1.有理數(shù)的大小比較

  比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的`兩個(gè)有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號(hào)兩數(shù)及0的大小,利用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大小。

  2.有理數(shù)大小比較的法則:

 、僬龜(shù)都大于0;

 、谪(fù)數(shù)都小于0;

 、壅龜(shù)大于一切負(fù)數(shù);

 、軆蓚(gè)負(fù)數(shù),絕對(duì)值大的其值反而小。

  規(guī)律方法·有理數(shù)大小比較的三種方法:

  (1)法則比較:正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù).兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小.

  (2)數(shù)軸比較:在數(shù)軸上右邊的點(diǎn)表示的數(shù)大于左邊的點(diǎn)表示的數(shù).

  (3)作差比較:

  若a﹣b>0,則a>b;

  若a﹣b<0,則a

  若a﹣b=0,則a=b.

初一數(shù)學(xué)知識(shí)點(diǎn)7

  知識(shí)點(diǎn)、概念總結(jié)

  1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。

  一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。

  3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3

  (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)F(x)同解。

  (2)如果不等式F(x)

  (3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

  7.不等式的性質(zhì):

  (1)如果x>y,那么yy;(對(duì)稱性)

  (2)如果x>y,y>z;那么x>z;(傳遞性)

  (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般順序:

  (1)去分母(運(yùn)用不等式性質(zhì)2、3)

  (2)去括號(hào)

  (3)移項(xiàng)(運(yùn)用不等式性質(zhì)1)

  (4)合并同類項(xiàng)

  (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3)

  (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集

  10.一元一次不等式與一次函數(shù)的綜合運(yùn)用:

  一般先求出函數(shù)表達(dá)式,再化簡不等式求解。

  11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成

  了一個(gè)一元一次不等式組。

  12.解一元一次不等式組的`步驟:

  (1)求出每個(gè)不等式的解集;

  (2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)

  (3)用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論)

  13.解不等式的訣竅

  (1)大于大于取大的(大大大);

  例如:X>-1,X>2,不等式組的解集是X>2

  (2)小于小于取小的(小小小);

  例如:X<-4,X<-6,不等式組的解集是X<-6

  (3)大于小于交叉取中間;

  (4)無公共部分分開無解了;

  14.解不等式組的口訣

  (1)同大取大

  例如,x>2,x>3,不等式組的解集是X>3

  (2)同小取小

  例如,x<2,x<3,不等式組的解集是X<2

  (3)大小小大中間找

  例如,x<2,x>1,不等式組的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式組無解

  15.應(yīng)用不等式組解決實(shí)際問題的步驟

  (1)審清題意

  (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

  (3)解不等式組

  (4)由不等式組的解確立實(shí)際問題的解

  (5)作答

  16.用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。

初一數(shù)學(xué)知識(shí)點(diǎn)8

 。4)據(jù)規(guī)律

  底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位。

  2、

  3、近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。

  4、有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。

  5、混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則。

  6、特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明。

  六、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):整式的加減。

  1、單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式。

  2、單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。

  3、多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。

  4、多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))

  是常見的兩個(gè)二次三項(xiàng)式。

  5、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  七、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):整式分類為

  1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。

  2、合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。

  3、去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。

  4、整式的加減:整式的加減,實(shí)際上是在去括號(hào)的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并。

  5、多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到。┡帕衅饋,叫做按這個(gè)字母的升冪排列(或降冪排列)。注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。

  八、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):一元一次方程

  1、等式與等量:用“=”號(hào)連接而成的式子叫等式。注意:“等量就能代入”!

  2、等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;

  等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式。

  3、方程:含未知數(shù)的等式,叫方程。

  4、方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!

  5、移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng)。移項(xiàng)的依據(jù)是等式性質(zhì)1.

