亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

考研資訊 百文網(wǎng)手機(jī)站

考研數(shù)學(xué)概率論首輪復(fù)習(xí)有哪些常見疑問

時(shí)間:2021-06-08 18:04:33 考研資訊 我要投稿

考研數(shù)學(xué)概率論首輪復(fù)習(xí)有哪些常見疑問

  我們?cè)谶M(jìn)行考研數(shù)學(xué)的概率論首輪復(fù)習(xí)時(shí),有很多常見的疑問需要我們?nèi)チ私馇宄P【帪榇蠹揖臏?zhǔn)備了考研數(shù)學(xué)概率論首輪復(fù)習(xí)的指導(dǎo),歡迎大家前來(lái)閱讀。

考研數(shù)學(xué)概率論首輪復(fù)習(xí)有哪些常見疑問

  考研數(shù)學(xué)概率論首輪復(fù)習(xí)常見的疑問

  1.概率的數(shù)理統(tǒng)計(jì)要怎么復(fù)習(xí)?什么叫幾何型概率?

  答:幾何型概率原則上只有理工科考,是數(shù)學(xué)一考察的對(duì)象,最近兩年經(jīng)濟(jì)類的大綱也加進(jìn)來(lái)了,但還沒有考過,數(shù)學(xué)三、數(shù)學(xué)四的話雖然明確寫在大綱里,還沒有考。明年是否可能考呢?幾何概率是一個(gè)考點(diǎn),但不是一個(gè)考察的重點(diǎn)。我個(gè)人認(rèn)為一是它考的可能性很小,如果考也是考一個(gè)小題,或者是選擇題或者是填空題或者在大題里運(yùn)用一下概率的模式,就是一個(gè)事件發(fā)生的概率是等于這個(gè)事件的度量或者整個(gè)樣本空間度量的比。

  這個(gè)度量的話指的是面積,一維空間指的是長(zhǎng)度,二維空間指的是面積,三維空間指的是體積。所以幾何概率指的是長(zhǎng)度的比、面積的比和體積的比。重點(diǎn)是面積的比,是二維的情況。

  何概率其實(shí)很簡(jiǎn)單,是一個(gè)程序化的過程,按這四個(gè)步驟你肯定能做出來(lái)。第一步把樣本空間和讓你求概率的事件用幾何表示出來(lái)。第二步既然是幾何概率那就是圖形,第二步把幾何圖形畫出來(lái)。第三步你就把樣本空間和讓你求概率的事件所在的幾何圖形的度量,就是剛才所說(shuō)的面積或者體積求出來(lái)。第三步代公式。以前考過的幾何概率的題度量的計(jì)算都是用初等的方法做,我推測(cè)下次考的話,可能會(huì)難一點(diǎn)的。比如說(shuō)用意項(xiàng),面積可能用到定積分或者重積分計(jì)算,把概率和高等數(shù)學(xué)聯(lián)系起來(lái)。

  關(guān)于第二個(gè)問題,概率統(tǒng)計(jì)怎么復(fù)習(xí),今年的考試分配很不正常,明年不會(huì)是這樣的情況。我想明年數(shù)學(xué)一(統(tǒng)計(jì))應(yīng)該考一個(gè)八、九分的題是比較適中的。從今年考試中心的樣題統(tǒng)計(jì)這一塊是九分。數(shù)學(xué)三(統(tǒng)計(jì))應(yīng)該八分左右,統(tǒng)計(jì)這一塊大家不要放棄,明年可能會(huì)考,分?jǐn)?shù)應(yīng)該是八、九分的題。

  至于復(fù)習(xí),它的內(nèi)容占了四分之一的樣子。但是這一部分的題相對(duì)于概率題比較固定,做題的方法也比較固定,對(duì)考生來(lái)說(shuō)比較好掌握,但這部分考生考得差,可能很多學(xué)校沒有開這門課,或者開的話講得比較簡(jiǎn)單,所以一些同學(xué)沒有達(dá)到考試的水平。其實(shí)這部分稍微花一點(diǎn)時(shí)間就可以掌握了。主要就是這幾塊內(nèi)容一是樣本與抽樣分布,就是三大分布搞清楚,把他們的結(jié)構(gòu)搞清楚,把統(tǒng)計(jì)上的分布搞清楚。

  然后是參數(shù)估計(jì)、矩估計(jì)、最大似然估計(jì)、區(qū)間估計(jì)、三種估計(jì)方法,三個(gè)評(píng)價(jià)標(biāo)準(zhǔn),無(wú)偏性、有效性、一致性,重點(diǎn)是無(wú)偏性的考查,因?yàn)樗瞧谕挠?jì)算,其次是有效性。一致性一般不會(huì)考,考的可能性很小。這三種估計(jì)方法重點(diǎn)也是前面兩種,矩估計(jì)、最大似然估計(jì),區(qū)間做了限制,考了很少,歷年考試的情況也就是代代公式。

  最后一部分是假設(shè)檢驗(yàn)這部分,這一部分我個(gè)人推測(cè)明年有可能考一個(gè)概念性的小題。一是了解U檢驗(yàn)統(tǒng)計(jì)量、T檢驗(yàn)統(tǒng)計(jì)量、卡方檢驗(yàn)統(tǒng)計(jì)量,把這三個(gè)檢驗(yàn)統(tǒng)計(jì)量的分布搞清楚。另外假設(shè)檢驗(yàn)的思想和四個(gè)步驟了解一下就可以了。我想這部分考生少花一點(diǎn)時(shí)間,統(tǒng)計(jì)這個(gè)題是沒有問題的,重點(diǎn)就是參數(shù)估計(jì),就是三種估計(jì)方法,三個(gè)評(píng)價(jià)標(biāo)準(zhǔn),重點(diǎn)在那個(gè)地方。

  2.概率的公式、概念比較多,怎么記?

