- 相關(guān)推薦
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)
總結(jié)就是把一個(gè)時(shí)間段取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書(shū)面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,因此好好準(zhǔn)備一份總結(jié)吧。你想知道總結(jié)怎么寫(xiě)嗎?下面是小編為大家整理的高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié) 1
復(fù)數(shù)定義:
我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱(chēng)為復(fù)數(shù),其中a稱(chēng)為實(shí)部,b稱(chēng)為虛部,i稱(chēng)為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱(chēng)z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達(dá)式:
虛數(shù)是與任何事物沒(méi)有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
a=a+ia為實(shí)部,i為虛部
復(fù)數(shù)運(yùn)算法則:
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c+d)]+[(bc-ad)/(c+d)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒(méi)有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
復(fù)數(shù)與幾何:
、賻缀涡问
復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)唯一確定。這種形式使復(fù)數(shù)的問(wèn)題可以借助圖形來(lái)研究。也可反過(guò)來(lái)用復(fù)數(shù)的理論解決一些幾何問(wèn)題。
、谙蛄啃问
復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?/p>
、廴切问
復(fù)數(shù)z=a+bi化為三角形式
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié) 2
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形。
減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛。
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié) 3
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實(shí)軸、虛軸:
點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即
這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。
兩個(gè)復(fù)數(shù)相等的定義:
如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0
a=0,b=0.
復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。
復(fù)數(shù)相等特別提醒:
一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。
解復(fù)數(shù)相等問(wèn)題的方法步驟:
(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;
(2)根據(jù)復(fù)數(shù)相等的充要條件解之。
數(shù)學(xué)加法心算技巧
1、分裂再湊整數(shù)加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、變整數(shù)再減去
比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;
4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;
5、錯(cuò)位數(shù)相加
比如,個(gè)位加十位得數(shù)是個(gè)位的;
51+15=66;這樣算:5+1得6;1+5得6;兩6合拼
72+27=99;這樣算:7+2得9;2+7得9;兩9合拼
63+36=99;這樣算:6+3得9;3+6得9;兩9合拼
52+25=77;這樣算:5+2得7;2+5得7;兩7合拼
6、比如,個(gè)位加十位得數(shù)是十位的;
78+87=165;這樣算:7+8=15,再把“15”兩個(gè)數(shù)字“1”和“5”相加得6,把這個(gè)“6”放在“15”的中間,得出“165”;
67+76=143,這樣算:6+7=13,再把“13”兩個(gè)數(shù)字“1”和“3”相加得4,把這個(gè)“4”放在“13”的中間,得出“143”;
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié) 4
定義:
數(shù)集拓展到實(shí)數(shù)范圍內(nèi),仍有些運(yùn)算無(wú)法進(jìn)行。比如判別式小于0的一元二次方程仍無(wú)解,因此將數(shù)集再次擴(kuò)充,達(dá)到復(fù)數(shù)范圍。形如z=a+bi的數(shù)稱(chēng)為復(fù)數(shù)(complex number),其中規(guī)定i為虛數(shù)單位,且i^2=i*i=-1(a,b是任意實(shí)數(shù))我們將復(fù)數(shù)z=a+bi中的實(shí)數(shù)a稱(chēng)為復(fù)數(shù)z的實(shí)部(real part)記作Rez=a 實(shí)數(shù)b稱(chēng)為復(fù)數(shù)z的虛部(imaginary part)記作 Imz=b. 已知:當(dāng)b=0時(shí),z=a,這時(shí)復(fù)數(shù)成為實(shí)數(shù) 當(dāng)a=0且b0時(shí),z=bi,我們就將其稱(chēng)為純虛數(shù)。
運(yùn)算法則:
加法法則:復(fù)數(shù)的加法法則:設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù)。兩者和的實(shí)部是原來(lái)兩個(gè)復(fù)數(shù)實(shí)部的和,它的虛部是原來(lái)兩個(gè)虛部的和。兩個(gè)復(fù)數(shù)的和依然是復(fù)數(shù)。
即 (a+bi)+(c+di)=(a+c)+(b+d)i.
乘法法則:復(fù)數(shù)的乘法法則:把兩個(gè)復(fù)數(shù)相乘,類(lèi)似兩個(gè)多項(xiàng)式相乘,結(jié)果中i^2 = 1,把實(shí)部與虛部分別合并。兩個(gè)復(fù)數(shù)的積仍然是一個(gè)復(fù)數(shù)。
即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
除法法則:復(fù)數(shù)除法定義:滿足(c+di)(x+yi)=(a+bi)的復(fù)數(shù)x+yi(x,yR)叫復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商運(yùn)算方法:將分子和分母同時(shí)乘以分母的共軛復(fù)數(shù),再用乘法法則運(yùn)算,即 (a+bi)/(c+di)
=[(a+bi)(c-di)]/[(c+di)(c-di)]
=[(ac+bd)+(bc-ad)i]/(c^2+d^2).
開(kāi)方法則:若z^n=r(cos+isin),則
z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1)
高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié) 5
1、復(fù)數(shù)中的難點(diǎn)
。1)復(fù)數(shù)的向量表示法的運(yùn)算。對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難。對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明。
。2)復(fù)數(shù)三角形式的乘方和開(kāi)方。有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練。
。3)復(fù)數(shù)的輻角主值的求法。
(4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題。復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì)。
2、復(fù)數(shù)中的重點(diǎn)
。1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn)。
。2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角。復(fù)數(shù)有代數(shù),向量和三角三種表示法。特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容。
。3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì)。復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容。
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法。
【高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高三數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)07-27
高中數(shù)學(xué)復(fù)數(shù)的幾何意義測(cè)試題12-04
高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)05-31
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)04-23
高中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)04-28
高三數(shù)學(xué)一輪復(fù)習(xí)復(fù)數(shù)知識(shí)點(diǎn)匯總07-27
高中數(shù)學(xué)選修4-4知識(shí)點(diǎn)總結(jié)12-07
初一英語(yǔ)(上)知識(shí)點(diǎn):可數(shù)名詞變復(fù)數(shù)的規(guī)則08-09