  6、一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的`次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  7、一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  8、一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  9、一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解)。

  九、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):列一元一次方程解應(yīng)用題。

 。1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

 。2)畫圖分析法:…………多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  十、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):。列方程解應(yīng)用題的常用公式。

初一數(shù)學(xué)知識(shí)點(diǎn)9

 、俅笥0的數(shù)叫正數(shù)。

  ②在正數(shù)前面加上“-”號(hào)的數(shù),叫做負(fù)數(shù)。

 、0既不是正數(shù)也不是負(fù)數(shù)。0是正數(shù)和負(fù)數(shù)的分界,是唯一的中性數(shù)。

  ④搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等。

 、菡麛(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(結(jié)合數(shù)軸和一元一次方程出題),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

 、薹秦(fù)數(shù)就是正數(shù)和零;非負(fù)整數(shù)就是正整數(shù)和0。

 、摺盎鶞(zhǔn)”題:有固定的基準(zhǔn)數(shù),和的.求法:基準(zhǔn)數(shù)×個(gè)數(shù)+與基準(zhǔn)數(shù)相比較的數(shù)的代數(shù)和;平均數(shù)的求法:基準(zhǔn)數(shù)+與基準(zhǔn)數(shù)相比較的數(shù)的代數(shù)和÷個(gè)數(shù)(寫出原數(shù),也可用小學(xué)知識(shí)解答);“非基準(zhǔn)”題:無固定的基準(zhǔn)數(shù),如明天和今天比,后天和明天比。

初一數(shù)學(xué)知識(shí)點(diǎn)10

  1、 我們把實(shí)物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometric figure).

  2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內(nèi),它們是立體圖形(solidfigure).

  3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內(nèi),它們是平面圖形(planefigure).

  4、將由平面圖形圍成的立體圖形表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖(net).

  5、幾何體簡稱為體(solid).

  6、包圍著體的是面(surface),面有平的面和曲的面兩種.

  7、面與面相交的地方形成線(line),線和線相交的地方是點(diǎn)(point).

  8、點(diǎn)動(dòng)成面,面動(dòng)成線,線動(dòng)成體.

  9、經(jīng)過探究可以得到一個(gè)基本事實(shí):經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線.簡述為:兩點(diǎn)確定一條直線(公理).

  10、當(dāng)兩條不同的直線有一個(gè)公共點(diǎn)時(shí),我們就稱這兩條直線相交(intersection),這個(gè)公共點(diǎn)叫做它們的交點(diǎn)(pointof intersection).

  11、點(diǎn)M把線段AB分成相等的兩條線段AM和MB,點(diǎn)M叫做線段AB的中點(diǎn)(center).

  12、經(jīng)過比較,我們可以得到一個(gè)關(guān)于線段的基本事實(shí):兩點(diǎn)的所有連線中,線段最短.簡單說成:兩點(diǎn)之間,線段最短.(公理)

  13、連接兩點(diǎn)間的線段的長度,叫做這兩點(diǎn)的距離(distance).

  14、角∠(angle)也是一種基本的幾何圖形.

  15、把一個(gè)周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″.

  16、從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的'射線,叫做這個(gè)角的平分線(angular bisector).

  17、如果兩個(gè)角的和等于90°(直角),就是說這兩個(gè)叫互為余角(complementaryangle),即其中的每一個(gè)角是另一個(gè)角的余角.

  18、如果兩個(gè)角的和等于180°(平角),就說這兩個(gè)角互為補(bǔ)角(supplementaryangle),即其中一個(gè)角是另一個(gè)角的補(bǔ)角

  19、等角的補(bǔ)角相等,等角的余角相等.

初一數(shù)學(xué)知識(shí)點(diǎn)11

  初一數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

  1.去括號(hào):一般地,幾個(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng)。如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同。如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反。

  2.合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變

  初一數(shù)學(xué)重要知識(shí)點(diǎn)歸納

  整式的加減

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.

  2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).

  3.多項(xiàng)式:幾個(gè)單項(xiàng)式的`和叫多項(xiàng)式.

  4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式.

  5.整式:凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.

  6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng).

  7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào).

  9.整式的加減:整式的加減,實(shí)際上是在去括號(hào)的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.

  10.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個(gè)字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.

  初一數(shù)學(xué)重要知識(shí)點(diǎn)整理

  ⒈絕對(duì)值的幾何定義

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。

  2.絕對(duì)值的代數(shù)定義

 、乓粋(gè)正數(shù)的絕對(duì)值是它本身;⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);⑶0的絕對(duì)值是0.

  可用字母表示為:

 、偃绻鸻>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可歸納為①:a≥0,<═>|a|=a(非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題

  如數(shù)軸所示,化簡下列各數(shù)

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由題知道,因?yàn)閍>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.絕對(duì)值的性質(zhì)

  任何一個(gè)有理數(shù)的絕對(duì)值都是非負(fù)數(shù),也就是說絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0<═>|a|=0;

  ⑵一個(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;

 、侨魏螖(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;

 、冉^對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;

  ⑸互為相反數(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

 、式^對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

  ⑺若幾個(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。

  (非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)

  經(jīng)典考題

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因?yàn)閨a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理數(shù)大小的比較

  ⑴利用數(shù)軸比較兩個(gè)數(shù)的大。簲(shù)軸上的兩個(gè)數(shù)相比較,左邊的總比右邊的小;

 、评媒^對(duì)值比較兩個(gè)負(fù)數(shù)的大。簝蓚(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小;異號(hào)兩數(shù)比較大小,正數(shù)

初一數(shù)學(xué)知識(shí)點(diǎn)12

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);

  (2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;

  2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

  3.相反數(shù):

  (1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的`相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  4.絕對(duì)值:

  (1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

  (2)絕對(duì)值可表示為:

  絕對(duì)值的問題經(jīng)常分類討論;

  (3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大小:(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

初一數(shù)學(xué)知識(shí)點(diǎn)13

  一、目標(biāo)與要求

  1.了解全面調(diào)查的概念;會(huì)設(shè)計(jì)簡單的調(diào)查問卷,收集數(shù)據(jù);掌握劃記法,會(huì)用表格整理數(shù)據(jù);會(huì)畫扇形統(tǒng)計(jì)圖,能用統(tǒng)計(jì)圖描述數(shù)據(jù);經(jīng)歷統(tǒng)計(jì)調(diào)查的一般過程,體驗(yàn)統(tǒng)計(jì)與生活的.關(guān)系。

  2.經(jīng)歷數(shù)據(jù)的收集、整理和分析的模擬過程,了解抽樣調(diào)查、樣本、個(gè)體與總體等統(tǒng)計(jì)概念;學(xué)會(huì)從樣本中分析、歸納出較為正確的結(jié)論,增強(qiáng)用統(tǒng)計(jì)方法解決問題的意識(shí)。

  3.理解頻數(shù)、頻數(shù)分布的意義,學(xué)會(huì)制作頻數(shù)分布表;學(xué)會(huì)畫頻數(shù)分布直方圖和頻數(shù)折線圖。

  二、重點(diǎn)

  學(xué)會(huì)畫頻數(shù)分布直方圖;

  分層抽樣的方法和樣本的分析、歸納;

  抽樣調(diào)查、樣本、總體等概念以及用樣本估計(jì)總體的思想;

  全面調(diào)查的過程(數(shù)據(jù)的收集、整理、描述)。

  三、難點(diǎn)

  繪制扇形統(tǒng)計(jì)圖;

  樣本的抽取;

  分層抽樣方案的制定;

  確定組距和組數(shù)。

初一數(shù)學(xué)知識(shí)點(diǎn)14

  《正數(shù)和負(fù)數(shù)》

  1、正數(shù):像小學(xué)學(xué)過的大于0的數(shù)叫做正數(shù)。

  2、負(fù)數(shù):在正數(shù)前面加上負(fù)號(hào)“-”的數(shù)叫做負(fù)數(shù)。

  3、正數(shù)負(fù)數(shù)的判斷方法:

  ⑴具體的數(shù):看是否有負(fù)號(hào)“-”,如果有“-”就是負(fù)數(shù),否則是正數(shù)。

  ⑵含字母的數(shù):如-a要看a本身的符號(hào),如a是負(fù)的,則-a是正數(shù),如a是正的則-a是負(fù)數(shù),如a是0則-a是0。

  4、 0的含義:①0表示起點(diǎn)。②0表示沒有。③0表示一種溫度。④0表示編號(hào)的位數(shù)。⑤0表示精確度。⑥0表示正負(fù)數(shù)的分界。⑦0表示海拔平均高度。

  5、 具有相反意義的量;

  6、 正負(fù)數(shù)的作用:在同一問題中,用正負(fù)數(shù)表示的量具有相反的意義。

  《有理數(shù)》

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)

  4、絕對(duì)值與相反數(shù)

  (1)絕對(duì)值:在數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離,叫做a的絕對(duì)值,記作:

  一個(gè)正數(shù)的絕對(duì)值等于本身,一個(gè)負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),0的絕對(duì)值是0.即

  (2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。

  任何數(shù)的絕對(duì)值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的`負(fù)整數(shù)是-1。

  5、利用絕對(duì)值比較大小

  兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;

  兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。

  6、有理數(shù)加法

  (1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.

  (2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.

  (3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

  9、有理數(shù)的乘法

  兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘

  10、乘積的符號(hào)的確定

  幾個(gè)有理數(shù)相乘,因數(shù)都不為 0 時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)

  倒數(shù)是本身的只有1和-1。

  整式的加減

  一、整式——單項(xiàng)式

  1、單項(xiàng)式的定義:

  由數(shù)或字母的積組成的式子叫做單項(xiàng)式。

  說明:單獨(dú)的一個(gè)數(shù)或者單獨(dú)的一個(gè)字母也是單項(xiàng)式.

  2、單項(xiàng)式的系數(shù):

  單項(xiàng)式中的數(shù)字因數(shù)叫這個(gè)單項(xiàng)式的系數(shù).

  ab2

  說明:⑴單項(xiàng)式的系數(shù)可以是整數(shù),也可能是分?jǐn)?shù)或小數(shù)。如3x的系數(shù)是3的32

  系數(shù)是1;4.8a的系數(shù)是4.8; 3

 、茊雾(xiàng)式的系數(shù)有正有負(fù),確定一個(gè)單項(xiàng)式的系數(shù),要注意包含在它前面的符號(hào),如4xy2的系數(shù)是4;2x2y的系數(shù)是2;

 、菍(duì)于只含有字母因數(shù)的單項(xiàng)式,其系數(shù)是1或-1,不能認(rèn)為是0,如ab的系數(shù)是-1;ab的系數(shù)是1;

 、缺硎緢A周率的π,在數(shù)學(xué)中是一個(gè)固定的常數(shù),當(dāng)它出現(xiàn)在單項(xiàng)式中時(shí),應(yīng)將其作為系數(shù)的一部分,而不能當(dāng)成字母。如2πxy的系數(shù)就是2.

  3、單項(xiàng)式的次數(shù):

  一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù).

  說明:⑴計(jì)算單項(xiàng)式的次數(shù)時(shí),應(yīng)注意是所有字母的指數(shù)和,不要漏掉字母指數(shù)是1

  的情況。如單項(xiàng)式2xyz的次數(shù)是字母z,y,x的指數(shù)和,即4+3+1=8,而不是7次,應(yīng)注意字母z的指數(shù)是1而不是0;

 、茊雾(xiàng)式的指數(shù)只和字母的指數(shù)有關(guān),與系數(shù)的指數(shù)無關(guān)。如單項(xiàng)式4222

  24x2y3z4的次數(shù)是2+3+4=9而不是13次;

  ⑶單項(xiàng)式是一個(gè)單獨(dú)字母時(shí),它的指數(shù)是1,如單項(xiàng)式m的指數(shù)是1,單項(xiàng)式

  是單獨(dú)的一個(gè)常數(shù)時(shí),一般不討論它的次數(shù);

  4、在含有字母的式子中如果出現(xiàn)乘號(hào),通常將乘號(hào)寫作“ ”或者省略不寫。 例如:100t可以寫成100t或100t

  5、在書寫單項(xiàng)式時(shí),數(shù)字因數(shù)寫在字母因數(shù)的前面,數(shù)字因數(shù)是帶分?jǐn)?shù)時(shí)轉(zhuǎn)化成假分?jǐn)?shù).

  《有理數(shù)的乘除法》

 、儆欣頂(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。任何數(shù)同0相乘,都得0。

  乘積是1的兩個(gè)數(shù)互為倒數(shù)(積為1)如:(-2)×(-1/2)=1。

  乘法交換律:a×b=b×a;結(jié)合律:a×(b×c)=(a×b)×c;

  分配律:a×(b+c)= a×b+ a×c(注意可逆的使用)。

 、谟欣頂(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。

  0除以任何一個(gè)不等于0的數(shù),都得0。

  《有理數(shù)的乘方》

  (1)求相同因式積的運(yùn)算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  (3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0 a=0,b=0;

  (4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位。

初一數(shù)學(xué)知識(shí)點(diǎn)15

  正數(shù)和負(fù)數(shù)

 、闭龜(shù)和負(fù)數(shù)的概念

  負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),-a是正數(shù);當(dāng)a表示0時(shí),-a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說法是錯(cuò)誤的,例如+a,-a就不能做出簡單判斷)

 、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。

  2.具有相反意義的量

  若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:-8℃

  3.0表示的意義

  ⑴0表示“沒有”,如教室里有0個(gè)人,就是說教室里沒有人;

 、0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:

  (3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。

  有理數(shù)

  1.有理數(shù)的概念

  ⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

 、普?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

 、钦麛(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。3,整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)

  注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8?也是偶數(shù),-1,-3,-5?也是奇數(shù)。

  2.有理數(shù)的分類

 、虐从欣頂(shù)的意義分類⑵按正、負(fù)來分正整數(shù)

  整數(shù)0正有理數(shù)正分?jǐn)?shù)

  有理數(shù)有理數(shù)0(0不能忽視)

  負(fù)整數(shù)

  分?jǐn)?shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)

  總結(jié):①正整數(shù)、0統(tǒng)稱為非負(fù)整數(shù)(也叫自然數(shù))

 、谪(fù)整數(shù)、0統(tǒng)稱為非正整數(shù)

 、壅欣頂(shù)、0統(tǒng)稱為非負(fù)有理數(shù)

 、茇(fù)有理數(shù)、0統(tǒng)稱為非正有理數(shù)

  數(shù)軸

 、睌(shù)軸的概念

  規(guī)定了原點(diǎn),正方向,單位長度的直線叫做數(shù)軸。

  注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點(diǎn)、正方向、單位長度是數(shù)軸的三要素,三者缺一不

  可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。

  2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系

 、潘械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)來表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。

 、扑械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點(diǎn)不是一一對(duì)應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))

  3.利用數(shù)軸表示兩數(shù)大小

 、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;

  ⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);

 、莾蓚(gè)負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。

  4.數(shù)軸上特殊的(小)數(shù)

  ⑴最小的自然數(shù)是0,無的自然數(shù);

 、谱钚〉恼麛(shù)是1,無的正整數(shù);

 、堑呢(fù)整數(shù)是-1,無最小的負(fù)整數(shù)

  5.a可以表示什么數(shù)

 、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;

  ⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0

 、莂=0表示a是0;反之,a是0,,則a=0

  相反數(shù)

 、毕喾磾(shù)

  只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),其中一個(gè)是另一個(gè)的相反數(shù),0的相反數(shù)是0。

  注意:⑴相反數(shù)是成對(duì)出現(xiàn)的;⑵相反數(shù)只有符號(hào)不同,若一個(gè)為正,則另一個(gè)為負(fù);

 、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。

  2.相反數(shù)的性質(zhì)與判定

  ⑴任何數(shù)都有相反數(shù),且只有一個(gè);

 、0的相反數(shù)是0;

 、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0

  3.相反數(shù)的幾何意義

  在數(shù)軸上與原點(diǎn)距離相等的兩點(diǎn)表示的兩個(gè)數(shù),是互為相反數(shù);互為相反數(shù)的兩個(gè)數(shù),在數(shù)軸上的對(duì)應(yīng)點(diǎn)(0除外)在原點(diǎn)兩旁,并且與原點(diǎn)的距離相等。0的相反數(shù)對(duì)應(yīng)原點(diǎn);原點(diǎn)表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

  4.相反數(shù)的求法

  ⑴求一個(gè)數(shù)的相反數(shù),只要在它的前面添上負(fù)號(hào)“-”即可求得(如:5的相反數(shù)是-5);

 、魄蠖鄠(gè)數(shù)的和或差的相反數(shù)時(shí),要用括號(hào)括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b);喌-5a-b);

 、乔笄懊鎺А-”的單個(gè)數(shù),也應(yīng)先用括號(hào)括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化

  簡得5)

  5.相反數(shù)的表示方法

 、乓话愕兀瑪(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。

  當(dāng)a>0時(shí),-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))

  當(dāng)a<0時(shí),-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))

  當(dāng)a=0時(shí),-a=0,(0的相反數(shù)是0)

  絕對(duì)值

  ⒈絕對(duì)值的幾何定義

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。

  2.絕對(duì)值的代數(shù)定義

 、乓粋(gè)正數(shù)的絕對(duì)值是它本身;⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);⑶0的絕對(duì)值是0.

  可用字母表示為:

 、偃绻鸻>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可歸納為①:a≥0,<═>|a|=a(非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題

  如數(shù)軸所示,化簡下列各數(shù)

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由題知道,因?yàn)閍>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.絕對(duì)值的性質(zhì)

  任何一個(gè)有理數(shù)的'絕對(duì)值都是非負(fù)數(shù),也就是說絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0<═>|a|=0;

 、埔粋(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;

 、侨魏螖(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;

 、冉^對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;

 、苫橄喾磾(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

 、式^對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

 、巳魩讉(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。

  (非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)

  經(jīng)典考題

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因?yàn)閨a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  4.有理數(shù)大小的比較

 、爬脭(shù)軸比較兩個(gè)數(shù)的大小:數(shù)軸上的兩個(gè)數(shù)相比較,左邊的總比右邊的小;

 、评媒^對(duì)值比較兩個(gè)負(fù)數(shù)的大小:兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小;異號(hào)兩數(shù)比較大小,正數(shù)

  大于負(fù)數(shù)。

  5.絕對(duì)值的化簡

  ①當(dāng)a≥0時(shí),|a|=a;②當(dāng)a≤0時(shí),|a|=-a

  6.已知一個(gè)數(shù)的絕對(duì)值,求這個(gè)數(shù)

  一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,一般地,絕對(duì)值為同一個(gè)正數(shù)的有理數(shù)有兩個(gè),它們互為相反數(shù),絕對(duì)值為0的數(shù)是0,沒有絕對(duì)值為負(fù)數(shù)的數(shù)。如:|a|=5,則a=土5

  有理數(shù)的加減法

  1.有理數(shù)的加法法則

  ⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

  ⑵絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;⑶互為相反數(shù)的兩數(shù)相加,和為零;

 、纫粋(gè)數(shù)與零相加,仍得這個(gè)數(shù)。

  2.有理數(shù)加法的運(yùn)算律

 、偶臃ń粨Q律:a+b=b+a

 、萍臃ńY(jié)合律:(a+b)+c=a+(b+c)

  在運(yùn)用運(yùn)算律時(shí),一定要根據(jù)需要靈活運(yùn)用,以達(dá)到化簡的目的,通常有下列規(guī)律:

 、倩橄喾磾(shù)的兩個(gè)數(shù)先相加——“相反數(shù)結(jié)合法”;