  答:我們看這樣一個(gè)模型,這是概率里經(jīng)常見到的,從實(shí)際產(chǎn)品里面我們每次取一個(gè)產(chǎn)品,而且取后不放回去,就是日常生活中抽簽抓鬮的模型。現(xiàn)在我說(shuō)四句話,大家看看有什么不同,第一句話“求一下第三次取到十件產(chǎn)品有七件正品三件次品,我們每次取一件,取后不放回”,下面我們來(lái)求四個(gè)類型,第一問我們求第三次取得次品的概率。

  第二問我們求第三次才取得次品的概率。第三問已知前兩次沒有取得次品第三次取到次品。第四問不超過三次取到次品。大家看到這四問的話我想是容易糊涂的,這是四個(gè)完全不同的概率,但是你看完以后可能有很多考生認(rèn)為有的就是一個(gè)類型,但實(shí)際上是不一樣的。

  先看第一個(gè)“第三次取得次品”,這個(gè)概率與前面取得什么和后面取得什么都沒有關(guān)系,所以這個(gè)我們叫絕對(duì)概率。第一個(gè)概率我想很多考生都知道,這個(gè)概率應(yīng)該是等于十分之三,用古代概率公式或者全概率公式求出來(lái)都是十分之三。這個(gè)概率改成第四次、第五次取到都是十分之三,就是說(shuō)這個(gè)概率與次數(shù)是沒有關(guān)系的。所以在這里我們可以看出,日常生活中抽簽、抓鬮從數(shù)學(xué)上來(lái)說(shuō)是公平的。

  拿這個(gè)模型來(lái)說(shuō),第一次取到和第十次取到次品的概率都是十分之三。下面我們?cè)倏纯吹诙䝼(gè)概率,第三次才取到次品的概率,這個(gè)事件描述的是績(jī)事件,這是概率里重要的概念,改變表示同時(shí)發(fā)生的概率。但是這個(gè)與第三次的概率是容易混淆的,如果表示的可以這樣表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。

  如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC績(jī)事件發(fā)生的概率。第三問表示條件概率,已知前兩次沒有取到次品,第三次取到次品P(C|AB),第三問求的就是一個(gè)條件概率。我們看第四問,不超過三次取得次品,這是一個(gè)和事件的概率,就是P(A+B+C)。從這個(gè)例子大家可以看出,概率論確實(shí)對(duì)題意的理解非常重要,要把握準(zhǔn)確,否則就得不到準(zhǔn)確的答案。

  3.我概率這塊掌握的不夠扎實(shí),復(fù)習(xí)很困難,我應(yīng)該怎樣才能更好的復(fù)習(xí)概率這部分內(nèi)容?

  答:概率這門學(xué)科與別的學(xué)科是不太一樣的,首先我建議這位同學(xué)你可以看一下教育部考試中心一本雜志,專門出了一個(gè)針對(duì)研究生考試的書,這個(gè)里面請(qǐng)我寫了一篇文章,里面我舉很多例子,你看了之后有一個(gè)詳細(xì)復(fù)習(xí)方法。概率這門學(xué)科與概率統(tǒng)計(jì)、微積分是不一樣的,它要求對(duì)基本概念、基本性質(zhì)的理解比較強(qiáng),有個(gè)同學(xué)跟我說(shuō)高等數(shù)學(xué)不存在把題看不懂的問題,但是概率統(tǒng)計(jì)的題尤其文字?jǐn)⑹龅臅r(shí)候看不懂題,從這個(gè)意義上來(lái)說(shuō)同學(xué)平常復(fù)習(xí)時(shí)候,只要針對(duì)每一個(gè)基本概念,要把它準(zhǔn)確的理解,概念要理解準(zhǔn)確,通過例子理解概念,通過實(shí)際物體理解概念。

  例如:比如我們一個(gè)盒子一共有十件產(chǎn)品,其中三件次品,七件正品,我們做一個(gè)實(shí)驗(yàn),每次只取一件產(chǎn)品,取之后不再放回去,現(xiàn)在我提兩個(gè)問題:一個(gè)是第三次取的次品是什么事件,這個(gè)事件就是積事件,第一次沒有取到次品,第二次沒有取到次品,第三次是取到次品,求這么一個(gè)事件的概率,但是換一個(gè)問題,我說(shuō)你求前面兩次沒有取到次品情況下,第三次取到次品的概率,這個(gè)就不是積事件了,我第二個(gè)問題是知道了前面兩次沒有取到次品,這個(gè)信息已經(jīng)知道了,然后問你第三次取到次品概率是多少,這是條件概率,這個(gè)信息已經(jīng)知道了,另外一個(gè)事件發(fā)生的概率,這叫條件概率,這是容易混淆的。還有絕對(duì)概率,拿我們剛才舉的例子來(lái)講,如果我讓你求第三次取到次品是什么概率,那是絕對(duì)事件的概率,這和前面兩個(gè)又不一樣。

  舉這個(gè)例子提醒考生復(fù)習(xí)時(shí)候把這些基本概念搞清楚了,把公式把握了,這個(gè)就比較容易了。跟微積分比較起來(lái)這里沒有什么公式,公式很少。所以我們把基本概念弄清楚以后,計(jì)算的技巧比微積分少得多,所以有同學(xué)跟我說(shuō),他說(shuō)概率統(tǒng)計(jì)這門課程要么就考高分,要么考低分,考中間分?jǐn)?shù)的人很少,這就說(shuō)明了這種課程的特點(diