- 三角形內(nèi)角和教學(xué)教案設(shè)計 推薦度:
- 相關(guān)推薦
有關(guān)三角形內(nèi)角和的教學(xué)教案設(shè)計(精選34篇)
作為一名辛苦耕耘的教育工作者,編寫教案是必不可少的,借助教案可以讓教學(xué)工作更科學(xué)化。教案要怎么寫呢?以下是小編整理的有關(guān)三角形內(nèi)角和的教學(xué)教案設(shè)計,歡迎大家借鑒與參考,希望對大家有所幫助。
三角形內(nèi)角和的教學(xué)教案設(shè)計 1
教學(xué)目標(biāo):
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。
3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
教學(xué)重點:
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
教學(xué)難點:
三角形內(nèi)角和是180的探索和驗證。
教學(xué)過程:
一、創(chuàng)設(shè)情境,提出問題
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
。ù蛞粠缀螆D形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個三角形的內(nèi)角和都是180嗎?
(根據(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)
二、自主探索,實踐驗證
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認(rèn)為三角形的內(nèi)角就是指三角形的三個角。
師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認(rèn)為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
3、實踐驗證
師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?
生:量一量每個角的度數(shù),然后加起來看看是不是180。
師:請大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來三角形的內(nèi)角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學(xué)來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進行驗證,比一比哪些組的方法富有新意,開始!
。▽W(xué)生在小組內(nèi)進行探索驗證。教師巡視,參與到學(xué)生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
。ㄆ渌某蓡T展示不同的三角形)
師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
三、鞏固應(yīng)用,加深理解
1、說一說每個三角形的內(nèi)角和是多少度
師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個三角形的`兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
。ǔ觯
生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風(fēng)箏,它的一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。
在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。
師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。
師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學(xué)習(xí)知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。
三角形內(nèi)角和的教學(xué)教案設(shè)計 2
【教學(xué)目標(biāo)】
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點】
探究發(fā)現(xiàn)和驗證"三角形的內(nèi)角和為180度"的規(guī)律。
【教學(xué)難點】
理解并掌握三角形的內(nèi)角和是180度。
【教具準(zhǔn)備】
PPT課件、三角尺、各類三角形、長方形、正方形。
【學(xué)生準(zhǔn)備】
各類三角形、長方形、正方形、量角器、剪刀等。
【教學(xué)過程】
口算訓(xùn)練(出示口算題)
訓(xùn)練學(xué)生口算的速度與正確率。
一、謎語導(dǎo)入
(出示謎語)
請畫出你猜到的圖形。誰來公布謎底?
同桌互相看一看,你們畫出的三角形一樣嗎?
誰來說說,你畫出的是什么三角形?(學(xué)生匯報)
(1)銳角三角形,(銳角三角形中有幾個銳角?)
(2)直角三角形,(直角三角形中可以有兩個直角嗎?)
(3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)
看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節(jié)課,我們一起來學(xué)習(xí)"三角形的內(nèi)角和。"(板書課題:三角形的內(nèi)角和)
看到這個課題,你有什么疑問嗎?
(1)什么是內(nèi)角?有沒有同學(xué)知道?
內(nèi):里面,三角形里面的角。
三角形有幾個內(nèi)角呢?請指出你畫的三角形的內(nèi)角,并分別標(biāo)上∠1、∠2、∠3.
(2)誰還有疑問?什么是內(nèi)角和?誰來解釋?(三個內(nèi)角度數(shù)的和)。
(3)大膽猜測一下,三角形的內(nèi)角和是多少度呢?
【設(shè)計意圖】
創(chuàng)設(shè)數(shù)學(xué)化的情境。學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。
二、探究新知
有猜想就要有驗證,我們一起來探究用什么方法能知道三角形的內(nèi)角和呢?
1、確定研究范圍
先請大家想一想,研究三角形的內(nèi)角和,是不是應(yīng)該包括所用的三角形?
只研究你畫出的那一個三角形,行嗎?
那就隨便畫,挨個研究吧?(太麻煩了)
怎么辦?請你想個辦法吧。
分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)
2、探究三角形的內(nèi)角和
思考一下:你準(zhǔn)備用什么方法探究三角形的內(nèi)角和呢?
小組合作:從你的學(xué)具袋中,任選一個三角形,來探究三角形的內(nèi)角和是多少度?
小組匯報:
(1)量一量:把三角形三個內(nèi)角的度數(shù)相加。
直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內(nèi)角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?
(2)拼一拼:把三角形的三個內(nèi)角剪下來,拼成了一個平角。
能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?
(3)折一折:把三角形的三個角折下來,拼成了一個平角。
這種方法真了不起,能借助平角的度數(shù)來推想三角形內(nèi)角和是180°。
總結(jié):同學(xué)們動腦思考,動手操作,運用不同的方法來驗證三角形的內(nèi)角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學(xué)過的圖形,更科學(xué)更準(zhǔn)確的來驗證三角形的內(nèi)角和?
3、演繹推理的方法。
正方形四個角都是直角,正方形內(nèi)角和是多少度?
你能借助正方形創(chuàng)造出三角形嗎?(對角折)
把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內(nèi)角和:360°÷2=180°
再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內(nèi)角和:360°÷2=180°
這種方法避免了在剪拼過程中操作出現(xiàn)的誤差,
舉例驗證,你發(fā)現(xiàn)了什么?
通過驗證,知道了直角三角形的內(nèi)角和是180度。
你能把銳角三角形變成直角三角形嗎?
把銳角三角形沿高對折,分成了兩個直角三角形。
一個直角三角形的內(nèi)角和是180°,那么這個銳角三角形的內(nèi)角和就是180°×2=360°了,對嗎?(360-180=180°)
通過計算,我們知道了這個銳角三角形的內(nèi)角和是180°,那么所有的銳角三角形的內(nèi)角和都是180°嗎?你是怎么知道的?
通過剛才的計算,你發(fā)現(xiàn)了什么?(銳角三角形內(nèi)角和180°)
鈍角三角形的內(nèi)角和,你們會驗證嗎?誰來說說你的想法?180×2-90-90=180°
通過驗證,你又發(fā)現(xiàn)了什么?(鈍角三角形內(nèi)角和180°)
4、總結(jié)
通過分類驗證,我們發(fā)現(xiàn):直角180,銳角180,鈍角180,也就是說:三角形的內(nèi)角和是180°。也驗證了我們的.猜想是正確的。(板書)
5、想一想,下面三角形的內(nèi)角和是多少度?(小大)
你有什么新發(fā)現(xiàn)?(三角形的內(nèi)角和與它的大小,形狀沒有關(guān)系。)
【設(shè)計意圖】
為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動性,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。
三、自主練習(xí)
1、在一個三角形中,如果想求一個角的度數(shù),至少得知道幾個角的度數(shù)呢?(2個)那我們就試一試,挑戰(zhàn)第一關(guān)。(兩道題)
2、算得真快!如果只知道一個角的度數(shù),還能求出未知角的度數(shù)嗎?挑戰(zhàn)第二關(guān)。(三道題)
3、說得真清楚,如果一個角的度數(shù)也不知道,你還能求出未知角的度數(shù)嗎?挑戰(zhàn)第三關(guān)。(一道題)
師:同學(xué)們真了不起,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,都能正確求出未知角的度數(shù)。
4、學(xué)無止境,課下,請你利用三角形的內(nèi)角和,探究一下四邊形、五邊形、六邊形的內(nèi)角和各是多少度?
【設(shè)計意圖】
練習(xí)由淺入深,層層遞進。從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),梯度訓(xùn)練,拓展思維。
四、課堂總結(jié)
同學(xué)們,回想一下,這節(jié)課我們學(xué)習(xí)了什么?通過這節(jié)課的學(xué)習(xí),你有哪些收獲呢?
真了不起,同學(xué)們不僅學(xué)到了知識,還掌握了學(xué)習(xí)的方法。"在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內(nèi)角和是180°,而是我們通過猜測,一步一步驗證,得到這個規(guī)律的過程。
課后反思
《三角形的內(nèi)角和》是五四制青島版四年級上冊第四單元的信息窗二,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動手操作,通過一系列活動得出"三角形的內(nèi)角和等于180°".
本著"學(xué)貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設(shè)問題情境,讓學(xué)生去猜想、去探究、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".
為此,我設(shè)計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動的特點,這對他認(rèn)識能力的提高是有幫助的。
最后通過習(xí)題鞏固三角形內(nèi)角和知識,培養(yǎng)學(xué)生思維的廣闊性,為了強化學(xué)生對這節(jié)課的掌握,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),層級練習(xí),步步加深,梯度訓(xùn)練。
教學(xué)是遺憾的藝術(shù)。當(dāng)然本節(jié)課的教學(xué)中,存在許多不盡如意之處:
1、讓學(xué)生養(yǎng)成良好的學(xué)具運用習(xí)慣,特別是小組學(xué)生在合作操作時,應(yīng)有效指導(dǎo),對學(xué)生及時評價,激勵表揚,調(diào)動學(xué)生學(xué)習(xí)的積極性與主動性。
2、學(xué)生在介紹剪拼的方法時,可以讓介紹的學(xué)生先上臺演示是如何把內(nèi)角拼在一起,這樣學(xué)生在動手操作的時候就可以節(jié)省時間。
3、在做練習(xí)時,為了趕時間,題出現(xiàn)的頻率較快,留給學(xué)生計算思考的時間不足,可能只照顧到好學(xué)生的進程,沒有關(guān)注全體學(xué)生,今后應(yīng)注意這一點。
教學(xué)是一門藝術(shù),上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學(xué)中,只有勤學(xué)、多練,才能更好的為學(xué)生的學(xué)習(xí)和成長服務(wù),讓自己的人生舞臺綻放光彩。
三角形內(nèi)角和的教學(xué)教案設(shè)計 3
教學(xué)目標(biāo):
1、知識目標(biāo):通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
2、能力目標(biāo):通過討論爭辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問題的能力;培養(yǎng)學(xué)生的空間觀念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運用數(shù)學(xué)的意識。
教學(xué)重、難點:
掌握三角形的內(nèi)角和是180°。驗證三角形的內(nèi)角和是180°。
學(xué)生分析:
在上學(xué)期學(xué)生已經(jīng)掌握了角的分類及度量問題。在本課之前,學(xué)生又研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。
教學(xué)流程:
一、創(chuàng)設(shè)情境,激發(fā)興趣
。ㄕn件出示:兩個三角形爭論,大的對小的說,我的內(nèi)角和比你大。)
。▽W(xué)生小聲議論著,爭論著。)
師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個問題。
生:可以把這兩個三角形的內(nèi)角比一比。
生:它們不是一個角在比較,可怎么比呀?
生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。
師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)
【設(shè)計意圖:通過多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰大?】
二、動手操作,探索新知
1、初步感知。
師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測量三角形三個內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)
生匯報測量的結(jié)果:內(nèi)角和約等于180°。
師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)
【設(shè)計意圖:通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受?赡艹霈F(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因為測量存在誤差的緣故!
2、用拼角法驗證。
師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?
生:我們手里有一些三角形,可以動手拼一拼。
生:還可以剪一剪。
師:那同學(xué)們就開始吧!
。▽W(xué)生動手進行拼、剪、折等方法,檢驗三角形內(nèi)角和的度數(shù)。)
生:銳角三角形的內(nèi)角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內(nèi)角和是180°。
生:我把一個直角三角形的三個內(nèi)角剪下來,拼成了一個平角,所以直角三角形的三個內(nèi)角和也是180°。
生:鈍角三角形的內(nèi)角和也是180°。
。◣煱鍟喝切蔚膬(nèi)角和是180°。)
【設(shè)計意圖:使學(xué)生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的`方法比獲得結(jié)論更為重要。】
三、鞏固新知,拓展應(yīng)用
1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。
2.已知∠1、∠2、∠3是三角形的三個內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進行驗證。
通過以上的練習(xí)使學(xué)生對三角形內(nèi)角和的應(yīng)用有個初步認(rèn)識,并積累解決問題的經(jīng)驗。
3.師:(出示一個大三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(出示一個很小的三角形)它的內(nèi)角和是多少度?
生:180 °。
師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)
師:哪個對?為什么?
生:180°對,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?(這時學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學(xué)生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學(xué)生開始舉手回答。)
生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。
師:你真聰明。(課件演示。)
四、小結(jié)
師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的新知識,現(xiàn)在能來幫助大、小三角形進行評判了吧?(生答能。)
師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學(xué)會了哪些研究問題的方法?
五、探究性作業(yè)
求下面幾個多邊形的內(nèi)角和。(圖形略。)
【設(shè)計意圖:通過這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性。】
反思:
1、重視動手操作,讓學(xué)生在探究中收獲知識!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。”本節(jié)課通過量、折、剪、拼等多種活動,使學(xué)生主動探究,找到新舊知識的聯(lián)系,得出研究問題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀念和動手操作能力。
2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識、探索能力、團隊精神。我們要從平時抓起,在平常的課堂中開展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實處,才不會變成某些公開課的擺設(shè)
三角形內(nèi)角和的教學(xué)教案設(shè)計 4
【教學(xué)目標(biāo)】
1、知識與技能:
。1)理解和掌握三角形的內(nèi)角和是180°。
。2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。
2、過程與方法:
。1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
。2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
。3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價值觀:
讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。
【教學(xué)重、難點】
教學(xué)重點:理解掌握三角形的內(nèi)角和是180°。
教學(xué)難點:運用三角形的內(nèi)角和知識解決實際問題。
【教具準(zhǔn)備】
教學(xué)課件、各種三角形
【教學(xué)過程】
一、創(chuàng)設(shè)情景,引出問題
1、猜謎語:
形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
(打一圖形名稱)
2、猜三角形
師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)
二、探究新知
1、三角形的內(nèi)角和
師:三角形內(nèi)角和指的是什么?
2、猜一猜。
師:這個三角形的內(nèi)角和是多少度?
3、驗證。
讓學(xué)生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。
4、學(xué)生匯報。
。1)測量
師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?
。2)剪拼
A、學(xué)生上臺演示。
B、請大家三人小組合作,用剪拼的方法驗證其它三角形。
C、師演示。
。3)折拼
師:有沒有別的`驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。
。4)結(jié)論:三角形的內(nèi)角和是180。
。5)數(shù)學(xué)小知識。
5、鞏固知識。
。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?
。2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。
教師:為什么不是360°?
三、解決相關(guān)問題
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
求出下面三角形各角的度數(shù)。
(1)我三邊相等。
。2)我是等腰三角形,我的頂角是96°。
。3)我有一個銳角是40°。
4、求四邊形、五邊形內(nèi)角和。
四、總結(jié)。
師:這節(jié)課你有什么收獲?
五、板書設(shè)計:(略)
三角形內(nèi)角和的教學(xué)教案設(shè)計 5
教學(xué)目標(biāo)
知識與能力:學(xué)生通過測量、撕拼的方法探索和發(fā)現(xiàn)三角形三個內(nèi)角和是180°。
過程與方法:學(xué)生經(jīng)歷合理猜想和驗證三角形內(nèi)角度數(shù)和等于180°的過程,發(fā)展空間觀念及分析推理能力。
情感態(tài)度和價值觀:學(xué)生在活動中體驗成功的喜悅,激發(fā)學(xué)生探索數(shù)學(xué)的愿望和興趣。
重點難點
教學(xué)重點:
探究發(fā)現(xiàn)三角形的內(nèi)角和是180度。
教學(xué)難點:
在猜想和驗證三角形內(nèi)角和的過程中發(fā)展空間觀念。
教學(xué)過程
活動1【導(dǎo)入】理解內(nèi)角、內(nèi)角和概念
1、謎語引入:形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單,打一幾何圖形猜一猜是什么?
Q:結(jié)合謎面的信息來說一說三角形有什么特點?
。、介紹內(nèi)角:這三個角都在三角形的里面,又叫內(nèi)角。
Q:三角形有幾個內(nèi)角?
。场⒔榻B內(nèi)角和:把三個內(nèi)角的度數(shù)加起來求和就是三角形的內(nèi)角和。
引出課題:今天我們就來研究三角形內(nèi)角和。
活動2【活動】觀察圖形
。、觀察圖形的變與不變
。穑穑粢来纬鍪
Q:這是銳角三角形,什么是它的內(nèi)角和?
出示直角三角形,它的內(nèi)角和是指?
出示鈍角三角形,內(nèi)角和是指?
質(zhì)疑:哪個三角形的內(nèi)角和最大?
預(yù)設(shè)1:鈍角三角形內(nèi)角和大。(說想法)
預(yù)設(shè)2:一樣大。(說想法)
預(yù)設(shè)3:180度。
小結(jié):三個三角形的樣子不一樣,大小也不一樣,三個內(nèi)角也不一樣,但內(nèi)角和是一樣的。
。ǘ┗顒佣翰孪雰(nèi)角和不變的度數(shù)
Q:這個一樣的度數(shù)是多少?你是怎么知道的?
預(yù)設(shè)1:聽說過,學(xué)過。
預(yù)設(shè)2:直角三角尺上三個角的度數(shù)和是180度。
預(yù)設(shè)3:等邊三角形。
這兩個都是我們知道度數(shù)的特殊的三角形,請你根據(jù)這個特殊的三角形來大膽的猜猜三角形內(nèi)角和是多少度?那任意的一個三角形的內(nèi)角和度數(shù)是不是180°呢?今天我們就來一起研究。
活動3【活動】測量驗證
。ㄒ唬┧伎剂康姆椒ê驮
過渡:你想怎么研究?(用量角器去量)
Q:誰來介紹介紹量的方法?
預(yù)設(shè):要想研究內(nèi)角和,只要把三個內(nèi)角度數(shù)量出來再加起來看看是不是180度就可以了。
。ǘ﹦邮譁y量
PPT:操作建議:
1、請你找到三角形的三個內(nèi)角,用彩筆標(biāo)序號1、2、3。
2、用量角器仔細(xì)測量后,記錄角的.度數(shù)。
3、列式計算出三角形內(nèi)角和度數(shù)。
動手測量
。ㄈ﹨R報交流:
學(xué)生1展示測量的過程。
Q:還有誰測量的這個銳角三角形,說一說?
追問:為什么同一個三角形內(nèi)角和度數(shù)卻不一樣?
Q:你在測量的過程中遇到了什么困難?
Q:觀察這些數(shù)據(jù),雖然都不太一樣,但是都很接近?
小結(jié):測量確實可以幫助我們找到三個角的度數(shù),加起來就可以求出內(nèi)角和,但是測量有誤差。
活動4【活動】拼角驗證
(一)思考其它驗證方法
Q:你還有其他的方法嗎?
預(yù)設(shè)1:學(xué)生沒有反應(yīng)。
師引導(dǎo):說到180度,你想到什么角?(平角)
預(yù)設(shè)2:撕拼法
Q:怎么把三個內(nèi)角拼在一起?
。ㄉ凰海處煄椭黄,撕下三個內(nèi)角。)
Q:你能在投影上拼一拼嗎?
預(yù)設(shè)3:折疊法
你的方法也很好,你們聽懂了嗎?一會兒可以試試。
預(yù)設(shè)4:描畫法
Q:怎么描?你能演示一下嗎?
其他同學(xué)觀察他在做什么?
引語:剛才說的方法都很好,下面我們自己來試一試。
(二)動手拼一拼
操作要求:
1、請你用彩筆在紙上隨意畫一個三角形,并剪下來。
2、用彩筆標(biāo)出三個內(nèi)角。
3、嘗試操作。
動手操作
。ㄈ﹨R報交流
Q:你是怎么研究的?發(fā)現(xiàn)了什么?
。ㄋ模┬〗Y(jié)
剛才每人的三角形是自己任意畫出的,形狀、大小都不一樣。無論是撕拼、折疊、還是描畫的方法,都是在把這三個內(nèi)角拼在了一起,轉(zhuǎn)化成一個平角,我們發(fā)現(xiàn)他們的內(nèi)角和都是180度。
活動5【活動】幾何畫板驗證
引:但我們時間有限,研究的三角形個數(shù)有限,是不是任意一個三角形的內(nèi)角和都是180度呢?我們可以借助幾何畫板來看一看。
師:介紹:計算機能夠幫助我們比較精確地測量出三個角的度數(shù),并計算它們的和。
觀察:老師拉動一個頂點,什么變了?什么沒變?
小結(jié):也就是,無論我們怎么改變?nèi)切蔚男螤,大小,雖然它的內(nèi)角在變化,但三個內(nèi)角和的卻是不變的,都是180度。
活動6【練習(xí)】基礎(chǔ)練習(xí)
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一個銳角是40°,求另一個角?
3、說一說:在一個三角形中,能有兩個直角嗎?能有兩個鈍角嗎?為什么?
4、拼三角形
師:兩個180°不是360°嗎?
小結(jié):看來,組合以后的圖形還要分清楚哪些是內(nèi)角。
活動7【練習(xí)】拓展練習(xí)
。ㄒ唬┩卣咕毩(xí)
今天,我們通過自己的研究發(fā)現(xiàn)三角形內(nèi)角和是180度。那四邊形有沒有內(nèi)角和呢?它的內(nèi)角和是多少度?
課件演示。
說說這節(jié)課你的收獲?
三角形內(nèi)角和的教學(xué)教案設(shè)計 6
教學(xué)目標(biāo):
掌握探究方法(猜想—驗證—歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。
重難點分析
重點分析:教材在呈現(xiàn)教學(xué)內(nèi)容時,不但重視知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間。三角形的內(nèi)角和的性質(zhì)沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學(xué)生通過探索、實驗、討論、交流而獲得,從而讓學(xué)生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學(xué)經(jīng)驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。
難點分析:通過近四年的數(shù)學(xué)學(xué)習(xí),學(xué)生已初步掌握了一些學(xué)習(xí)數(shù)學(xué)的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。但是圍繞數(shù)學(xué)問題開展初步的討論活動,能比較清楚的表達(dá)自己的意見,認(rèn)真傾聽他人的發(fā)言,這些初步的數(shù)學(xué)交流能力還欠缺。
教學(xué)方法:
1、探索過程中培養(yǎng)學(xué)生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學(xué)生的空間思維能力,同時使學(xué)生養(yǎng)成獨立思考的習(xí)慣。
2、在活動中,讓學(xué)生體驗主動探究數(shù)學(xué)規(guī)律的樂趣,體驗學(xué)數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)過程
導(dǎo)入:各位同學(xué)大家好,今天由我來和大家一起學(xué)習(xí)人教版四年級下冊《三角形的內(nèi)角和》,我們前面學(xué)習(xí)和了解了三角形的相關(guān)知識,請大家說說三角形按角分,可以分成哪幾類?知識講解(難點突破)
例五:畫出幾個不同類型的三角形。量一量,算一算,三角形3個內(nèi)角的和各是多少度?解決這個問題的時候,我們先來了解一下什么是三角形的內(nèi)角和?
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
。ㄒ唬┝恳涣浚何覀?nèi)绾谓鉀Q這個問題呢?
同學(xué)們請看,這里有一個直角三角形,我們先分別量一量這個直角三角形三個內(nèi)角的度數(shù)并標(biāo)注。90°30°60°現(xiàn)在我們將這三個內(nèi)角的度數(shù)加起來等于180度°通過測量計算發(fā)現(xiàn)這個直角三角形內(nèi)角和都是180°,是不是所有直角三角形的內(nèi)角和都是180°呢?同學(xué)們你們也來量一量你剛才畫的直角三角形3個內(nèi)角的度數(shù),算一算是不是也和老師的結(jié)果一樣呢?注意在測量要認(rèn)真,力求準(zhǔn)確。停頓數(shù)秒從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?你是不是發(fā)現(xiàn)直角三角形的內(nèi)角和都是180°當(dāng)然有些同學(xué)的測量結(jié)果不是等于180°,這是我們在測量時,由于在測量工具、測量方法等各方面的`原因,使我們的測量結(jié)果存在一定的誤差。實際上,直角三角形三角形內(nèi)角和就等于180°。
。ǘ
1、提出猜想:剛才我們通過測量和計算發(fā)現(xiàn)了直角三角形內(nèi)角和等于180,那你能不能大膽的猜測一下:銳角三角形內(nèi)角和,鈍角三角形的內(nèi)角和是不是也是180°呢?
2、動手操作,驗證猜想這時每個同學(xué)的心中都有了猜測的答案,這個猜想是否成立呢?除了用量角器量一量,你還有其他辦法來驗證嗎?聰明的你,是不是想到好辦法了,那就快快動手吧!
方法:
A、拼一拼的方法
B、折一折的方法把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,通過折疊的方法,三角形的三個內(nèi)角折到一起正好組成一個平角,所以也能證明三角形的內(nèi)角和是180°。
同學(xué)們我們通過量一量拼一拼折一折,發(fā)現(xiàn)無論是直角三角形,銳角三角形鈍角三角形,它們內(nèi)角和都等于180度,我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼疲↓R讀結(jié)論。(板書:得到結(jié)論)
小結(jié):通過剪拼的方法,把三個角剪下來,拼在一起,三角形的三個內(nèi)角正好拼成一個平角,因為平角是180°,所以三角形的內(nèi)角和是180°三角形的形狀和大小雖然不同,但是三角形的內(nèi)角和都是180度。說明三角形的內(nèi)角和和他的形狀大小無關(guān)
課堂練習(xí)(難點鞏固)
總結(jié):我們今天用量一量,折一折,拼一拼的方法得到了三角形的內(nèi)角和等于180°這一結(jié)論,希望同學(xué)們在在以后的學(xué)習(xí)中大膽探索,去發(fā)現(xiàn)數(shù)學(xué)的奧秘吧!我們今天的課程就到這里了,同學(xué)們再見!
三角形內(nèi)角和的教學(xué)教案設(shè)計 7
教學(xué)目標(biāo):
1、讓學(xué)生親自動手,通過量、剪、拼等活動,發(fā)現(xiàn)并證實三角形的內(nèi)角和是180°,應(yīng)用三角形內(nèi)角和的知識解決實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。
重點、難點:
經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成,發(fā)展和應(yīng)用的全過程。
三角形內(nèi)角和是180°的探索和驗證。
教學(xué)過程:
一、揭示課題
1、今天我們一起來學(xué)習(xí)三角形的內(nèi)角和,那什么是三角形的內(nèi)角和?(三角形里面的角),它有幾個內(nèi)角?(三個)出示紙片,那什么又是三角形的內(nèi)角和呢?(把三角形的三個角的度數(shù)加起來就是三角形的內(nèi)角和)
出示課件
2、提出問題,為后面做鋪墊。
現(xiàn)在有3個三角形(出示課件),直角三角形說:“我是直角三角形,我的.內(nèi)角和最大”鈍角三角形說:“我有一個鈍角,比你們?nèi)齻角都大,所以我的內(nèi)角和才是最大的。銳角三角形說:“我雖然是銳角三角形,但我的個頭最大,所以我的內(nèi)角和才是最大的。
孩子們,它們這樣吵起來可不是辦法呀!你們可知道它們誰的內(nèi)角和最大呢?那我們就一起來證明給他們看。
二、新授
1、任意畫不同的類型的三角形,算一算三個內(nèi)角和是多少度。我們就畫三個不同類型的三角形,算一算三個內(nèi)角和是多少度,我們有三大組,為了節(jié)約時間,每一大組畫一種又分幾小組,三人一小組,一人畫,一人量,一人記錄。(小組合作,畫圖,量角,記錄,計算)
指名匯報結(jié)果并板書(至少一種一個板書),有不同意見的舉手,相差1、2度很正常,量角會有誤差(你們完成的又快又好,因此可見小組合作很到位)
師出示一個大直角三角板,請大家算一算這個三角板的內(nèi)角和是多少?
。ㄈ切蔚膬(nèi)角和都是一樣大的,都是180°,僅僅一個實驗還不能讓它們心服口服,下面我們再來做兩個實驗,讓它們心服口服)
2、拼一拼,折一折
孩子們,我們又活動起來吧,拼一拼折一折,讓它們看一看,拿出你們準(zhǔn)備好的三角形。我們一起來:拿出一個三角形(不管形狀),撕下三個角,然后拼在一起(注意三個角的頂點要在同一個點上)你們發(fā)現(xiàn)了什么?(拼成了一個平角,這一點就是平角的頂點)
我們再拿出一個三角形,折一折(注意科學(xué)的嚴(yán)謹(jǐn)性,折的時候不留很寬的縫隙)你又發(fā)現(xiàn)了什么?(這個三角形還是組成了一個平角)
通過這三次實驗,我們可以得出結(jié)論:三角形的內(nèi)角和等于180°,不分形狀,不分大小,任何一個三角形的內(nèi)角和都是180°
此時,這三個三角形還爭吵嗎?它們都心服口服了。
孩子們,你們真了不起,輕而易舉就平息了一場爭吵,F(xiàn)在你能不能利用所學(xué)知識解決一些問題呢?
三、練習(xí)
1、搶答游戲(答對的給你的那一小組加一分)
、龠@個三角形的內(nèi)角和是多少度。
、诎堰@個三角形平均分成兩個小三角形,每個小三角形是多少度。
、圻@個小三角形再分成一大一小兩個三角形,這個三角形的內(nèi)角和分別是多少度?
、苋齻小三角形拼成一個更大的三角形,它的內(nèi)角和是多少度?
2、智慧角
3、判斷(用手語表示)(哪個小組同學(xué)全部舉手,就由哪個小組回答,口說手劃答對加一分)
4、知識擴展
其實三角形的內(nèi)角和是一個小朋友發(fā)現(xiàn)并提出來的,當(dāng)時他只有12歲,比你們大一點點,真了不起,你們想知道他是誰嗎?(帕斯卡)
出示課件
孩子們,其實你們跟他們同樣聰明,以后,我們就利用所學(xué)知識去發(fā)現(xiàn)探索新的知識和規(guī)律,只要努力,就一定會成功的,孩子們加油吧!
四、總結(jié)
任何一個三角形不分大小,不分形狀,它們的內(nèi)角和都是180°
三角形內(nèi)角和的教學(xué)教案設(shè)計 8
一、教學(xué)內(nèi)容:
三角形內(nèi)角和(教材85頁的例五)
二、教學(xué)目標(biāo):
1、2、3、知道三角形的內(nèi)角和是180°。正確計算三角形中某一個角的度數(shù)。培養(yǎng)學(xué)生分析、判斷的能力,滲透知識間的內(nèi)在聯(lián)系和轉(zhuǎn)化的數(shù)學(xué)思想。
三、教學(xué)重難點
理解并熟練運用三角形的內(nèi)角和是180°。
四、教具學(xué)具準(zhǔn)備
不同形狀的三角形,量角器
五、教學(xué)過程:
。ㄒ唬┕适聦(dǎo)入:
三角形家里的兄弟們在家里吵個不停,鈍角三角形說:“我有一個角最大,我的三個角之和也是最大”,直角三角形說:“我一個角都90°,更何況我長了三只腳,我肯定比你大”,等邊三角形說:“我三條邊都相等,我三個角的度數(shù)之和也不比你直角三角形,鈍角三角形三角之和小呀。這家兄弟就這樣,你一言,我一語的吵的不可開交,直角三角形和鈍角三角剛要動手打起來時,媽媽回來了。三角形媽媽很奇怪,急忙就問:怎么了孩子們?銳角三角形低著頭小聲說:媽媽,他們都說:他三個角之和比我大,是這樣的嗎?三角形媽媽哈哈大笑,我以為你們在吵什么呢?原來是這個問題,好了孩子們,要想知道你們?nèi)齻角之和到底是多少?今天我?guī)銈內(nèi)コ菂^(qū)二小四年級那里的小朋友今天就在學(xué)習(xí)這節(jié)課,兄弟們跟著媽媽一起今天也來到我們的教室。同學(xué)們一會兒學(xué)會了,把正確答案告訴這幾位兄弟,好嗎?
。ǘ┙虒W(xué)實施
(1)小組合作把準(zhǔn)備的三角形折下來,在拼一拼,看能拼成一個什么角?
。2)反饋結(jié)果。
。3)學(xué)生總結(jié)結(jié)果。
三角形的內(nèi)角和是180°。(課件展示三角形的內(nèi)角和是180度。)
。4)(課件出示學(xué)過的三角形)請幾位同學(xué)告訴三角形家里的兄弟們,他們的內(nèi)角和是多少?
。ㄈ┰O(shè)疑。
根據(jù)三角形的內(nèi)角和是180°如果知道兩個角的度數(shù),就可以求出第三個角的度數(shù)。(課件出示)
在一個直角三角形中,∠C=30°,求∠A的度數(shù)?
(1)學(xué)生讀題,分析題意。
(2)嘗試做題。
。3)教師訂正書寫。(課件出示)
∠A=180°-90°-30°=60°
。ㄋ模┳鲆蛔
1、在一個三角形中∠1=140°,∠3=25°.求∠2的度數(shù)?
2、我是小判官。(對的打√,錯的打×)
①把一個等腰三角形分成兩個完全一樣的小
三角形,每個小三角形的內(nèi)角和都是90度。
②直角三角形的兩個銳角和是90度。
、廴魏我粋三角形的內(nèi)角和都是180度。
、茆g角三角形的兩個銳角之和大于90度,直角三角形的.兩個銳角之和正好等于90度
3、求下面各角的度數(shù)。(課件出示)
(五)課堂作業(yè):
。1)三邊相等,求三個角的度數(shù)。
。2)等腰三角形,頂角是96°,求底角
。3)在一個直角三角形中,有個銳角是40°,求另一個角。
(2)我給我女兒買了一個等腰三角形的風(fēng)箏,他的一個底角是70°,它的頂角是多少度?
。┲橇Υ箨J關(guān)
我的一個內(nèi)角是72°,是另一個內(nèi)角的4倍,我是一個什么三角形?
六、課堂小結(jié)。
三角形的內(nèi)角和是多少?
三角形的內(nèi)角和是180度。
七、作業(yè)布置。
P88頁9、10
附板書
三角形的內(nèi)角和是180°
三角形內(nèi)角和的教學(xué)教案設(shè)計 9
【教學(xué)內(nèi)容】:
人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級下冊第95頁內(nèi)容。
【教學(xué)目標(biāo)】:
1、掌握三角形內(nèi)角和定理,并能進行簡單的運用。
2、在探討三角形內(nèi)角和的過程中,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想。
3、通過讓學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生對數(shù)學(xué)的好奇心和求知欲。讓學(xué)生切實感受到從動手操作中,引發(fā)猜想,最后驗證猜想得出結(jié)論。發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
4、培養(yǎng)學(xué)生善于思考,勤于動手、勇于探索并發(fā)現(xiàn)結(jié)論的學(xué)習(xí)方法,使他們經(jīng)歷數(shù)學(xué)知識的形成過程。
【教學(xué)重難點】:
1、引導(dǎo)學(xué)生探索規(guī)律是否具有一般性,用不同的三角形驗證猜想,從而得出三角形內(nèi)角和為1800。通過做一做,應(yīng)用三角形內(nèi)角和求未知角的度數(shù)。
2、在研究內(nèi)角和時,培養(yǎng)學(xué)生轉(zhuǎn)化的思想,把未知的知識轉(zhuǎn)化為已知的知識來研究。
【教學(xué)流程】:
一、復(fù)習(xí)導(dǎo)入:
1、上一節(jié)課我們把三角形按角和邊進行了分類,誰來說一說按角可分成哪幾類?
抽答,教師板書
2、前邊我們還學(xué)習(xí)了三角形的高,誰來畫一畫他們的高。
抽答:
3、銳角、鈍角三角形的高把他們分成了兩個直角三角形。一個三角形中可以有三個銳角,為什么只能有一個直角呢?你能畫出含有兩個直角的三角形嗎?畫一畫。
4、想一想為什么不能畫出含有兩個直角的三角形呢?你有什么猜想?
二、教授新知
三角形三個角含有某種關(guān)系,今天我們就一起來研究三角形的角,由于三角形的角都在其內(nèi)部,所以也叫內(nèi)角。
教師板書:三角形內(nèi)角。
(一)初次探索:
1、我們先選一類出來研究,你們想先選哪一類呢?(直角三角形,因為其中一個角已知為900,只需研究另外兩個角就行了。)
2、你們手上有熟悉的三角形嗎?(教師出示三角板)看,這是不是大家最熟悉的直角三角形,誰來說一說它們另外兩個角的度數(shù)?
抽答:教師板書
3、同學(xué)們,請仔細(xì)觀察這兩組數(shù)據(jù),你有什么發(fā)現(xiàn)?
抽答:
4、一個多150,一個少150,他們的和怎樣?再加上它們都有一個900角,它們內(nèi)角和都為1800。大家想一想,是不是所有的直角三角形三內(nèi)角和都為1800?驗證一下,你手里的直角三角形,是這樣嗎?
5、你是怎樣驗證的?結(jié)果怎樣?(量的)抽答:教師并板書
6、你也是量的?量出的結(jié)果是?
抽答:
7、這么多小朋友都是量的,可是量出的結(jié)果不全是1800,為什么和我們的猜想不一樣呢?因為量有一定的誤差,如果拋開誤差,你覺得它的內(nèi)角和是多少?1800是一個什么樣角?你能把這三個角組成一個平角嗎?怎么做?
抽答:
8、怎么拼的?給大家展示展示。
9、這說明直角三角形內(nèi)角和為1800。(板書:三內(nèi)角和=1800)
(二)再次探索
1、接下來該研究銳角和鈍角三角形了,請大家自行選擇一類來進行研究。待會和大家分享你的研究成果。
2、你研究的哪一類三角形?用了什么方法?結(jié)果怎樣?(讓學(xué)生上黑板演示:量和拼的方法。)
抽答:
3、把你手里的`銳角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(銳角三角形內(nèi)角和=1800)教師板書。
。ㄈ┻\用轉(zhuǎn)化的方法:
1、還有其他的方法嗎?老師給大家介紹另一種方法,轉(zhuǎn)化的方法。銳角三角形的一條高把它分為兩個直角三角形,一個直角三角形內(nèi)角和為1800,兩個直角三角形內(nèi)角和就是3600,這個結(jié)論是不是錯了呀?
2、你發(fā)現(xiàn)問題了,你來說說。
抽答:
3、誰研究的鈍角三角形?說說你是怎么研究的?結(jié)果怎樣?
抽答:
4、把你的鈍角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(鈍角三角形內(nèi)角和為1800)教師板書。
5、研究了直角、銳角、鈍角三角形,它們內(nèi)角和都為1800,你能得出什么結(jié)論?(所有三角形內(nèi)角和都為1800)
齊答:教師并板書。
(四)設(shè)疑,自行研究
1、看看這個課題,你還有什么疑問嗎?老師有一個疑問,你能解答嗎?這里有一個這么大的三角形,還有一個這么小的三角形,相差這么大,內(nèi)角和能一樣嗎?
抽答:
2、說明角的大小和邊長是沒有關(guān)系的。所有的三角形的內(nèi)角和都為1800。
三、課堂練習(xí)
1、學(xué)習(xí)了三角形內(nèi)角和,如果已知其中兩個角,你能求出第三個角的度數(shù)嗎?請做一做練習(xí)一。(在一個三角形中,∠1=1400,∠2=250,求∠3的度數(shù)。)
2、一個直角三角形已知其中一個非直角,你能求出另一個角的度數(shù)嗎?做一做練習(xí)二。(在一個直角三角形中,其中一個角為400,求另一個角的度數(shù)。)
3、一個等腰三角形已知其中一個底角,其他角的度數(shù)你還能求嗎?看看練習(xí)三。(一個等腰三角形,已知底角為420,求另外兩個角的度數(shù)。)
四、課堂小結(jié)
1、這節(jié)課你學(xué)了什么新知識?
2、我們是怎么研究的?(從大家熟悉的開始研究,從特殊到一般并運用了轉(zhuǎn)化的思想。)
五、知識拓展
1、研究了三角形內(nèi)角和,四邊形呢?你還能求嗎?你想怎么做?能用轉(zhuǎn)化的方法嗎?怎么做?
抽答:
六、總結(jié):
這節(jié)課我們學(xué)習(xí)新知識時,用了很多方法,希望大家在以后的學(xué)習(xí)中
想出更多的方法。在學(xué)了課本知識的基礎(chǔ)上還拓展了相關(guān)知識,希望大家在以后的學(xué)習(xí)中再接再厲。
三角形內(nèi)角和的教學(xué)教案設(shè)計 10
一、教材分析:
教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會想到用測量角的方法,此時就可以安排小組活動。每組同學(xué)可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180度。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學(xué)生動手試一試,加深對三角形內(nèi)角和的認(rèn)識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
二、學(xué)生狀況分析:
學(xué)生在本課學(xué)習(xí)前已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),學(xué)生課上對數(shù)學(xué)知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化。
三、學(xué)習(xí)目標(biāo):
1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
3.發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學(xué)活動的探索樂趣,體會研究數(shù)學(xué)問題的思想方法。
4.能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
四、教具、學(xué)具準(zhǔn)備:
課件、6張三角形的紙、學(xué)生準(zhǔn)備任意三角形。
五、教學(xué)過程:
。ㄒ唬┰O(shè)疑導(dǎo)入(2分鐘)
師:在平的數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內(nèi)角。(板書內(nèi)角)為了方便老師分別給兩個三角尺的內(nèi)角編上號,誰能告訴我它們分別是多少度?
師:請同學(xué)們仔細(xì)觀察比較一下,這兩個三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個呢?
生:45°+45°+90°=180°
師:同學(xué)們,通過剛才的算一算,我們得到這兩個直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
。ǘ﹦邮植僮鳎骄繂栴},以動啟思(20分鐘)
師:這只是我們的一種猜測,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。接下來,我們就來驗證三角形的內(nèi)角和,老師為大家準(zhǔn)備了1號——6號6個三角形,下面請每個同學(xué)選擇一個三角形來驗證。想一想,你準(zhǔn)備用什么樣的方法來驗證三角形的內(nèi)角和,然后開始驗證。
。1)小組合作,討論驗證方法
(2)匯報驗證方法、結(jié)果
現(xiàn)在我們一起交流一下驗證的結(jié)果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內(nèi)角和是多少。
師:同學(xué)們我、其實剛才我在驗證的時候很多同學(xué)有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準(zhǔn)確、簡便的'方法來驗證。
師:好,請同學(xué)們觀察大屏幕,這些三角形的內(nèi)角和都是180°,那么請問,現(xiàn)在我們能不能以下結(jié)論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學(xué)研究的道路上就要敢于質(zhì)疑的精神,接下來我們怎么辦?(我們應(yīng)該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。
師:每個同學(xué)都準(zhǔn)備的三角形帶了嗎?下面就請同學(xué)來驗證你們自己帶來的三角形的內(nèi)角和究竟是多少度。學(xué)生匯報交流。
同學(xué)們我們這樣驗證,驗證完嗎?(驗證不完)
師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準(zhǔn)備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都是180°。
課件出示結(jié)論:三角形的內(nèi)角和是180°)。
師:看來我們的猜測是正確的,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書:三角形的內(nèi)角和是1800
。ㄈ╈柟叹毩(xí):(15分鐘)
學(xué)會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個對?為什么?
生:180°,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?這時學(xué)生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰對呢?大家可以在小組內(nèi)拼一拼,進行討論
生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導(dǎo)學(xué)生復(fù)習(xí)等腰三角形的特征,再讓學(xué)生談?wù)勏敕ā?/p>
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學(xué)生自主完成匯報結(jié)果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個直角三角形,一個銳角為35度,求另一個銳角的度數(shù)。
教師帶領(lǐng)學(xué)生復(fù)習(xí)直角三角形的特征。(指名匯報)解法不唯一,只要學(xué)生思路正確老師應(yīng)及時給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說法對嗎?
1)鈍角三角形的兩個銳角之和大于90度。( )
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。( )
3)一個直角三角形中最多有一個直角。( )
學(xué)生自主理解題意,教師引導(dǎo)學(xué)生說出對或錯的原因。
4、老師這還有一個難題需要解決,同學(xué)們愿意接受挑戰(zhàn)嗎?
師:老師手里有一個信封,信封里露出一來個角,這個角的度數(shù)是45度,請同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來個角,這個角的度數(shù)是45度,它是這個三角形內(nèi)角中最小的銳角,請同學(xué)們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學(xué)生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。
。ㄋ模┱n堂小結(jié)
師:一節(jié)課快要結(jié)束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
三角形內(nèi)角和的教學(xué)教案設(shè)計 11
【教學(xué)目標(biāo)】
1、學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點】
探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
【教學(xué)難點】
對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
【教具準(zhǔn)備】
課件、表格、學(xué)生準(zhǔn)備不同類型的三角形各一個,量角器。
【教學(xué)過程】
一、激趣引入。
1、猜謎語
師:同學(xué)們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發(fā)學(xué)生探知心里
師:大家會不會畫三角形?
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)
二、探究新知。
1、認(rèn)識三角形的內(nèi)角
看看這三個字,說說看,什么是三角形的內(nèi)角?
生:就是三角形里面的角。
師:三角形有幾個內(nèi)角?
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標(biāo)上角1角2角3,請同學(xué)們也拿出桌子上三角形標(biāo)出(教師標(biāo)出)
師:你知道什么是三角形“內(nèi)角和”嗎?
生:三角形里面的.角加起來的度數(shù)。
2、研究特殊三角形的內(nèi)角和
師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
師:180°也是我們學(xué)習(xí)過的什么角?
生:平角
師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
3、研究一般三角形的內(nèi)角和
師:猜一猜,其它三角形的內(nèi)角和是多少度呢?
生:
4、操作、驗證
師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
。1)每4人為一個小組。
。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?
。3)驗證的方法不只一種,同學(xué)們要多動動腦子。
師:好,開始活動!
師:巡視指導(dǎo)
師:好!請一組匯報測量結(jié)果。
生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。
師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準(zhǔn)確。
生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)
現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度。現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
三、解決疑問
師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學(xué)會了知識,我們就要懂得去運用。
四、鞏固提高。
1、填空。
。1)三角形的內(nèi)角和是()度。
。2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。
2、求下面各角的度數(shù)。
。1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。
。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。
3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。
。1)80° 95° 5°( )
(2)60° 70° 90°( )
。3)30° 40° 50°( )
4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)
對學(xué)生進行思品教育。
5、思考延伸。
根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?
6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、總結(jié)。
三角形內(nèi)角和的教學(xué)教案設(shè)計 12
【設(shè)計理念】
新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。
【教材內(nèi)容】
新人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
。薄⒃趯W(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認(rèn)識長方形、正方形,知道他們的四個角都是直角;認(rèn)識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
。、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學(xué)目標(biāo)】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。
【教學(xué)重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
【教學(xué)難點】
驗證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準(zhǔn)備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習(xí)舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
設(shè)計意圖:也自然導(dǎo)入新課。
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預(yù)設(shè):
。1)三角形的內(nèi)角指的是哪些角?
。2)三角形的內(nèi)角和是什么意思?
。3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。
三、操作驗證 形成結(jié)論
1、交流驗證方法:
(1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等
。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的`結(jié)論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
設(shè)計意圖:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設(shè)計:
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗證: 量 拼
結(jié)論: 任意三角形的內(nèi)角和是180°
三角形內(nèi)角和的教學(xué)教案設(shè)計 13
教學(xué)目標(biāo):
1、教會學(xué)生主動探究新識的方法,學(xué)會運用轉(zhuǎn)化遷移數(shù)學(xué)思想。
2、學(xué)生通過量、剪、拼、擺、分割等驗證三角形內(nèi)角和方法的比較,主動掌握三角形內(nèi)角和是1800,并運用所學(xué)知識解決簡單的實際問題,發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。
教學(xué)重點:
理解并掌握三角形的內(nèi)角和是180°。
教學(xué)難點:
驗證所有三角形的內(nèi)角之和都是180°。
教具準(zhǔn)備:
多媒體課件。
學(xué)具準(zhǔn)備:
量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)
教學(xué)過程:
一、導(dǎo)入
師:知道今天我們學(xué)習(xí)什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。
師:什么是內(nèi)角?你能把你手中三角形的三個內(nèi)角用角1、角2、角3標(biāo)出來嗎?
師:還有一個關(guān)鍵字“和”,什么是三角形的內(nèi)角和?
師:你認(rèn)為三角形的內(nèi)角和是多少度?你呢?都知道?是多少度?看來都知道了,就不用再學(xué)了吧?你還想學(xué)什么?
師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?
生:量一量的方法。
師:光量就知道了?還要算一算。
師:這種方法可行嗎?下面咱就來試試,請同學(xué)們4人一組,分工合作,先測量內(nèi)角,再計算求和。小組長把計算的過程記錄下來。開始吧。
驗證:量角、求和
小組匯報
生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。
生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。
生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。
師:從剛才的交流中,你發(fā)現(xiàn)了什么?
生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。
師:下面同學(xué)測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結(jié)論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號)
師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動手試一試吧!
師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。
師:你們小組每個同學(xué)都動腦筋了,謝謝你們。
師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?
師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)
師:其實對我來說重要的不是知識的結(jié)論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法,F(xiàn)在我們再來一塊回顧一下。
師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結(jié)論)
師:剛才同學(xué)們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構(gòu)成了一個三角形,請你睜大眼睛仔細(xì)觀察,你發(fā)現(xiàn)了什么?
請你再仔細(xì)觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?
師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。
師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個知識來解決一些問題。
生:能。
二、遷移和應(yīng)用
(一)點將臺:
下面哪三個角是同一個三角形的內(nèi)角?
。1)30 °、60 °、45 °、90 °
。2)52 °、46 °、54 °、80 °
。3)45 °、46 °、90 °、45 °
。ǘ┪視
1、已知∠1,∠2,∠3是三角形的三個內(nèi)角。
。1)∠1=38° ∠2=49°求∠3
。2)∠2=65° ∠3=73° 求∠1
2、已知∠1和∠2是直角三角形中的兩個銳角
(1)∠1=50°求∠2
。2)∠2=48°求∠1
3、已知等腰三角形的一個底角是70°,它的`頂角是多少度?
。ㄈ┳冏冏!
。1)一個三角形中, ∠1 、∠2、∠3。
。2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?
。3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?
三、全課小結(jié)
師:通過一節(jié)課的探索,你有什么收獲?
生答(略)
我的幾點認(rèn)識:
結(jié)合《三角形的內(nèi)角和》這節(jié)課,我對空間與圖形這一部分內(nèi)容,簡單的談一下自己的認(rèn)識。
空間與圖形這一部分內(nèi)容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學(xué)中,三角形的內(nèi)角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內(nèi)角和是180度,對學(xué)生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內(nèi)角和,學(xué)生也只能機械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點我采用了一下幾點做法:
1、根據(jù)學(xué)生的知識特點和生活經(jīng)驗,在原有基礎(chǔ)上創(chuàng)造性的使用教材。
在教學(xué)本節(jié)課的內(nèi)容時,學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學(xué)生通過自己動手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學(xué)生,你們知道三角形的內(nèi)角和是多少度嗎?
你們怎么知道的?能自己證明么?這樣學(xué)生從被動學(xué)習(xí)者的角色,
立刻轉(zhuǎn)入主動學(xué)習(xí)者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。
2、讓學(xué)生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。
在探究的過程中,我們采用了小組合作學(xué)習(xí)方式,這樣既能給學(xué)生提供交流的空間,又能在短時間內(nèi)有效學(xué)習(xí)。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學(xué)生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。
總之,在教學(xué)空間與圖形的內(nèi)容時,一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。
三角形內(nèi)角和的教學(xué)教案設(shè)計 14
【教學(xué)內(nèi)容】
《人教版九年義務(wù)教育教科書 數(shù)學(xué)》四年級下冊《三角形的內(nèi)角和》
【教學(xué)目標(biāo)】
1.使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。
2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。
3.培養(yǎng)學(xué)生自主學(xué)習(xí)、互動交流、合作探究的能力和習(xí)慣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣。
【教學(xué)重點】
使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。
【教學(xué)難點】
通過多種方法驗證三角形的內(nèi)角和是180 。
【教學(xué)準(zhǔn)備】
課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾伞
【教學(xué)過程】
一、激趣導(dǎo)入,提煉學(xué)習(xí)方法
1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的'身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當(dāng)一會我的徒弟試試這幾道題呢?”
2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
3.選擇工具,總結(jié)方法。
讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
4.導(dǎo)入新課。
圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)
二、動手操作,探索交流新知
1.分組活動,探索新知
根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
量一量組同學(xué)發(fā)給以下幾種學(xué)具:
折一折組同學(xué)發(fā)給上面的三角形一組。
拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當(dāng)給予引導(dǎo)。
2.多方互動,交流新知
師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。
(1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。
(2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)
(3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。
師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。
同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
3.思想碰撞,夯實新知
師:三個徒弟你們能說說誰的方法最好嗎?
學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準(zhǔn)確,所以結(jié)果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)
師:不論你量的怎樣認(rèn)真都會有不準(zhǔn)確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準(zhǔn)確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )
四、走進生活,提升運用能力
1.出示課前那架柁標(biāo)出它的頂角是120 ,求它的一個底角是多少度?
2.給你三根木條,能做出一個有兩個直角的三角形嗎?
五、總結(jié)
師:徒弟們你們經(jīng)過三年的苦學(xué),終于學(xué)有所成了。今天,能說說你們在我這里都學(xué)到了什么手藝嗎?
六、拓展新知,課外延伸
師:俗話說“活到老,學(xué)到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?/p>
大屏幕出示:
能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?
三角形內(nèi)角和的教學(xué)教案設(shè)計 15
【教學(xué)內(nèi)容】
新課標(biāo)人教版四年級下冊第五單元《三角形》
【教材分析】
“三角形內(nèi)角和”這節(jié)課是新課標(biāo)人教版四年級下冊第五單元的教學(xué)內(nèi)容,是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學(xué)生探索驗證三角形內(nèi)角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產(chǎn)生初步的發(fā)現(xiàn)和猜想,再“拼一拼、折一折”,引導(dǎo)學(xué)生對已有猜想進行驗證,經(jīng)歷提出猜想——進行驗證的的過程,滲透數(shù)學(xué)學(xué)習(xí)方法和思想。
【學(xué)生分析】
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。
【學(xué)習(xí)目標(biāo)】
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題
1、魔術(shù)導(dǎo)入:把長方形的紙剪兩刀,怎樣拼成一個三角形?
2、你知道三角形的那些知識?(復(fù)習(xí))
3、小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
。▌(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認(rèn)為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認(rèn)知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。)
二、引導(dǎo)探究,解決問題
1.介紹內(nèi)角、內(nèi)角和
師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角,以后到了初中,還會接觸三角形的外角?蠢蠋熓掷锏娜切,關(guān)于它的三個內(nèi)角,除了我們已經(jīng)掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內(nèi)角和指的是什么?
已經(jīng)知道三角形的內(nèi)角和是多少的同學(xué),可以把它寫在本上。不知道的同學(xué)想一想,計量內(nèi)角和的單位是度,可以估計一下,各種各樣的三角形的內(nèi)角和是不是一個固定的數(shù),有可能會是多少度,把你的猜想也寫在本上。
我們這節(jié)課就來一起探究用哪些方法能知道三角形的內(nèi)角和。
2.確定研究范圍(預(yù)設(shè)約3-5分)
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)
請你想個辦法吧!
。ㄍㄟ^引導(dǎo)學(xué)生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)
3.動手操作實踐(預(yù)設(shè)約8-10分)
同桌組成學(xué)習(xí)小組,拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,把每個角標(biāo)上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學(xué)的三角形,看看各種三角形內(nèi)角和是不是一樣的。(學(xué)生動手操作試驗,在小組中討論問題)
。榱藵M足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動性,我在設(shè)計學(xué)具的時候,想了幾個不同的方案,最后決定課前讓學(xué)生在學(xué)習(xí)小組里分工合作制作各種不同的三角形,課上就讓學(xué)生就用自己制作的三角形,通過獨立探究和組內(nèi)交流,實現(xiàn)對多種方法的體驗和感悟。)
4.匯報交流(預(yù)設(shè)約15-20分)
(1)測量的方法
學(xué)生匯報量的方法,師請同學(xué)評價這種方法。
師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
(2)剪拼的方法
學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)
師:把三角形的'三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?
(3)折拼的方法
學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?
(4)演繹推理的方法
(借助學(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。
師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。
。▽W(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)
學(xué)生用的方法會非常多,怎樣對這些方法進行引導(dǎo),是值得思考的問題。這些方法的思維水平不應(yīng)該是平行的:直接測量的方法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性;谝陨系南敕,我覺得在課上不能停留在學(xué)生對方法的描述上,而應(yīng)引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴(yán)謹(jǐn)性。所以在最后一個環(huán)節(jié)中,教師向全班同學(xué)推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導(dǎo)和點撥的作用。學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!
5.驗證猜想
請學(xué)生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內(nèi)角和都是180度,那就可以說,所有的三角形的內(nèi)角和都是180度。
這個結(jié)論和課前剛才知道的或猜的一樣嗎?
(在很多同學(xué)都知道三角形內(nèi)角和的情況下,要引導(dǎo)學(xué)生領(lǐng)悟有了猜測還要去驗證,這是一種科學(xué)的研究問題的方法,是一種求實精神。)
6.解釋課前問題
用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應(yīng)用,深化創(chuàng)新
1.介紹科學(xué)家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學(xué)作出了巨大的貢獻(xiàn),在我們以后學(xué)習(xí)的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
2.四邊形內(nèi)角和及多邊形內(nèi)角和(幻燈片)
你打算用哪種方法知道四邊形的內(nèi)角和?
你覺得哪種方法更好?
。ㄔO(shè)計求四邊形的內(nèi)角和,是把這個新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)
3.總結(jié)
我們把四邊形一分為二,用三角形內(nèi)角和的知識知道了四邊形內(nèi)角和,那么五邊形、六邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,希望同學(xué)們能用學(xué)到的知識和方法去探究問題,你還會有一些精彩的發(fā)現(xiàn)。
三角形內(nèi)角和的教學(xué)教案設(shè)計 16
教學(xué)要求
1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
教學(xué)重點
三角形的內(nèi)角和是180°的規(guī)律。
教學(xué)難點
使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。
教學(xué)用具
每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
教學(xué)過程:
一、出示預(yù)習(xí)提綱
1、三角形按角的不同可以分成哪幾類?
2、一個平角是多少度?1個平角等于幾個直角?
3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。
二、展示匯報交流
1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)
2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?
4、指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?
5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的`內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。
6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?
提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。
7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)
9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)
10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。
12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?
13、出示教材85頁做一做。讓學(xué)生試做。
14、指名匯報怎樣列式計算的。兩種方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
課后反思:
對于三角形的內(nèi)角和,學(xué)生并不陌生,在平時的做題中已經(jīng)涉及到了。可是學(xué)生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。
三角形內(nèi)角和的教學(xué)教案設(shè)計 17
一、教學(xué)目標(biāo):
1、通過小組猜想、探索、驗證三角形的內(nèi)角和等于180°,并能運用知識解決簡單問題。
2、經(jīng)歷三角形內(nèi)角和的探究過程,體驗“猜想——驗證——應(yīng)用”的學(xué)習(xí)模式。
3、通過各種實踐活動,激發(fā)學(xué)習(xí)興趣,體驗學(xué)習(xí)成功感,并在教學(xué)中,感受數(shù)學(xué)與生活的密切聯(lián)系。
二、教學(xué)重難點
教學(xué)重點:學(xué)生運用各種方法,探索三角形的內(nèi)角和是180度這一知識的全過程
教學(xué)難點:運用三角形的內(nèi)角和解決實際問題。
三、教具、學(xué)具準(zhǔn)備:
課件、一副三角尺、幾個三角形。學(xué)生準(zhǔn)備一副三角尺。
四、教學(xué)過程:
一、創(chuàng)設(shè)情境揭示課題。
師:猜謎語形狀似座山,穩(wěn)定性能堅;三竿首尾連,學(xué)問不簡單。(打一幾何圖形)生:三角形
師:前面我們已經(jīng)認(rèn)識三角形,誰能給大家介紹一下?學(xué)生講學(xué)過的三角形知識。分類
師:我們在討論三角形知識的時候,三角形中的三個兄弟卻吵了起來,想知道怎么回事嗎?讓我們一起去看看吧!
師:呦,瞧,三個兄弟在爭論呢。(播放課件)它們在爭論什么呀?生:它們在爭論誰的內(nèi)角和大。
師:哦,原來如此。那么,你們知道什么是三角形的內(nèi)角?三角形的內(nèi)角和又是指什么嗎?(生:三角形的內(nèi)角就是三角形里面的三個角。內(nèi)角和就是三個內(nèi)角的度數(shù)和。)
師:這個同學(xué)說得真好,(課件)我們把三角形里面的這三個角,就叫做三角形的內(nèi)角,而這三個角的度數(shù)和,我們就稱為三角形的內(nèi)角和。
今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題)
二、探索交流,解決問
。ㄒ唬、大膽猜想,產(chǎn)生分歧
師:理解了三角形的內(nèi)角和,那請你們給評評理:這三個大小不一樣的三角形,到底是誰的內(nèi)角和大啊?(這位同學(xué)手舉得最高,請你來說。)
生1:我認(rèn)為是這樣的,因為大三角形大,所以它的內(nèi)角和更大。(哦,你是這樣認(rèn)為的,請坐。還有不同意見嗎?這位同學(xué)很著急,好,你來。)
生2:我不同意,我認(rèn)為兩個三角形內(nèi)角和的度數(shù)都是一樣的。(很好,這是你的想法。還有同學(xué)想說,你來。)
生3:當(dāng)然是大三角形的內(nèi)角和大了。(你回答的聲音真響亮。請坐)生4:我同意第二個同學(xué)的意見,兩個三角形的內(nèi)角和一樣大。
師:現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?
。ǘ炞C猜想,解決問題
師拿出兩個三角尺,問:它們是什么三角形?生:直角三角形。
師:請大家拿出自己的兩個三角尺,同桌之間說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。(學(xué)生們能夠很快求出每塊三角尺的3個角的和都是180°)
師:你們算出來,這兩個三角尺的內(nèi)角和是多少度?生齊:180°。
師:那??其他三角形的內(nèi)角和也是180°嗎?(這位同學(xué)手舉得真端正,你來說。)生1:其他三角形的內(nèi)角和也是180°(好,還有誰想說?)生2:其他三角形的內(nèi)角和不是180°
師:看來呀,大家都有不同的看法。我們學(xué)過三角形的分類,知道直角、銳角、鈍角三角形可以代表所有的三角形。那下面就請同學(xué)們小組合作,從組里找出這
三類三角形,量一量每個三角形內(nèi)角的度數(shù),并求出它們的內(nèi)角和,把結(jié)果填在表格里。(板書:測量)師:你們發(fā)現(xiàn)了什么?
生1:通過測量我們發(fā)現(xiàn)每個三角形的內(nèi)角和都是180°。生2:不對,應(yīng)該是180°左右,因為我們組算出來也有175°的。
師:噢!是呀,因為我們在測量時可能會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準(zhǔn)確,因此我們只能猜測三角形的內(nèi)角和可能是180°。
師:那么,同學(xué)們能發(fā)揮你們的聰明才智,通過動手操作,想辦法來驗證自己的猜想嗎?請同學(xué)們先獨立思考一下,再在小組內(nèi)把你的想法與同伴進行交流,然后每組選一種方法進行驗證,看哪組最先發(fā)現(xiàn)其中的“奧秘”。(1)小組合作,討論驗證方法(2)匯報驗證方法、結(jié)果。
師:誰愿意第一個向大家介紹你們組的驗證方法?
組1:我們小組是用剪拼的方法(板書:剪拼),將三角形的三個角剪下來,拼成一個平角,得到三角形的內(nèi)角和是180度。
師:上來展示給大家瞧一瞧。(投影儀)你們看這位同學(xué)多細(xì)心呀,為了方便、不混淆,在剪之前,他先給3個角標(biāo)上了符號。
師:現(xiàn)在請同學(xué)們看大屏幕,老師在電腦里把剛才剪拼的過程重播一遍。你們看,成功了,3個角拼成了一個平角?墒,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢,它們能不能拼成一個平角。可R:能!
師:好。那就是說,剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內(nèi)角和是180°了。你們覺得這種方法好不好?那我們把掌聲送給剛才這個小組。還有其他方法嗎?
組2:我們小組是用折的方法(板書:折圖),同樣得到三角形的內(nèi)角和是180度。(這個小組真了不起,竟能想出如此獨特的方法,很有新意,非常好。⿴煟郝犉饋碛悬c抽象,請這位同學(xué)上來折給大家看看好不好呀?(投影儀展示)
(展示:3個角折成了一個平角。)
師:真是個手巧的孩子。不過呢,他剛才折的是一個直角三角形,那其他兩類三角形呢,是不是也能折出平角呢,誰來告訴大家?
組3:可以,這三類三角形都能折出平角。(這一組探索數(shù)學(xué)的能力也真棒。⿴熜〗Y(jié):剛才同學(xué)們用量、剪、拼、折等方法證明了,無論是什么樣的三角形,內(nèi)角和都是1800,(板書:三角形的內(nèi)角和是180°)現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的.發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。師:(出示一個大三角形)它的內(nèi)角和是多少度?生:180 °
師:(出示一個很小的三角形)它呢?生:180 °
師:一個三角形的內(nèi)角和是180°,那兩個同樣的三角形拼成一個大三角形,它的內(nèi)角和又是多少呢?
(生有的答360°,有的180 °。)
師:咦?有兩種不同的聲音哦。那到底哪一種是正確的呢?
師:(學(xué)生個個臉上露出疑問)大家可以在小組內(nèi)拼一拼,并討論討論。(經(jīng)過一翻激烈的討論探究后,學(xué)生開始舉手回答。)
生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。(想一想,做一做,數(shù)學(xué)之門就被這組同學(xué)打開了,真棒!哈,還有同學(xué)要說,好,你再說。)
生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:你分析問題這么透徹,老師真希望每節(jié)課都能聽到你的發(fā)言,F(xiàn)在,老師把剛才這位同學(xué)說的用課件演示一遍,注意看哦。(課件演示)
師:好,這個問題解決了。那么,把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?生齊:180°。
師:哈,看來已經(jīng)騙不倒我們班的同學(xué)勒。答案還是180°,不是90°哦。師總結(jié):所以說,三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
三、鞏固應(yīng)用,內(nèi)化提高
解決問題:
學(xué)會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件演示練習(xí)題)(1)在能組成三角形的三個角后面畫“√”
。2)判斷下列說法對嗎?
(3)你能求出被遮住的角嗎?
(4)67頁的做一做。
(5)你會求下面圖形的角嗎?
四、回顧整理,反思提升
通過今天的學(xué)習(xí),大家有什么收獲?
三角形內(nèi)角和的教學(xué)教案設(shè)計 18
教學(xué)目標(biāo):
1.知道三角形的內(nèi)角和是180度,理解三角形內(nèi)角和與三角形的大小無關(guān)。
。.通過測量、計算、猜想、實驗等數(shù)學(xué)活動,積累認(rèn)識圖形的方法和經(jīng)驗,逐步推理、歸納出三角形內(nèi)角和。
3.關(guān)注學(xué)生在操作活動中遇到的真問題,培養(yǎng)學(xué)生誠實嚴(yán)謹(jǐn)?shù)膶嶒瀾B(tài)度,實事求是的科學(xué)的態(tài)度。
教學(xué)重點:
知道三角形的內(nèi)角和是180度,理解三角形的內(nèi)角和與三角形的大小、形狀無關(guān)。
教學(xué)難點:
經(jīng)歷操作活動,推理、歸納出三角形的內(nèi)角和。
教學(xué)資源:
多煤體課件,各種三角形,三角板,量角器,剪刀。
教學(xué)活動:
一、創(chuàng)設(shè)情境,導(dǎo)入新課。
1.昨天我們學(xué)習(xí)了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?
2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現(xiàn)在能確定了嗎?為什么現(xiàn)在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。
3.三角形中還隱藏著那些知識?三角形的三個內(nèi)角的和是多少度?這節(jié)課我們研究三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)
二、合件交流,操作發(fā)現(xiàn)。
1.(課件)你知道三角尺內(nèi)角的度數(shù)分別是多少嗎?每個直角三角尺的內(nèi)角度數(shù)之和都是多少度?我們能根據(jù)三角尺的內(nèi)角和是180度,就得出三角形的內(nèi)角和的結(jié)論嗎?應(yīng)該怎么研究?(應(yīng)該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結(jié)論)(課件出示學(xué)習(xí)單)。
2.組織學(xué)生小組合作:
請同學(xué)們以4人為一個小組,三個人分別量一量,算一算一種三角形的內(nèi)角的度數(shù),小組長填寫學(xué)習(xí)單。老師巡視。①師:能不能只量出兩個角的度數(shù),不量第三個角的度數(shù),就開始填表、計算?(我們的研究必須是科學(xué)的、實事求是的.,測量的數(shù)據(jù)必須是真實的,來不的半點馬虎)。②同桌交流,你們有什么發(fā)現(xiàn)?
3.組織學(xué)生匯報交流:
、倌莻組說一說你們組測量的數(shù)據(jù)和計算的結(jié)果?(學(xué)生的計算不是正好180度時,問:大約是多少度?)②你們有什么發(fā)現(xiàn)?(銳角三角形、直角三角形、鈍角三角形的內(nèi)角和大約都是180度。③你能提出什么猜想?(我猜三角形的內(nèi)角和是180度)老師板書:三角形的內(nèi)角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學(xué)們想辦法驗證我們的猜想對不對?(學(xué)生通過折的方法剪拼進行驗證;學(xué)生通過剪、拼的方法進行驗證。)
4.學(xué)生展臺展示自己的難方法。通過驗證,我們發(fā)現(xiàn)三角形的內(nèi)角和是180度。老師把“?”改為“!”。
5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內(nèi)角和應(yīng)為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內(nèi)角和應(yīng)為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內(nèi)角和是180°,因此兩個直角三角形的內(nèi)角和應(yīng)為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內(nèi)角,因此任意三角形的內(nèi)角和應(yīng)為:360°-180°=180°。)
三、實踐應(yīng)用,拓展延伸。
1.這里有一條紅領(lǐng)巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。
2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發(fā)生了變化,可是內(nèi)角和依然是180度,說明三角形的內(nèi)角和與三角形大小無關(guān))。
四、反思總結(jié),自我建構(gòu)。
這節(jié)課你有什么收獲?
這節(jié)課我們就研究到這兒,同學(xué)們再見!
三角形內(nèi)角和的教學(xué)教案設(shè)計 19
【教學(xué)內(nèi)容】
《義務(wù)課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》(人教版)小學(xué)數(shù)學(xué)四年級下冊《三角形》中《三角形的內(nèi)角和》(書第67頁)。
【教材分析】
三角形是日常生活中常見的一種平面圖形,學(xué)生已經(jīng)在之前的課中了解了三角的特性和三角形的分類等知識。三角形的內(nèi)角和是三角形的一個重要特征,本節(jié)課的教學(xué)是讓學(xué)生通過量一量、算一算、拼一拼等活動,理解并掌握三角形的內(nèi)角和是180°,滲透轉(zhuǎn)化思想,為今后學(xué)習(xí)圖形知識打下基礎(chǔ)。
【學(xué)情分析】
學(xué)生在本課學(xué)習(xí)前已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級上冊已經(jīng)知道了兩塊三角板上每一個角的度數(shù),由于三角形與日常生活聯(lián)系緊密,圖形直觀,所以教學(xué)相對而言操作性很強。而學(xué)生的數(shù)學(xué)知識、能力和思考問題的角度存在一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化,這樣也對教學(xué)的開展提供了很好了研討環(huán)境。
【教學(xué)目標(biāo)】
。1)理解和掌握三角形的內(nèi)角和是180°,能應(yīng)用這一結(jié)論知識解決相關(guān)問題。
。2)經(jīng)歷“猜想-驗證-得出結(jié)論”的學(xué)習(xí)過程,體驗轉(zhuǎn)化、推理、極限等上學(xué)思想方法,培養(yǎng)大膽質(zhì)疑、動手操作、合作交流能力。
。3)讓學(xué)生體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。
【教學(xué)重難點】
通過操作驗證歸納出三角形的內(nèi)角和是180°。
【教具、學(xué)具準(zhǔn)備】
教具:教學(xué)課件、硬紙片制作的各種三角形、三角尺。
學(xué)具:直角三角形、銳角三角形和鈍角三角形各一個,量角器、兩個三角板,固體膠,剪刀。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引出新課
1.師:最近我們一直在研究三角形(課件出示一個大三角形),知道了三角形可以分為哪幾類?
有一天,三角形兄弟們?yōu)榱藘?nèi)角和的事吵了起來,我們一起去看看究竟發(fā)生了什么事?
。ㄕn件)師講故事:三角形哥哥理直氣壯地對弟弟說:“我的內(nèi)角和要比你的大的多.”三角形弟弟不服氣地說:“別看你個頭比我大,但我的內(nèi)角和并不比你的小.”同學(xué)們來評評理,誰說的對呢?生:哥哥的對;弟弟說的對……
師:現(xiàn)在出現(xiàn)了不同的意見,有認(rèn)為三角形哥哥的內(nèi)角和大,也有覺得三角形弟弟說得對的。那到底誰說的對呢?三角形的內(nèi)角和究竟是多少呢?那這節(jié)課我們就一起來研究研究。(出示課題:三角形的內(nèi)角和)
相信通過這節(jié)課的探究,同學(xué)們一定會做出公平、公正的判斷。
2.在探究前,我們有必要先來清楚一下什么是三角形的`內(nèi)角?什么又是內(nèi)角和呢?
誰來解釋一下,說說你對內(nèi)角的認(rèn)識。
信封里有幾個三角形,在其中一個三角形內(nèi)指出三個內(nèi)角,并標(biāo)上角1、角2、角3。
師:內(nèi)角和就是?三個內(nèi)角的度數(shù)之和
三角形的內(nèi)角和是多少度呢?所有的三角形內(nèi)角和都是180度?
你有什么辦法可以驗證呢?
二、新知探究,動手實踐
(1)量一量
A.師:對呀,用量角器量出每個角的度數(shù)再算一算度數(shù)之和不就知道了。
我們在驗證時,你說至少要研究幾類三角形呢?
生:三類,銳角三角形、直角三角形、鈍角三角形(同意嗎?同意)
B.下面就請小組合作,用量一量的方法來驗證。
要求:1、4人一組,1人負(fù)責(zé)記錄、,其他3人每人選擇一個三角形;
2、測量每個內(nèi)角的度數(shù),并如實記錄在表格中;
3、仔細(xì)計算三角形的內(nèi)角和。
(生動手操作,師巡視。發(fā)現(xiàn)個別組合作比較好,在很短的時間內(nèi)就完成任務(wù))
C.匯報交流
師:哪個小組首先來發(fā)表一下你們小組測量的結(jié)果?并說說你們組發(fā)現(xiàn)了什么?
。糠N三角形叫兩名同學(xué)回答,回答后板書)
師:哪些同學(xué)測量的是銳角三角形呢?生:60度、60度、60度
師:這個三角形也叫......生:等邊三角形
師:還有不同的銳角三角形嗎?
師:下面我請測量直角三角形的同學(xué)也來匯報
師:請量鈍角三角形的朋友也來說一說
師:剛才,有的同學(xué)驗證的結(jié)果是三角形的內(nèi)角和是180度,也有的同學(xué)驗證的結(jié)果是三角形的內(nèi)角和接近180度,這說明剛才同學(xué)們猜想出的三角形內(nèi)角和是180度,還值得我們懷疑,那有沒有更好的方法來驗證三角形的內(nèi)角和肯定是180度。
。2)拼一拼
(或許冷場)鄭老師來個溫馨提示:看到180度使你想到了一個什么特殊的角呢?(平角)
你有什么啟發(fā)?是否也可以把三角形的三個內(nèi)角拼在一起,成為一個平角呢?誰有想法?指名說后課件出示撕拼。同學(xué)們也來試試看吧,我們還是4人一組,選擇其中一個三角形,合作撕一撕或剪一剪再拼一拼,貼到長方形白紙上。
展示交流。
生1:我們小組是用剪拼的方法,將銳角三角形的三個角剪下來,拼成一個平角,得到三角形的內(nèi)角和是180度。
生2:我們小組是用撕的方法。我們是用手把3個角撕下來,然后再拼,結(jié)果也能拼成一個平角。
。3)折一折
師:老師最近也在研究三角形內(nèi)角和的驗證方法,這不,給大伙帶來了一個你們沒想到的驗證法,請看大屏幕。(課件出示:三類三角形折的過程。)
師:請同學(xué)仔細(xì)看,認(rèn)真思考,呆會把你看到的說出來
生:要給兩條線找到中點,連成虛線,往對邊折。
師:由于時間關(guān)系,請同學(xué)們將這個操作過程帶回到課外去實踐。
操作總會有誤差,比如測量度數(shù)時,不一定剛好180°,比如剪拼或折疊時的縫隙,都有可能出現(xiàn)誤差。還有別的方法更能說明三角形的內(nèi)角和是180°嗎?
。4)演繹推理
A.課件演示:我們可以將新知識轉(zhuǎn)化成舊知識來解決問題。
一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。(板書:90°×4=360° 360°÷2=180°)
B.一個直角三角形的內(nèi)角和是180°,那兩個直角三角形背靠背拼成了大三角形,它的內(nèi)角和是幾度呢?(課件演示)為什么還是180度?你解釋一下?
師:是哦,當(dāng)兩個直角三角形拼在一起,兩個直角就消失掉了,所以這個大三角形的內(nèi)角和仍是180度。
我們通過遮掩過的演繹推理,計算進一步證明了:任意三角形的內(nèi)角和都是180°.
。5)小結(jié):同學(xué)們,剛才我們用哪些方法證明了三角形的內(nèi)角和是180度?
測量法、撕拼法、折疊法、演繹推理法
師:是的,三角形的內(nèi)角和都是180度,只是因為我們在測量時會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準(zhǔn)確。剛才同學(xué)們用這些多方法證明了無論是什么樣的三角形內(nèi)角和都是1800(板書:是180°)這個結(jié)論是我們集體智慧的結(jié)晶,是我們親自動手實驗反復(fù)驗證得來的,現(xiàn)在我們可以用肯定、自豪的語氣說:三角形的內(nèi)角和是180°(引導(dǎo)學(xué)生齊讀課題)。
數(shù)學(xué)文化帕斯卡12歲發(fā)現(xiàn)三角形內(nèi)角和是180度。
早在300多年前就有一位和你們差不多大小的孩子發(fā)現(xiàn)了這個偉大的結(jié)論,他就是法國偉大的科學(xué)家、數(shù)學(xué)家帕斯卡。希望在座的各位也好好學(xué)習(xí),將來在我們班也產(chǎn)生一些大人物。
三、多樣練習(xí),拓展延伸
1、得出了這個結(jié)論,你會不會利用它很快地說出小動物遮蓋著的角是幾度呢?(口頭指名回答)
師:還記得剛剛上課時那3個吵架的三角形嗎?(課件出示)現(xiàn)在大家可以幫忙解決他們吵架的問題了嗎?
解決了它們的紛爭,我們再來幫個忙,算算各個角的度數(shù)。(出示課件)學(xué)生獨立完成,師巡視指導(dǎo)。師:你是怎么想的?
。1)為什么除以3
(2)為什么除以2
。3)可以用90°-40°=50°嗎?
2、超級變變變
這些三角形很頑皮,跟同學(xué)們玩起了超級變變變的游戲。一起來看!
A.課件演示等邊三角形越變越大,問:每個角是幾度?你發(fā)現(xiàn)了什么?
B.等腰三角形也迫不及待地跑下來了:我也要變!我也要變!它是怎么變的呢?
這個等腰三角形的頂角是96度,底角是42度。如果頂角是120底角就是?如果頂角繼續(xù)變大,變成150度,底角就是?如果頂角繼續(xù)變大,變成180度,那底角呢?是幾度?
是的,當(dāng)頂角180度時,這時就不是一個三角形了,這兩遍和這條長邊重合,其實就是一個180度的平角了。課件演示,問:什么變了?什么沒變?
C.直角三角形又是怎么變的呢?它拉來了一個兄弟,兩個背靠背組成了一個新三角形,這個新三角形的內(nèi)角和是幾度呢?
3.拓展訓(xùn)練(老師還給大家準(zhǔn)備了兩道聰明題,當(dāng)中午的作業(yè)。)
A.家里鏡框上的一塊三角形玻璃碎了(如圖)。聰明的明明,只帶了其中的一塊去玻璃店,就配到了和原來一模一樣的。你知道他帶的是哪一塊嗎?
B.已經(jīng)知道了三角形的內(nèi)角和是180o,你能求出四邊形、五邊形和六邊形的內(nèi)角和嗎?
四、課堂總結(jié)
這節(jié)課學(xué)到了什么?什么讓你記憶深刻?
師:哈哈,真是不錯,帶著疑問進課堂,帶著收獲出課堂,我們合作真是愉快。謝謝!
三角形內(nèi)角和的教學(xué)教案設(shè)計 20
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)第八冊第85頁例5及”做一做”
教學(xué)目標(biāo):
1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想
3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學(xué)好數(shù)學(xué)的信心、
教學(xué)重點
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)難點 :
驗證所有三角形的內(nèi)角之和都是180°
教具準(zhǔn)備:
多媒體課件。
學(xué)具準(zhǔn)備:
量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)
教學(xué)過程:
一、 設(shè)疑引思
1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的度數(shù)、
2、 每小組請一位同學(xué)說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、
3、 設(shè)問:老師為什么能很快”猜” 出第三個角的度數(shù)呢?
三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?導(dǎo)入新課,板書課題>
二、 探索交流,獲取新知
1、 量一量:每個學(xué)生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結(jié)論、
2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內(nèi)角和是180°”的結(jié)論、
3、 拼一拼:學(xué)生先動手剪拼所準(zhǔn)備的三角形,進一步驗證得出”三角形的內(nèi)角和是180°”的結(jié)論、
4、 師利用課件演示將一個三角形的三個角拼成一個平角的過程、
5、 驗證:FLASH演示三種三角形割補過程
發(fā)現(xiàn)1: 通過把直角三角形割補后,內(nèi)角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。
發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。
6、 小結(jié):剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?
生說,師板書:三角形的內(nèi)角和———180°
三、 應(yīng)用練習(xí),拓展提高
1、書例5后”做一做”
思考:為什么不能畫出一個有兩個直角的'三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)
2、下面哪三個角會在同一個三角形中。
。1)30、60、45、90
。2)52、46、54、80
。3)61、38、44、98
3、走向生活:
。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?
(結(jié)合學(xué)生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)
四、作業(yè):作業(yè)本
五、全課總結(jié)
總結(jié):今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學(xué)到了哪些知識,有什么收獲?
板書設(shè)計:三角形的內(nèi)角和
三角形的內(nèi)角和———180°
三角形內(nèi)角和的教學(xué)教案設(shè)計 21
教學(xué)目標(biāo):
1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
3、培養(yǎng)學(xué)生動手實踐,動腦思考的習(xí)慣。
教學(xué)重點:
了解三角形三個內(nèi)角的度數(shù)。
教學(xué)難點:
理解三角形三個內(nèi)角大小的關(guān)系。
教具學(xué)具準(zhǔn)備:
課件三角形若干量角器剪刀。
教材與學(xué)生
教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。
學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。
教學(xué)過程:
一、呈現(xiàn)真實狀態(tài)。
師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?
學(xué)生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
。1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。
。2)組內(nèi)交流。
。3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)
。4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。
三、自主探索、研究問題、歸納總結(jié):
師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?
。ㄒ唬┙M內(nèi)探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。
。ㄓ械男〗M想不出來,可以安排小組和小組之間進行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)
。3)把你沒有想到的方法動手做一次
(使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)
。4)根據(jù)學(xué)生的反饋情況教師進行操作演示。
。ǘ┙處熝菔
撕拼法
1.教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示
2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。
師:平角是多少度呢?說明什么?
生:180?說明三個內(nèi)角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
3.學(xué)生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?
進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。
折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
你們也來試一試好嗎?
在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)
三角形三個內(nèi)角和等于180?
充分發(fā)揮了學(xué)生的主觀能動性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達(dá)成共識,這樣學(xué)生學(xué)到知識印象頗深,也理解最為透徹,提高課堂教學(xué)的效率
四.鞏固練習(xí),知識升華。
1.完成課本第28頁的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個鈍角?為什么?
銳角三角形中的兩個內(nèi)角和能小于90嗎?
3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?
試一試,看誰算得快。
師:誰來說說自己的計算過程?
角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認(rèn)真觀察這兩個算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?
生:它們的內(nèi)角和都是 180 度。
師:觀察的真仔細(xì)。c擊課件,出示多種多樣的三角形后提問)同學(xué)們,我們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?
。刍卮鹂赡苡卸荩
。ㄒ环N全部說是:)
師:請問,你們是怎么想的,為什么這么認(rèn)為?
生: ……
師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,我們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)
(一種有一部分同學(xué)說是,有一部分同學(xué)說不是:)
師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,我們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)
。ǘ﹦邮植僮鳎骄啃轮
師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?
生:我準(zhǔn)備用量的方法。
師:然后呢?
生:然后把它們?nèi)齻內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?
師:說的真不錯,還有沒有其它的方法?
生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧。
生:……
。ㄈ缟粫r想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
師: 好啦, 老師相信我們班的同學(xué)個個都是小數(shù)學(xué)家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。我們比一比,看一看,哪個小組的方法多,方法好!
開始吧。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5 分鐘
師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
。 預(yù)設(shè): 如果第一類同學(xué)說的是量的方法)
師:你是用什么來研究的?
生:量角器。
師: 那請你說一下你度量的結(jié)果好嗎?
。 生匯報度量結(jié)果)
師: 剛才有的同學(xué)測量的結(jié)果是180 度,有的同學(xué)測量的結(jié)果是179 度,有的同學(xué)測量的結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?
生:180 度。
師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學(xué)有其它的方法進行驗證嗎?
生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻角組成的度數(shù)。
師:他演示的'真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。
。◣熯呏v解邊點擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
師:好極了,剛才這個小組的同學(xué)用拼的方法得到三角形的內(nèi)角和是180 度,你們還有別的方法嗎?
生:我們還用了折的方法(生介紹方法)
師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。
。◣熯呏v解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ郏侔呀嵌蚶飳φ,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻內(nèi)角就形成了一個大角,這個大角是個什么角呢?)
生:是個平角。180 度。
師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學(xué)用了一種方法來進行研究,大家想知道嗎?
師:請這位同學(xué)來說給大家聽聽吧!
生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。
師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學(xué)們,現(xiàn)在我們回想一下,剛才測量的不同結(jié)果是一個準(zhǔn)確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?
生 1 :量的不準(zhǔn)。
生 2 :有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。
師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?
生:三角形的內(nèi)角和是180 度。(師板書)
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應(yīng)用,深化認(rèn)識
師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)
師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?
(生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)
師:剛才我們在討論學(xué)習(xí)三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧!(出示課件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)
師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!
師:真不錯,你們當(dāng)了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?
師:好,請看大屏幕!
。ǔ鍪净A(chǔ)練習(xí))在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵:說的真好!
出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習(xí)。
。ǔ鍪荆┬〖t的爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是 70 度,它的頂角是多少度?
師:看來啊,三角形的知識在我們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?
。A(yù)設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?
師:太棒了,這位同學(xué)把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?
師: 同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?
師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學(xué)家帕斯卡 在 1635 年他 12 歲時獨自發(fā)現(xiàn)的, 今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個“帕斯卡”!
師:好,下課!同學(xué)們再見!
三角形內(nèi)角和的教學(xué)教案設(shè)計 22
教學(xué)目標(biāo):
1、通過“算一算,拼一拼,折一折”等操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。
2、在操作活動中,培養(yǎng)學(xué)生的合作能力、動手實踐能力,發(fā)展學(xué)生的空間觀念。并運用新知識解決問題。
3、使學(xué)生有科學(xué)實驗態(tài)度,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣,體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅。
教學(xué)重點:
探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
教學(xué)難點:
對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
教具學(xué)具準(zhǔn)備:
課件、學(xué)生準(zhǔn)備不同類型的三角形各一個,量角器。
教學(xué)過程:
一、創(chuàng)設(shè)情景,引出問題
1、課件出示三角形的爭吵畫面
銳角三角形:我的內(nèi)角和度數(shù)最大。
直角三角形:不對,是我們直角三角形的內(nèi)角和最大。
鈍角三角形:你們別吵了,還是鈍角三角形的內(nèi)角和最大。
師:此時,你想對它們說點什么呢?
2、引出課題。
師:看來三角形里角一定藏有一些奧秘,這節(jié)課我們就來研究有關(guān)三角形角的知識“三角形內(nèi)角和”。(板書課題)
二、探究新知
1、三角形的內(nèi)角、內(nèi)角和
。1)什么是三角形內(nèi)角(課件)
三角形里面的三個角都是三角形的內(nèi)角。為了方便研究,我們把每個三角形的3個內(nèi)角分別標(biāo)上∠1、∠2、∠3。
。2)三角形內(nèi)角和(課件)
師:內(nèi)角和指的是什么?
生:三角形的三個內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。
2、看一看,算一算。
師:算一算兩個三角尺的內(nèi)角和是多少度?(課件)
學(xué)生計算
師:是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?
。A(yù)設(shè))師:大家意見不統(tǒng)一,我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?
3、操作驗證:小組合作。
選1個自己喜歡的三角形,選喜歡的方法進行驗證。
(老師首先為學(xué)生提供充分的研究材料,如三種類型的三角形若干個(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的`時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)
4、學(xué)生匯報。
。1)教師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?
師:有沒有別的方法驗證。
(2)剪拼
a、學(xué)生上臺演示。
B、請大家四人小組合作,用他的方法驗證其它三角形。
C、展示學(xué)生作品。
D、師展示。
。3)折拼
師:有沒有別的驗證方法?
師:我在電腦里收索到拼和折的方法,請同學(xué)們看一看他是怎么拼,怎么折的(課件演示)。
。ü膭顚W(xué)生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學(xué)生足夠的時間和空間,不斷讓每個學(xué)生自己參與,而且注重讓學(xué)生在經(jīng)歷觀察、操作、分析、推理和想像活動過程中解決問題,發(fā)展空間觀念和論證推理能力。)
師:此時,你想對爭論的三個三角形說些什么呢?
5、小結(jié)。
三角形的內(nèi)角和是180度。
三、解決相關(guān)問題
1、在能組成三角形的三個角后面畫“√”(課件)
2、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。(課件)
3、一個等腰三角形的風(fēng)箏,它的一個底角是70°,他的頂角是多少度?(課件)
四、練習(xí)鞏固
1、看圖,求三角形中未知角的度數(shù)。(課件)
2、求三角形各個角的度數(shù)。(課件)
五、總結(jié)。
師:這節(jié)課你有什么收獲?
六、板書設(shè)計:
三角形的內(nèi)角和是180°
三角形內(nèi)角和的教學(xué)教案設(shè)計 23
教學(xué)內(nèi)容:
本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。
教學(xué)內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。
教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎(chǔ)上和利用他們已掌握的學(xué)習(xí)方法,教師把課堂教學(xué)組織生動、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習(xí)。
教學(xué)目標(biāo):
1、知識目標(biāo):學(xué)生通過量、剪、拼、擺等操作學(xué)具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學(xué)知識解決簡單的實際問題。
2、能力目標(biāo):培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。
3、情感目標(biāo):培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力,在學(xué)生親自動手和歸納中,感受到理性的美。
教學(xué)重點:
理解并掌握三角形的內(nèi)角和是180°。
教學(xué)難點:
驗證所有三角形的內(nèi)角之和都是180°。
教具準(zhǔn)備:
多媒體課件、各種三角形等。
學(xué)具準(zhǔn)備:
三角形、剪刀、量角器等。
教學(xué)過程:
一、出示課題,復(fù)習(xí)舊知
1、認(rèn)識三角形的內(nèi)角。
。ǎ保⿵(fù)習(xí)三角形的概念。
。ǎ玻┙榻B三角形的“內(nèi)角”。
2、理解三角形的內(nèi)角“和”。
【設(shè)計理念】通過復(fù)習(xí)三角形的概念的過程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。
二、動手操作,探究新知
1、通過預(yù)習(xí),認(rèn)識結(jié)論,提出疑問
2、驗證三角形的內(nèi)角和
(1)用“量一量、算一算”的方法進行驗證
、賲R報測量結(jié)果
、诋a(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?
、劢鉀Q疑問:因為存在測量誤差。
。2)用“剪一剪、拼一拼”的方法進行驗證
、僦笇(dǎo)剪法。
、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。
、垓炞C得出:三角形的內(nèi)角和是180°。
。3)用“折一折”的方法進行驗證
①指導(dǎo)折法。
①分別折:銳角三角形、直角三角形、鈍角三角形。
、墼俅悟炞C得出:三角形的內(nèi)角和是180°。
3、看書質(zhì)疑
【設(shè)計理念】此過程采用直觀教學(xué)手段。通過讓學(xué)生動手量、拼等直觀演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的'認(rèn)識由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。
三、實踐應(yīng)用,解決問題:
1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。
2、求出三角形各個角的度數(shù)。(圖略)
3、爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是
70°,它的頂角是多少度?
4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)
5、數(shù)學(xué)游戲。
【設(shè)計理念】練習(xí)設(shè)計的優(yōu)化是優(yōu)化教學(xué)過程的一個重要方向,所以在新授后的鞏固練習(xí)中注意設(shè)計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。
四、總結(jié)全課、延伸知識:
1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎樣?
2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉(zhuǎn)化。
【設(shè)計理念】課堂總結(jié)不僅要關(guān)注學(xué)生學(xué)會了什么,更要關(guān)注用什么方法學(xué),要有意識的促進學(xué)生反思。
板書設(shè)計: 三角形的內(nèi)角和是180°
方法:①量一量 拼角(略)
、谄匆黄
、壅垡徽
【設(shè)計理念】此板書設(shè)計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學(xué)生的眼前,起了畫龍點睛的作用。
三角形內(nèi)角和的教學(xué)教案設(shè)計 24
【教學(xué)資料】
《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(人教版)》四年級下冊第五單元第85頁
【教學(xué)目標(biāo)】
1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想、
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心、培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐潛力、
【教學(xué)重難點】
理解并掌握三角形的內(nèi)角和是180度
【教具學(xué)具準(zhǔn)備】
多媒體課件、各類三角形、長方形、正方形、量角器、剪刀、固體膠、活動記錄表等。
【教學(xué)流程】
。ㄒ唬﹦(chuàng)設(shè)情境,激發(fā)興趣
此刻正是春暖花開,萬物復(fù)蘇的季節(jié)。在這完美的日子里,我們相聚在那里,劉老師十分高興認(rèn)識大家,你看把蝴蝶也引來了。(課件)
師:請大家仔細(xì)觀察,它把這條繩子圍成了什么三角形?
。ㄕn件)
師:請大家仔細(xì)想一想,這三個三角形在圍的過程中什么變了?什么沒變?
生答
師:這節(jié)課我們一起來研究三角形的內(nèi)角和。(板書:三角形的內(nèi)角和)
【評析:以問題情境為出發(fā)點,既豐富了學(xué)生的感官認(rèn)識,又激發(fā)了學(xué)生的學(xué)習(xí)了熱情!
。ǘ﹦邮植僮,探索新知
1、揭示“內(nèi)角”和“內(nèi)角和”的概念
。1)“內(nèi)角”的概念
。◣熓帜靡粋三角形)這個三角形的內(nèi)角在哪?誰來指給大家看。一個三角形有幾個內(nèi)角。
每人從學(xué)具筐中任選一個三角形,指出它的內(nèi)角。
。2)“內(nèi)角和”的概念
師:大家明白了什么是三角形的內(nèi)角,那什么叫“內(nèi)角和”呢?
師小結(jié):三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。
2、猜測內(nèi)角和
。ǎ保⿴熌靡粋銳角三角形問:大家猜一猜這個銳角三角形的內(nèi)角和是多少度?有不同想法嗎?
(2)直角三角形與鈍角三角形同上。
。ǎ常⿴煟嚎磥泶蠹叶颊J(rèn)為三角形的內(nèi)角和是180o,但這僅僅是我們的一種猜測,有了猜測就能夠下結(jié)論了嗎?我們還需要進一步的驗證.
3、動手驗證,匯報交流
。ǎ保┙榻B學(xué)具筐
劉老師為每個小組準(zhǔn)備了一個學(xué)具筐,里面有不同的學(xué)習(xí)了材料,或許這些材料會對你有所啟發(fā),幫忙你想出好辦法。每人此刻都認(rèn)真的想一想,你打算怎樣來驗證三角形的內(nèi)角和不是180o呢?
。ǎ玻┥毩⑺伎迹瑒邮植僮
。ǎ常┙M內(nèi)交流
經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。
。4)全班匯報交流
師:來吧孩子們,該到全班交流的時候了.誰愿意先把自己的方法與大家一起分享。
。、測量法
活動記錄表
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
學(xué)生匯報測量結(jié)果。
師:剛才大家都認(rèn)為三角形的內(nèi)角和是180度,但量的結(jié)果有的是180度,有的不是180度,這是怎樣原因呢?
生發(fā)表觀點
師小結(jié):看來采用測量的方法會有誤差,學(xué)習(xí)了數(shù)學(xué)要用這種嚴(yán)謹(jǐn)?shù)膽B(tài)度來對待,我們再看看別的方法。
。、撕拼法
請用撕拼方法的學(xué)生上臺展示撕拼的過程。
師:你是怎樣想到把三角形撕下來拼成一個平角來驗證的呢?
師評價:你把本不在一起的三個角,透過移動位置,把它轉(zhuǎn)化成一個平角來驗證,還用了轉(zhuǎn)化的思想,你真了不起。
師:透過他們?nèi)齻人的驗證,你得到了什么結(jié)論?
。、其他方法
師:條條大路通羅馬,還有別的驗證方法嗎?
如果學(xué)生出現(xiàn)把兩個完全相同的直角三角形拼成一個長方形來驗證。
師追問:這種方法真的很簡單,但它只能證明哪一類的三角形呢?
【評析:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生帶給充分從事數(shù)學(xué)活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!痹诮虒W(xué)設(shè)計中劉老師注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學(xué)生學(xué)會與他人合作,同時也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學(xué)生在活動中學(xué)習(xí)了,在活動中發(fā)展!
4、科學(xué)驗證方法
師:不同的方法,同樣的精彩,大家發(fā)現(xiàn)了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉(zhuǎn)化的策略。我發(fā)現(xiàn)你們都有數(shù)學(xué)家的'頭腦,明白嗎?數(shù)學(xué)家在證明這一猜想時,也用了轉(zhuǎn)化的思想,一起來看(看課件)
【評析:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會到數(shù)學(xué)是嚴(yán)謹(jǐn)?shù)模瑥男【途蛻?yīng)讓學(xué)生養(yǎng)成嚴(yán)謹(jǐn)、認(rèn)真、實事求是的學(xué)習(xí)了態(tài)度。】
。ㄈ┱n外拓展,積淀文化
師:明白三角形內(nèi)角和的秘密最早是由誰發(fā)現(xiàn)的嗎?(放課件)
師:善于數(shù)學(xué)發(fā)現(xiàn)和思考使帕斯卡走上了成功的道路。這節(jié)課才10歲的我們也用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時的數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲。
【評析:適當(dāng)?shù)囊胝n外知識,它既能夠激發(fā)學(xué)生的學(xué)習(xí)了興趣,又有機的滲透了向帕斯卡學(xué)習(xí)了,做一個善于思考、善于發(fā)現(xiàn)的孩子,對學(xué)生的情感、態(tài)度、價值觀的構(gòu)成與發(fā)展能起到了潛移默化的作用。】
。ㄋ模⿷(yīng)用新知,解決問題
明白了這個結(jié)論能夠幫忙我們解決那些問題呢?
。、把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和是多少度?為什么?
師:大三角形的內(nèi)角是哪些?指出來
師:當(dāng)把兩個三角形拼在一起時,消失了兩個內(nèi)角,正好是180°,所以大三角形的內(nèi)角和還是180度,如果把三角形分成兩個小三角形呢?