 、诜(hào)相同的兩個(gè)數(shù)先相加——“同號(hào)結(jié)合法”;

 、鄯帜赶嗤臄(shù)先相加——“同分母結(jié)合法”;

  ④幾個(gè)數(shù)相加得到整數(shù),先相加——“湊整法”;

 、菡麛(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。

  3.加法性質(zhì)

  一個(gè)數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)小;加0后的和等于原數(shù)。即:

 、女(dāng)b>0時(shí),a+b>a⑵當(dāng)b<0時(shí),a+b

  4.有理數(shù)減法法則

  減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。用字母表示為:a-b=a+(-b)。

  5.有理數(shù)加減法統(tǒng)一成加法的意義

  在有理數(shù)加減法混合運(yùn)算中,根據(jù)有理數(shù)減法法則,可以將減法轉(zhuǎn)化成加法后,再按照加法法則進(jìn)行計(jì)算。

  在和式里,通常把各個(gè)加數(shù)的括號(hào)和它前面的加號(hào)省略不寫,寫成省略加號(hào)的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  和式的讀法:①按這個(gè)式子表示的意義讀作“負(fù)8、負(fù)7、負(fù)6、正5的和”

 、诎催\(yùn)算意義讀作“負(fù)8減7減6加5”

  6.有理數(shù)加減混合運(yùn)算中運(yùn)用結(jié)合律時(shí)的一些技巧:

 、.把符號(hào)相同的加數(shù)相結(jié)合(同號(hào)結(jié)合法)

  (-33)-(-18)+(-15)-(+1)+(+23)

  原式=-33+(+18)+(-15)+(-1)+(+23)(將減法轉(zhuǎn)換成加法)

  =-33+18-15-1+23(省略加號(hào)和括號(hào))

  =(-33-15-1)+(18+23)(把符號(hào)相同的加數(shù)相結(jié)合)

  =-49+41(運(yùn)用加法法則一進(jìn)行運(yùn)算)

  =-8(運(yùn)用加法法則二進(jìn)行運(yùn)算)

 、.把和為整數(shù)的加數(shù)相結(jié)合(湊整法)

  (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)

  原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(將減法轉(zhuǎn)換成加法)

  =6.6-5.2+3.8-2.6-4.8(省略加號(hào)和括號(hào))

  =(6.6-2.6)+(-5.2-4.8)+3.8(把和為整數(shù)的加數(shù)相結(jié)合)

  =4-10+3.8(運(yùn)用加法法則進(jìn)行運(yùn)算)

  =7.8-10(把符號(hào)相同的加數(shù)相結(jié)合,并進(jìn)行運(yùn)算)=-2.2(得出結(jié)論)

 、.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)313217-+-+-524528

  321137原式=(--)+(-+)+(+-)552248

  1=-1+0-8

  1=-18-

 、.既有小數(shù)又有分?jǐn)?shù)的運(yùn)算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)312)+(-3)-(-10)-(+1.25)483

  13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834

  13121=+3-3+10-184834

  31112=(3-1)+(-3)+1044883

  12=2-3+1023

  1=-3+136

  1=106(+0.125)-(-3

 、.把帶分?jǐn)?shù)拆分后再結(jié)合(先拆分后結(jié)合)-31617+10-12+45112215

【初一數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)07-04

初一數(shù)學(xué)必考的知識(shí)點(diǎn)11-16

【經(jīng)典】初一數(shù)學(xué)知識(shí)點(diǎn)11-03

初一數(shù)學(xué)知識(shí)點(diǎn)04-18

初一數(shù)學(xué)重要知識(shí)點(diǎn)10-08

初一數(shù)學(xué)知識(shí)點(diǎn)11-01

初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)11-20

初一數(shù)學(xué)知識(shí)點(diǎn)歸納12-27

初一數(shù)學(xué)下知識(shí)點(diǎn)總結(jié)12-07

初一數(shù)學(xué)棱柱的性質(zhì)知識(shí)點(diǎn)09-12