亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

教學(xué)設(shè)計(jì)

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)

時(shí)間:2025-03-04 07:52:18 教學(xué)設(shè)計(jì) 我要投稿

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)

  作為一名辛苦耕耘的教育工作者,時(shí)常需要編寫(xiě)教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是根據(jù)課程標(biāo)準(zhǔn)的要求和教學(xué)對(duì)象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計(jì)劃。一份好的教學(xué)設(shè)計(jì)是什么樣子的呢?下面是小編幫大家整理的多邊形的內(nèi)角和教學(xué)設(shè)計(jì),歡迎閱讀,希望大家能夠喜歡。

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)1

  教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)問(wèn)題情境,引出新課。

  1、以疑導(dǎo)入,引發(fā)求知欲。先展示六螺帽,八角石英鐘、多邊形水果盤(pán)等多邊形實(shí)物。由此激發(fā)學(xué)生自己要設(shè)計(jì),怎樣設(shè)計(jì)的求知欲。然后提出具體問(wèn)題。

  引題:我們學(xué)校要準(zhǔn)備建造一個(gè)各邊長(zhǎng)為5米,各內(nèi)角都相等的十二邊形花壇。問(wèn)各角是多少度?

  2、復(fù)習(xí)提問(wèn),知識(shí)鞏固。

 、湃切蝺(nèi)角和等于多少度?

 、扑倪呅蝺(nèi)角和定理以及推導(dǎo)方法。

  3、引入新課

  上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形……n邊形的內(nèi)角和呢?下面我們一起來(lái)討論這個(gè)問(wèn)題(板書(shū)課題)。

 。ǘ┮龑(dǎo)探索,研討新知

  1、以動(dòng)激趣,淺探求知。

  一畫(huà):畫(huà)三角形、四邊形、五邊形、六邊形(讓學(xué)生自己動(dòng)手畫(huà))。

  二量:量出五邊形、六邊形各內(nèi)角,并求出其和(讓學(xué)生自己求知)。

  三比較:比較四邊形、五邊形、六邊形分別是三角形內(nèi)角和的多少倍,并由此去探索他們之間的初步規(guī)律。

  2、觀察聯(lián)想,啟迪思維。

 。ㄈ┗仡櫺〗Y(jié),驗(yàn)收成效

  1、已知邊數(shù)如何求內(nèi)角和;

  2、已知內(nèi)角和如何求邊數(shù);

  3、n邊形的'內(nèi)角和與外角和成一定的比例關(guān)系,求其n邊形的邊數(shù)。

 。ㄋ模┱n后作業(yè)(教材P91習(xí)題7.3第8、9題)

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)2

  學(xué)情分析:

  學(xué)生已經(jīng)學(xué)過(guò)三角形的內(nèi)角和定理的知識(shí)基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達(dá)能力還稍稍有點(diǎn)欠缺。針對(duì)這種情況,我會(huì)引導(dǎo)學(xué)生利用分類(lèi)、數(shù)形結(jié)合的思想,加強(qiáng)對(duì)數(shù)學(xué)知識(shí)的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語(yǔ)言表達(dá)能力。

  教學(xué)目標(biāo):

  1.知識(shí)與技能:運(yùn)用三角形內(nèi)角和定理來(lái)推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計(jì)算公式。

  2.過(guò)程與方法:經(jīng)理探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流的意識(shí)。

  3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)化歸的思想和實(shí)際應(yīng)用的價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。

  教學(xué)重點(diǎn):

  多邊形的內(nèi)角和公式。

  教學(xué)難點(diǎn):

  探索多邊形的內(nèi)角和定理的推導(dǎo)

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  1、請(qǐng)看:我身后的建筑物是什么?─水立方。我看到水立方時(shí)發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)

  這節(jié)課咱們一起來(lái)探究《多邊形的內(nèi)角和》。

  二、合作交流,探究新知

  1、多邊形的內(nèi)角和

  問(wèn):要求內(nèi)角和你聯(lián)想到什么圖形的內(nèi)角和?(示三角形的內(nèi)角和定理)。如果兩個(gè)三角形能夠拼成四邊形,你能求出四邊形的內(nèi)角和是多少度呢?