師小結(jié):三角形無論大小,內(nèi)角和都是180°。
【評析:透過課件動態(tài)演示兩個三角形分與合的過程,讓學(xué)生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,使學(xué)生認(rèn)識到三角形的內(nèi)角和不因三角形的大小而改變!
2、想一想,做一做
在一個三角形ABC中,已知A45°,B85o,求с的度數(shù)。
在一個直角三角形中,已知с52o,求Α的度數(shù)。
爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是70°,它的頂角是多少度?
【評析:將三角形內(nèi)角和知識與三角形特征有機結(jié)合起來,使學(xué)生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)!
3、思考:
你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
【評析:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。】
。ㄎ澹┤n小結(jié),完善新知
1、學(xué)生談收獲
2、師小結(jié)
三角形內(nèi)角和的教學(xué)教案設(shè)計 25
教學(xué)內(nèi)容:
教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
教學(xué)目標(biāo):
1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
重點難點:
掌握三角形的內(nèi)角和是180°。
教學(xué)準(zhǔn)備:
三角形卡片、量角器、直尺。
導(dǎo)學(xué)過程
一、復(fù)習(xí)
1、什么是平角?平角是多少度?
2、計算角的度數(shù)。
3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
(設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))
1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
2、揭題:課件演示什么是三角形的內(nèi)角和。
3、猜想:三角形的內(nèi)角和是多少度。
4、驗證:
。1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)
。4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)
5、結(jié)論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的',從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習(xí)題,生解答)
1、填空
。1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).
。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。
(3)等邊三角形的3個內(nèi)角都是( )。
(4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。
。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。
2、判斷
。1)一個三角形中最多有兩個直角。 ( )
。2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )
。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )
。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )
。5)直角三角形中的兩個銳角的和等于90。 ( )
四、拓展探究
根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。
五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
六、談?wù)勛约罕竟?jié)課的收獲。
三角形內(nèi)角和的教學(xué)教案設(shè)計 26
【教材分析】
《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
【學(xué)生分析】
經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學(xué)習(xí)目標(biāo)】
知識目標(biāo):掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應(yīng)用。
能力目標(biāo): 培養(yǎng)學(xué)生主動探索、動手操作的能力。培養(yǎng)學(xué)生收集、整理、歸納信息的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。
情感目標(biāo): 讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。
【教學(xué)過程】
一、 情景激趣,質(zhì)疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。
鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。”銳角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小。”直角三角形說:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的。”
師:想一想,什么是三角形的三個內(nèi)角的和。
生:三角形的三個內(nèi)角的度數(shù)和。
師:同學(xué)們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
學(xué)生進行猜想,自由發(fā)言。
(設(shè)計意圖:教師借助多媒體技術(shù)創(chuàng)設(shè)問題情境,架起數(shù)學(xué)學(xué)習(xí)與現(xiàn)實生活,抽象數(shù)學(xué)與具體問題之間的橋梁,激發(fā)了學(xué)生的學(xué)習(xí)興趣。鼓勵學(xué)生主動質(zhì)疑猜想是培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學(xué)都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設(shè)法驗證這個猜想嗎?
生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生3:我把三角形的三個角撕下來,拼一拼是否180°。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
……
師:上面你們說了不少的驗證猜想的方法,請大家用準(zhǔn)備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W(xué)生把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)
學(xué)生邊實驗邊整理信息,完成實驗報告單后,學(xué)習(xí)小組內(nèi)進行交流討論。
。ㄔO(shè)計意圖:驗證猜想為學(xué)生提供了“做數(shù)學(xué)”的機會,讓每個學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數(shù)學(xué)知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學(xué)生用不同的.方法進行驗證,促進學(xué)生創(chuàng)新能力的發(fā)展。)
三、交流評價,歸納結(jié)論。
學(xué)生操作驗證,完成實驗報告單后,利用投影儀展示學(xué)生填寫的實驗報告單。
學(xué)生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學(xué)生的閃光點及時進行表揚和鼓勵。
師生共同歸納,得出結(jié)論:
三角形內(nèi)角和等于180°
(設(shè)計意圖:各學(xué)習(xí)小組匯報自己的驗證過程,展示探究的成果。對學(xué)生探索發(fā)現(xiàn)的方法、策略進行總結(jié)歸納,集思廣益,取長補短達(dá)到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)
四、分層練習(xí),鞏固創(chuàng)新。
、僬n件出示:
師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?
生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。
師:根據(jù)今天所學(xué)的知識,誰能求出A的度數(shù)?大家自己試一試。
學(xué)生做完后反饋講評時讓學(xué)生說說自己的方法。
生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。
、趯W(xué)生完成完成P29的第一題。
引導(dǎo)學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。
③猜一猜三角形的另外兩個角可能各是多少度。
同桌同學(xué)互相說一說。(答案不唯一)
、苄〗M操作探究活動。
讓學(xué)生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。
方 法
四邊形內(nèi)角和
用量角器量出每個內(nèi)角的度數(shù),并相加。
把四邊形四個角剪下來,拼在一起。
把四邊形分為兩個三角形。
填表后讓學(xué)生想一想、互相說一說,四邊形內(nèi)角和是多少度?
。ㄔO(shè)計意圖:引導(dǎo)學(xué)生將探究學(xué)習(xí)活動中所獲得的結(jié)論經(jīng)驗和方法運用于探索解決簡單的實際問題。組織學(xué)生參與具有趣味性、操作性和開放性的練習(xí)活動,讓學(xué)生在鞏固練習(xí)中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)
三角形內(nèi)角和的教學(xué)教案設(shè)計 27
【教材分析】:
新課標(biāo)把三角形的內(nèi)角和作為第二學(xué)段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學(xué)生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。
【教學(xué)目標(biāo)】
知識與技能
1.理解和掌握三角形的內(nèi)角和是180度。
2.運用三角形的內(nèi)角和的知識解決實際問題。
過程與方法
經(jīng)歷三角形的內(nèi)角和的探究過程,體驗“發(fā)現(xiàn)——驗證——應(yīng)用”的學(xué)習(xí)模式。
情感態(tài)度與價值觀
在學(xué)習(xí)活動中,滲透探究知識的方法,提高學(xué)生學(xué)習(xí)的能力,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。
【教學(xué)重點】
重點:理解和掌握三角形的內(nèi)角和是180度。
突破方法:引導(dǎo)學(xué)生用測量或剪拼的方法探究三角形的內(nèi)角和。合理猜想,測量驗證。
【教學(xué)難點】
用三角形的內(nèi)角和解決實際問題。
突破方法:推理分析計算。運用推理,正確計算。
教法:質(zhì)疑
【教學(xué)方法】
引導(dǎo),演示講解。
學(xué)法:實踐操作,小組合作。
【教學(xué)準(zhǔn)備】:
多媒體課件,銳角,直角,鈍角三角形的硬紙片,剪刀。
【教學(xué)時間】
一課時
【教學(xué)過程】
一.創(chuàng)設(shè)情境,引入新課
師:同學(xué)們,我們這倆天學(xué)習(xí)了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?
生:三類,分別為銳角三角形,直角三角形,鈍角三角形。
師:嗯,真好,那么對邊的分類呢?
生:倆類,分別為等腰三角形,等邊三角形。
師:老師想讓同學(xué)們幫老師畫一個三角形,能做到嗎?
生:能。
師:請聽要求,畫一個有一個角是直角的三角形,開始。(學(xué)生動手操作)
師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。
生:不能畫,因為當(dāng)倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。
師:回答的真好,那么為什么會出現(xiàn)這種情況呢?是因為三角形中的角而引起的,那么同學(xué)們想不想知道其中的秘密呢?
生:想。
師:好,那么我們今天就一起來學(xué)習(xí)“三角形的內(nèi)角和”(出示板書)
(設(shè)計意圖:通過學(xué)生的'動手操作,發(fā)現(xiàn)問題所在,這樣更能調(diào)動學(xué)生的學(xué)習(xí)興趣,為了更好的學(xué)習(xí)這節(jié)課做鋪墊.)
二.探究新知
師:昨天呢,老師讓同學(xué)們一人做一個自己喜歡的三角形,請同學(xué)們拿出來,看一看你們做的是什么樣子的三角形。
生1:銳角三角形。
生2:直角三角形。
生3:鈍角三角形。
師:嗯,我們在上個星期學(xué)習(xí)了三角形的各部分名稱,誰能幫我告訴下同學(xué)們,角在哪里呢?
生:里面的三個角,可以用角1,角2,角3來表示。
師:嗯,這三個角我們也可以說成是三角形的內(nèi)角,好了,今天我們既然學(xué)習(xí)三角形的內(nèi)角和,也就是求成這三個角的度數(shù)和,你們猜一猜三角形內(nèi)角和的度數(shù)是多少呢?
生:三角形的內(nèi)角和是180度。
師:那么我們能不能一起用一些好的辦法來驗證一下呢?
生1:我們可以用量角器分別量出這三個內(nèi)角的度數(shù),然后再加在一起就可以求出三角形內(nèi)角的和了。
師:還有其他的辦法嗎?
生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現(xiàn)出什么樣子的角。
生3:我可以用折的方法,把三個角的度數(shù)折在一起。
師:同學(xué)們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。
(設(shè)計意圖:通過學(xué)生的動手操作,合作交流,真正的把課堂還給學(xué)生,讓學(xué)生成為學(xué)習(xí)的主體,教師適時引導(dǎo),突出學(xué)生的學(xué)習(xí)的能力與價值。)
三.總結(jié)任意三角形的內(nèi)角和是180度并做適當(dāng)練習(xí)。
四.板書設(shè)計
三角形的內(nèi)角和
量一量銳角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
鈍角三角形:120度+38度+22度=180度
拼一拼圖形呈現(xiàn)
折一折圖形呈現(xiàn)
三角形內(nèi)角和的教學(xué)教案設(shè)計 28
學(xué)情分析:
學(xué)生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。
教學(xué)目標(biāo):
1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。
2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學(xué)生的合作能力、動手實踐能力,并運用新知識解決問題的能力。
3、情感態(tài)度:使學(xué)生體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
探索發(fā)現(xiàn)和驗證三角形的內(nèi)角和是180度。
教學(xué)難點:
對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
教具準(zhǔn)備:
教師準(zhǔn)備:多媒體課件、不同類形大小不一的三角形若干個、記錄表
學(xué)生準(zhǔn)備:量角器、直尺、剪刀
教學(xué)過程:
一、激趣導(dǎo)入
多媒體展示三角形
出示謎語:形狀似座山,穩(wěn)定性能堅
三竿首尾連,學(xué)問不簡單?????(打一圖形名稱)
。A(yù)設(shè):三角形)
師:誰能介紹介紹三角形?
。ㄉ1:三角形有三條邊、三個頂點、三個角。
生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)
師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)
師:同學(xué)們會畫三角形嗎?請你在練習(xí)本上畫一個你喜歡的三角形。
師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。
師:今天我們就來研究一下三角形的內(nèi)角和。
二、學(xué)習(xí)目標(biāo)
1、通過動手操作,使學(xué)生理解并掌握三角形內(nèi)角和是180度的結(jié)論。
2、能運用三角形的內(nèi)角和是180度這一規(guī)律,求三角形中未知角的度數(shù)。
3、培養(yǎng)動手動腦及分析推理能力。
三、自主學(xué)習(xí)(展示量角法)
理解三角形的內(nèi)角、內(nèi)角和
(1)板書展示三角形
師:要想知道什么是三角形的內(nèi)角和,我們得先知道什么是三角形的內(nèi)角?(三角形里面的三個角都是三角形的內(nèi)角。)
師:你能過來指指嗎?同意嗎?內(nèi)角有幾個?
師:為了研究方便,我們把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3。
師:你能像老師一樣把你的三角形標(biāo)上∠1、∠2、∠3嗎?
。2)三角形的內(nèi)角和
師:什么是三角形的內(nèi)角和?
。ㄈ切稳齻角的度數(shù)的和,就是三角形的內(nèi)角和,即:∠1+∠2+∠3)
師:就是把∠1+∠2+∠3加起來。
師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預(yù)設(shè):用量角器量)
師:請同學(xué)們拿出量角器,量一量你畫的三角形的三個內(nèi)角,并算出他們的和。(4分鐘)
學(xué)生測量(1分40)匯報結(jié)果(5人)。
教師填寫測量匯報單。
師:觀察匯報的結(jié)果,你有什么發(fā)現(xiàn)?(所有三角形內(nèi)角和度數(shù)不一樣、三角形內(nèi)角和都在180度左右)
四、合作探究
師:這是同學(xué)們親自測量發(fā)現(xiàn)的,沒有得到統(tǒng)一的結(jié)果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內(nèi)角和到底是多少度。(8分鐘)(剪拼法)
1、操作驗證探索三角形內(nèi)角和的規(guī)律(6分鐘)
。1)操作驗證:小組合作
拿出裝有學(xué)具的信封[信封里面有老師為學(xué)生事先準(zhǔn)備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀
。ɡ蠋熞o學(xué)生充裕的時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)
2、學(xué)生匯報
。1)轉(zhuǎn)化法:
生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內(nèi)角和就是360度,所以三角形的`內(nèi)角和就是360度的一半180度。
師:他們用長方形的內(nèi)角和來研究今天所學(xué)的知識,得到三角形的內(nèi)角和是180度。
。2)折拼法
生:把三角形三個內(nèi)角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內(nèi)角和是180度。
師:他們是用折拼法驗證三角形的內(nèi)角和是180度(動手能力真強)
。3)剪拼法
生:把三角形三個內(nèi)角撕下來,拼成一個平角,平角是180,所以三角形的內(nèi)角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標(biāo)記。)
標(biāo)記上之后再拼一拼,可見標(biāo)記的方法很科學(xué)。(20分鐘)
3、教師演示
師:我們再來感受一下怎么驗證三角形的內(nèi)角和的?
師:這是什么三角形?把他折一折。
師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個平角,平角是180度,所以三角形的內(nèi)角和是180度)
師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內(nèi)角和。
師:注意觀察。
師:演示完畢有什么發(fā)現(xiàn)?(預(yù)設(shè)這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內(nèi)角和是180度。
師:剛剛我們研究了什么三角形。他們的內(nèi)角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)
4、演示任意一個三角形的內(nèi)角和都是180度。
出示一些三角形,讓學(xué)生指出內(nèi)角和。
師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內(nèi)角和都是180度,與三角形的形狀大小沒有關(guān)系。)(板書三角形的內(nèi)角和是180度。)
師:那我們再看看剛剛匯報的結(jié)果。為什么之前測量的時候并沒有得到這樣得到結(jié)果呢?(測量的不夠精確,存在誤差)
師:如果測量儀器再精密一些,測量的更準(zhǔn)確一些都可以得到三角形內(nèi)角和是180度,F(xiàn)在確定這個結(jié)論了嗎?(25分鐘)
師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內(nèi)角和是180°到初中我們還有更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。早在300多年前就有一位法國著名的科學(xué)家帕斯卡,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°
師:你們能用今天的發(fā)現(xiàn)做一些練習(xí)嗎?
五、測評反饋
1、判斷。
。1)直角三角形的兩個銳角的和是90°。
(2)一個等腰三角形的底角可能是鈍角。
。3)三角形的內(nèi)角和都是180°,與三角形的大小無關(guān)。
4、剪一剪。
把一個三角形紙板沿直線剪一刀,剩下的紙板的內(nèi)角和是多少度?
六、課后作業(yè)
69頁第1題、第3題。
七、板書設(shè)計
三角形內(nèi)角和的教學(xué)教案設(shè)計 29
一、教學(xué)目標(biāo)
1.知識目標(biāo):通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應(yīng)用。
2.能力目標(biāo):培養(yǎng)學(xué)生主動探索、動手操作的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。
3.情感目標(biāo):讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學(xué)習(xí)數(shù)學(xué)的快樂。
二、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
1、師:我們已經(jīng)認(rèn)識了三角形,你知道哪些關(guān)于三角形的知識?
(學(xué)生暢所欲言。)
2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,
3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)
(二)自主探究,發(fā)現(xiàn)規(guī)律
1、認(rèn)識什么是三角形的內(nèi)角和。
師:你知道什么是三角形的內(nèi)角和嗎?
通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。
2、探究三角形內(nèi)角和的特點。
①讓學(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?
學(xué)生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)
、谛〗M合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的'結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。
引導(dǎo)學(xué)生推測出三角形的內(nèi)角和可能都是180°。
3、驗證推測。
讓學(xué)生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現(xiàn)規(guī)律。
當(dāng)學(xué)生匯報用折拼或剪拼的方法的時候,指名學(xué)生上黑板展示結(jié)果。
學(xué)生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)
5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
。ㄈ╈柟叹毩(xí),拓展應(yīng)用
根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。
1、完成“試一試”
讓學(xué)生獨立完成后,集體交流。
2、游戲:選度數(shù),組三角形。
請選出三個角的度數(shù)來組成一個三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
4、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?