  預(yù)設(shè)回答:三角形的內(nèi)角和360°。四邊形的內(nèi)角和360°

  知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁(yè)“動(dòng)腦筋”

  【教學(xué)說(shuō)明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵(lì)學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.

  2、是否所有的多邊形的內(nèi)角和都可以“轉(zhuǎn)化”為兩個(gè)三角形的內(nèi)角和來(lái)求得呢?如何“轉(zhuǎn)化”?

  預(yù)設(shè)回答:能,可以引對(duì)角線,將多邊形分成幾個(gè)三角形。

  讓學(xué)生合作交流討論,展示探究成果。教材第35頁(yè)“探究”

  示圖,取多邊形上任意一個(gè)頂點(diǎn),連接除相鄰的兩點(diǎn),則多邊形的內(nèi)角和可轉(zhuǎn)化為三角形內(nèi)角和之間的關(guān)系,

  多邊形邊數(shù)可分成三角形的個(gè)數(shù)多邊形的內(nèi)角和56 7┅┅┅┅n邊形n

  n邊形有幾個(gè)內(nèi)角?是否可以“轉(zhuǎn)化”為多個(gè)三角形的.角來(lái)求得呢?如何“轉(zhuǎn)化”?

  預(yù)設(shè)回答:有n個(gè)內(nèi)角,可以轉(zhuǎn)化多個(gè)三角形來(lái)求,n邊形可以引n-3條對(duì)角線,即有n-2個(gè)三角形。所有n邊形的內(nèi)角和等于(n-2)x180°

  【教學(xué)說(shuō)明】通過(guò)五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會(huì)數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過(guò)程和數(shù)學(xué)思考方法.

  例:教材第36頁(yè)例1

  【教學(xué)說(shuō)明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個(gè)多邊形的內(nèi)角和或它的邊數(shù),加深知識(shí)的理解與運(yùn)用.

  三、課堂演練

  1、若從一個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā),最多可以引10條對(duì)角線,則它是()

  A.十三邊形B.十二邊形

  C.十一邊形D.十邊形

  2、十二邊形的內(nèi)角和為,已知一個(gè)多邊形的內(nèi)角和是1260°,則這個(gè)多邊形的邊數(shù)是。

  【教學(xué)說(shuō)明】由學(xué)生自主完成,教師及時(shí)了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運(yùn)用知識(shí)解決問(wèn)題的過(guò)程.對(duì)需要幫助的學(xué)生及時(shí)點(diǎn)撥并加以強(qiáng)化.在完成上述題目后,讓學(xué)生完成練習(xí)冊(cè)中本課時(shí)的對(duì)應(yīng)訓(xùn)練部分.

  四、課時(shí)小結(jié)

  1、這節(jié)課你有什么新的收獲?

  五、布置作業(yè)

  教材第36頁(yè)練習(xí)1、2題。

  六、板書(shū)設(shè)計(jì)多邊形的內(nèi)角和n邊形內(nèi)角和等于(n-2)×180°。

  多邊形的內(nèi)角和是180的倍數(shù);

  邊數(shù)越多,內(nèi)角和就越大;

  每增加一條邊,內(nèi)角和就增加180度。

多邊形的內(nèi)角和教學(xué)設(shè)計(jì)3

  [教學(xué)目標(biāo)]

  知識(shí)與技能:

  1.會(huì)用多邊形公式進(jìn)行計(jì)算。

  2.理解多邊形外角和公式。

  過(guò)程與方法:

  經(jīng)歷探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流意識(shí)力.

  情感態(tài)度與價(jià)值觀:

  讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實(shí)際應(yīng)用價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。

  [教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]

  教學(xué)重點(diǎn):多邊形的內(nèi)角和.的應(yīng)用.

  教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過(guò)程.

  教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.

  [教學(xué)方法]

  本節(jié)課采用“探究與互動(dòng)”的教學(xué)方式,并配以真的情境來(lái)引題。

  [教學(xué)過(guò)程:]

  (一)探索多邊形的內(nèi)角和

  活動(dòng)1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對(duì)角線,判斷分成三角形的個(gè)數(shù)。

  活動(dòng)2:①?gòu)亩噙呅蔚囊粋(gè)頂點(diǎn)出發(fā),可以引多少條對(duì)角線?他們將多邊形分成多少個(gè)三角形?②總結(jié)多邊形內(nèi)角和,你會(huì)得到什么樣的結(jié)論?