5、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說說不同的解題方法。
7、“想想做做”第6題
學(xué)生說說自己的想法。
8、思考題
教師拿一個大三角形,提問學(xué)生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學(xué)生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學(xué)生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學(xué)生內(nèi)角和是多少?你能推導(dǎo)
出四邊形的內(nèi)角和公式嗎?
。ㄋ模┱n堂總結(jié)
本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?(生自由說),同學(xué)們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當(dāng)中去。
三角形內(nèi)角和的教學(xué)教案設(shè)計 30
一、教學(xué)目標(biāo)
1.知識與技能目標(biāo):通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2.過程與方法目標(biāo): 經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結(jié)的能力。
3.情感態(tài)度價值觀目標(biāo): 在參與學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點
重點:掌握三角形內(nèi)角和定理。
難點:理解三角形內(nèi)角和定理推理的過程。
三、教學(xué)過程
【導(dǎo)入】
同學(xué)們,上課之前呢我們先來看一下大屏幕,老師給大家準(zhǔn)備了幾張照片我們來看一下,在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的'內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。
那同學(xué)們,大家同不同意它的說法呀,老師看到同學(xué)們都很疑惑的樣子,沒關(guān)系,今天這位節(jié)課我們就一起來研究一下這個問題,學(xué)習(xí)一下——三角形的內(nèi)角和。
【新授】
活動一:
那同學(xué)們,接下來啊我們拿出尺字,畫出幾個三角形,然后測量并計算一下,三角形3個內(nèi)角的和各是多少度呢?給大家三分鐘時間同桌之間相互交流一下這個問題。
老師看到同學(xué)們都安靜了下來,第三排這位同學(xué),你來說一說你們兩個人的結(jié)論。哦,他說呀他們發(fā)現(xiàn)他們兩人畫出的直角三角形內(nèi)角和都是180度,你們的思路非常清晰,請坐!后邊同學(xué)有不同意見,你來說,他說呀他們兩人畫出的銳角三角形也是180度。也是正確的,請坐!
活動二:
那同學(xué)們,是不是所有的三角形的內(nèi)角和都是180°呢?如何進行驗證呢?
那接下來5分鐘我們前后排4個人一小組進行討論,待會啊老師會找同學(xué)提問。
老師看到同學(xué)們都很迷茫,給大家一點小提示,我們可以用剪拼的形式來驗證一下。
好時間到,哪位同學(xué)來告訴一下老師,你們的討論結(jié)果呢。你們小組討論的最激烈,你來告訴一下老師,他說呀他們小組是將三種不同類型的三角形的三個角剪下來,再拼一拼,發(fā)現(xiàn)都拼成一個了平角,你們的方法非常獨特,請坐!那大家的方法和它們的方法是一樣的嗎?
看來同學(xué)們的思路都非常的清晰,那同學(xué)們,由此我們就驗證得出了,三角形的內(nèi)角和就是180度。
觀察一下黑板上這些內(nèi)容,以上就是本節(jié)課所要學(xué)習(xí)的三角形內(nèi)角和。
【鞏固練習(xí)】
通過本節(jié)課的學(xué)習(xí),相信大家對平行四邊形有了更深的了解。我們看向黑板,接下來給大家兩分鐘時間來做一下這道題鞏固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度數(shù)。課代表來黑板上板書一下。老師看到同學(xué)們筆都放下了,我們一起來看一下黑板上同學(xué)的答案,∠3=15°,同學(xué)們的答案和他的是一樣的嗎,看來同學(xué)們對本節(jié)課知識的掌握都已經(jīng)非常扎實了。
【課堂小結(jié)】
不知不覺本節(jié)課馬上就接近了尾聲,哪位同學(xué)來說一下本節(jié)課你都有哪些收獲呢?(停頓2秒)第二排手舉得最高這位同學(xué)你來說一下,哦,他說啊,通過本節(jié)課的學(xué)習(xí)他掌握了三角形當(dāng)中一個新的特點,三角形的內(nèi)角和是180度,總結(jié)的非常全面見,請坐!
【作業(yè)布置】
接下來老師來給大家布置個小任務(wù),回家之后仔細(xì)觀察一下家中的物體,看一看那些物品是三角形的,動手測量一下內(nèi)角和,看一看是否滿足180度,下節(jié)課一起來交流討論一下,今天這節(jié)課就上到這里,同學(xué)們再見。
三角形內(nèi)角和的教學(xué)教案設(shè)計 31
設(shè)計思路
本節(jié)課我先引導(dǎo)學(xué)生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再引導(dǎo)學(xué)生通過折角的方法也發(fā)現(xiàn)這個結(jié)論,由此獲得三角形的內(nèi)角和是180°的結(jié)論。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼、折等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。
最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次性和趣味性,還設(shè)計了開放性的練習(xí),由一個同學(xué)出題,其它同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角,有唯一的答案。給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中拓展學(xué)生思維。
教學(xué)目標(biāo)
1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)準(zhǔn)備
教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。
學(xué)具:三角形
教學(xué)過程
一、引入
。ㄒ唬┱J(rèn)識三角形的內(nèi)角及三角形的內(nèi)角和
師:我們已經(jīng)學(xué)習(xí)了三角形的分類,誰能說說老師手上的是什么三角形?
師:今天我們來學(xué)習(xí)新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學(xué)生邊說邊指出來)
師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)
(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)
生:能。
師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:……
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!
。ń沂久,巧妙引入新知的探究)
二、動手操作,探究三角形內(nèi)角和
(一)猜一猜。
師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
(二)操作、驗證三角形內(nèi)角和是180°。
1、量一量三角形的內(nèi)角
動手量一量自己手中的三角形的內(nèi)角度數(shù)。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?
學(xué)生匯報結(jié)果。
師:請匯報自己測量的結(jié)果。
生1:180°。
生2:175°。
生3:182°。
2、拼一拼三角形的內(nèi)角
學(xué)生操作
師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
師:怎樣才能把三個內(nèi)角放在一起呢?(學(xué)生操作)
生:把它們剪下來放在一起。
師:很好。
匯報驗證結(jié)果。
師:通過拼合我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
生2:直角三角形的內(nèi)角和也是180°。
生3:鈍角三角形的內(nèi)角和還是180°。
課件演示驗證結(jié)果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)
師:我們可以得出一個怎樣的結(jié)論?
生:三角形的`內(nèi)角和是180°。
。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
生1:量的不準(zhǔn)。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
3、折一折三角形的內(nèi)角
師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。
如果學(xué)生說不出來,教師便提示或示范。
學(xué)生操作
4、小結(jié):三角形的內(nèi)角和是180°。
三、解決疑問。
師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學(xué)生體驗成功的喜悅)
生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。
師:在一個三角形中,有沒有可能有兩個鈍角呢?
生:不可能。
師:為什么?
生:因為兩個銳角和已經(jīng)超過了180°。
師:那有沒有可能有兩個銳角呢?
生:有,在一個三角形中最少有兩個內(nèi)角是銳角。
四、應(yīng)用三角形的內(nèi)角和解決問題。
1、下面說法是否正確。
鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()
在直角三角形中,兩個銳角的和等于90度。()
在鈍角三角形中兩個銳角的和大于90度。()
、芤粋三角形中不可能有兩個鈍角。()
⑤三角形中有一個銳角是60度,那么這個三角形一定是個銳角三角形。()
2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)
3、游戲鞏固。
由一個同學(xué)出題,其它同學(xué)回答。
。1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。
。2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。
4、根據(jù)所學(xué)的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。
五、全課總結(jié)。
今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎么樣?
反思:
在本節(jié)課的學(xué)習(xí)活動過程中,先讓學(xué)生進行測量、計算,但得不到統(tǒng)一的結(jié)果,再引導(dǎo)學(xué)生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學(xué)生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導(dǎo)學(xué)生用折三角形的方法也能驗證三角形的內(nèi)角和是180°。練習(xí)設(shè)計也具有許多優(yōu)點,注意到練習(xí)的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
但因為是借班上課,對學(xué)生了解不多,學(xué)生前面的內(nèi)容(三角形的特性和分類)還沒學(xué)好,所以有些練習(xí)學(xué)生就沒有預(yù)想的那么得心應(yīng)手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。
三角形內(nèi)角和的教學(xué)教案設(shè)計 32
【教材內(nèi)容】:
北師大版四年級數(shù)學(xué)下冊
【教學(xué)目標(biāo)】:
1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
【教學(xué)重點和難點】:
重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
【教材分析】
《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認(rèn)識圖形的一般規(guī)律從直觀感性的認(rèn)識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,激發(fā)興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?
二、初建模型,實際驗證自己的'猜想
在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
三、再建模型,徹底的得出正確的結(jié)論
因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應(yīng)用新知,鞏固練習(xí)
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))
2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?
五、拓展與延伸
通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。
三角形內(nèi)角和的教學(xué)教案設(shè)計 33
一、教材依據(jù)
蘇教版四年級數(shù)學(xué)第八冊第28~29頁
二、教學(xué)方法及思路
數(shù)學(xué)學(xué)習(xí)的價值在于讓學(xué)生親身經(jīng)歷知識發(fā)生發(fā)展的過程。本節(jié)課力圖帶領(lǐng)學(xué)生進入這樣一個學(xué)習(xí)過程:利用故事的形式,讓學(xué)生產(chǎn)生疑問,三角形的內(nèi)角和是不是180°?接著讓學(xué)生通過小組合作的方法通過剪或折,得到三角形的三個內(nèi)角都能湊成一個平角,得出三角形內(nèi)角和是180°這一規(guī)律。通過課件的進一步演示,讓學(xué)生對結(jié)論的形成過程有更系統(tǒng)更清晰的整理,較好的突破了這節(jié)課的重、難點部分。在練習(xí)設(shè)計方面,通過算一算,量一量,選一選,拼一拼,折一折,說一說等多種方式,提高學(xué)生解決簡單的實際問題的能力。
三、教學(xué)目標(biāo)
1、知識目標(biāo):讓學(xué)生通過量、剪、拼、擺、折等活動,主動探究推導(dǎo)出三角形內(nèi)角和是180度,并運用所學(xué)知識解決簡單的實際問題。
2、能力目標(biāo):讓學(xué)生在學(xué)習(xí)活動中進一步增強探索的意識,提高合作交流的能力,獲得成功的體驗,樹立學(xué)習(xí)的信心。
3、情感目標(biāo):讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美,并充分體會到學(xué)習(xí)數(shù)學(xué)的快樂。
四、教學(xué)重點
使學(xué)生理解并掌握三角形的內(nèi)角和是180°。
五、教學(xué)難點
驗證所有三角形的內(nèi)角之和都是180°。
六、教學(xué)設(shè)備
量角器、正方形紙、剪刀、各類三角形(也包括等邊、等腰)、實物投影、多媒體課件
七、教學(xué)過程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
1、師談話:我們已經(jīng)認(rèn)識了三角形,你知道哪些關(guān)于三角形的知識?
讓學(xué)生對了解的有關(guān)三角形的知識暢所欲言。
2、師談話:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
教師放課件。
課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,(它們在爭論誰的內(nèi)角和大。)
3、 到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。
。ò鍟n題:三角形內(nèi)角和)
設(shè)計意圖:一方面借助電教媒體,利用兒童喜聞樂見的故事創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)興趣,另一方面,通過故事中的認(rèn)知沖突,來激發(fā)學(xué)生的求知欲。
(二)自主探究,發(fā)現(xiàn)規(guī)律
1、認(rèn)識什么是三角形的內(nèi)角和三角形的內(nèi)角和。
談話:我們通常所說的三角尺的角是三角尺的內(nèi)角,你知道什么是三角形的內(nèi)角和嗎?
通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。
2、探究三角形內(nèi)角和的特點。
、僮寣W(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?
學(xué)生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行驗證。)
、谛〗M合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。
引導(dǎo)學(xué)生推測出三角形的內(nèi)角和可能都是180°。
3、 驗證推測。
讓學(xué)生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現(xiàn)規(guī)律。
當(dāng)學(xué)生匯報用折拼或剪拼的方法的時候,教師在電腦中根據(jù)學(xué)生的.匯報,分別演示直角三角形、銳角三角形、鈍角三角形的折拼和剪拼的過程。
在學(xué)生交流、教師課件演示的過程中,師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)
5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
。墼O(shè)計意圖:先提出疑問,再通過學(xué)生的動手實踐、自主探索與合作交流的方式,一方面調(diào)動了學(xué)生思維的積極性,另一方面,通過課件的演示,在學(xué)生的充分感知的基礎(chǔ)上發(fā)現(xiàn)三角形的內(nèi)角和是180°]
。ㄈ╈柟叹毩(xí),拓展應(yīng)用
根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。
1、教學(xué)“試一試”
出示“試一試”:三角形中,∠1=75°,∠2=39°,∠3=( )?
學(xué)生試做,指名板演。學(xué)生可能有下面兩種算法:
①∠3=180°—75°—39°=66°
、凇3=180°—(75°+39)°=66°
評議板演,教師讓學(xué)生說說是怎樣想的,再讓學(xué)生用量角器量一量教科書中的∠3。提問:與算出的結(jié)果相同嗎?
2、 “想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
3、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?
4、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?
5、“想想做做”第6題
生說說自己的想法。
[設(shè)計意圖:當(dāng)學(xué)生獲得“三角形的內(nèi)角和是180°”的知識信息后,讓學(xué)生通過算一算、量一量、拼一拼和折一折,鞏固學(xué)生對三角形的內(nèi)角和的認(rèn)識。]
引導(dǎo)學(xué)生說出:首先要看三個內(nèi)角的和是不是180°,其次看每個內(nèi)角的度數(shù)是否符合這類三角形的特征。
[設(shè)計意圖:開放題的設(shè)計,給學(xué)生廣闊的思維空間,學(xué)生綜合運用已學(xué)知識解決問題。]
(四)課堂作業(yè)
完成“想想做做”第4題和第5題。
。ㄎ澹┱n堂總結(jié)
問:這節(jié)課你學(xué)到了哪些數(shù)學(xué)知識?這些知識你是怎樣獲得的?你還有什么疑問?
[設(shè)計意圖:通過交流式的回顧,引導(dǎo)學(xué)生對本課學(xué)習(xí)知識和學(xué)習(xí)方法進行總結(jié)。]
。┌鍟O(shè)計
三角形內(nèi)角和等于180°
①∠3=180°—75°—39°=66°
、凇3=180°—(75°+39)°=66°
三角形內(nèi)角和的教學(xué)教案設(shè)計 34
教學(xué)目標(biāo):
1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。
教學(xué)重點:
1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
教學(xué)難點:
掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。
教學(xué)用具:
表格、課件。
學(xué)具準(zhǔn)備:
各種三角形、剪刀、量角器。
教學(xué)過程:
一、創(chuàng)設(shè)情境揭示課題。
1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大!。誰說得有道理呢?今天讓我們來做一回裁判吧。
生1:大三角形大(個子大)
生2:小三角形大(有鈍角)
。ń處煵蛔雠袛啵寣W(xué)生帶著問題進入新課)
2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡栴}:
1、你認(rèn)為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?
生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。
生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。
生3:用折一折的辦法把三個角折到一起看它們能不能組成平角
。ǘ┨剿髋c發(fā)現(xiàn)
活動一:量一量
。1)①了解活動要求:(屏幕顯示)
A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)
B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。
C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?
。ㄒ龑(dǎo)生回顧活動要求)
、谛〗M合作。
、蹍R報交流。
你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?
。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)
。2)提出猜想
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)
活動二:拼一拼,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?
。1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。
。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?
。3)分組匯報,討論質(zhì)疑
。4)課件演示,驗證結(jié)果
活動三:折一折
師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的`三角形紙艮老師一起折一折。
(把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?
提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結(jié),得出結(jié)論。
。1)引導(dǎo)學(xué)生得出結(jié)論。
孩子們,三角形內(nèi)角和到底等于多少度呢?”
學(xué)生答:“180°!”
。2)總結(jié)方法,齊讀結(jié)論
我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)
。3)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°
。ㄈ┗仡檰栴}:
現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內(nèi)角和等于1800180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數(shù)學(xué)書28頁第3題
∠A=180°-90°-30°
2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)
∠A=180°-75°-28°
3、小法官:數(shù)學(xué)書29頁第二題
四、回顧課堂,滲透數(shù)學(xué)方法。
1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。
2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內(nèi)角和
板書設(shè)計:
探索與發(fā)現(xiàn)(一)
三角形內(nèi)角和等于180°
【三角形內(nèi)角和的教學(xué)教案設(shè)計】相關(guān)文章:
三角形內(nèi)角和教學(xué)教案設(shè)計(精選13篇)03-15
《三角形內(nèi)角和》教學(xué)設(shè)計04-12
三角形內(nèi)角和教學(xué)設(shè)計08-15
三角形內(nèi)角和教學(xué)設(shè)計03-20
《三角形的內(nèi)角和〉教學(xué)設(shè)計04-11
《三角形內(nèi)角和》教學(xué)設(shè)計08-03