  多邊形邊數(shù)分成三角形的個(gè)數(shù)圖形

  內(nèi)角和計(jì)算規(guī)律

  三角形31180°(3-2)·180°

  四邊形4

  五邊形5

  六邊形6

  七邊形7

  。。。。。。

  n邊形n

  活動(dòng)3:把一個(gè)五邊形分成幾個(gè)三角形,還有其他的分法嗎?

  總結(jié)多邊形的內(nèi)角和公式

  一般的,從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引____條對(duì)角線,他們將n邊形分為_(kāi)___個(gè)三角形,n邊形的內(nèi)角和等于180×______。

  鞏固練習(xí):看誰(shuí)求得又快又準(zhǔn)!(搶答)

  例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?

  (點(diǎn)評(píng):四邊形的一組對(duì)角互補(bǔ),另一組對(duì)角也互補(bǔ)。)

  (二)探索多邊形的.外角和

  活動(dòng)4:例2如圖,在五邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?

  分析:(1)任何一個(gè)外角同于他相鄰的內(nèi)角有什系?

  (2)五邊形的五個(gè)外角加上與他們相鄰的內(nèi)角所得總和是多少?

  (3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?

  解:五邊形的外角和=______________-五邊形的內(nèi)角和

  活動(dòng)5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?

  也可以理解為:從多邊形的一個(gè)頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過(guò)各點(diǎn)之后回到點(diǎn)A.最后再轉(zhuǎn)回出發(fā)時(shí)的方向。由于在這個(gè)運(yùn)動(dòng)過(guò)程中身體共轉(zhuǎn)動(dòng)了一周,也就是說(shuō)所轉(zhuǎn)的各個(gè)角的和等于一個(gè)______角。所以多邊形的外角和等于_________。

  結(jié)論:多邊形的外角和=___________。

  練習(xí)1:如果一個(gè)多邊形的每一個(gè)外角等于30°,則這個(gè)多邊形的邊數(shù)是_____。

  練習(xí)2:正五邊形的每一個(gè)外角等于________,每一個(gè)內(nèi)角等于_______。

  練習(xí)3.已知一個(gè)多邊形,它的內(nèi)角和等于外角和,它是幾邊形?

  (三)小結(jié):本節(jié)課你有哪些收獲?

  (四)作業(yè):

  課本P84:習(xí)題7.3的2、6題

  附知識(shí)拓展—平面鑲嵌

  (五)隨堂練習(xí)(練一練)

  1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。

  2、一個(gè)多邊形當(dāng)邊數(shù)增加1時(shí),它的內(nèi)角和增加()。

  3、已知多邊形的每個(gè)內(nèi)角都等于150°,求這個(gè)多邊形的邊數(shù)?

  4、一個(gè)多邊形從一個(gè)頂點(diǎn)可引對(duì)角線3條,這個(gè)多邊形內(nèi)角和等于()

  A:360°B:540°C:720°D:900°

  5.已知一個(gè)多邊形,它的內(nèi)角和等于外角和的2倍,求這個(gè)多邊形的邊數(shù)?

【多邊形的內(nèi)角和教學(xué)設(shè)計(jì)】相關(guān)文章:

《多邊形的內(nèi)角和》優(yōu)秀教學(xué)設(shè)計(jì)06-23

初中數(shù)學(xué)競(jìng)賽課《多邊形內(nèi)角和》的教學(xué)設(shè)計(jì)02-11

初中數(shù)學(xué) 多邊形的內(nèi)角和 教學(xué)設(shè)計(jì)示例2 教案05-26

《多邊形的內(nèi)角和》公開(kāi)課教案06-15

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)04-12

三角形內(nèi)角和教學(xué)設(shè)計(jì)08-15

三角形內(nèi)角和教學(xué)設(shè)計(jì)03-20

《三角形的內(nèi)角和〉教學(xué)設(shè)計(jì)04-11

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)08-03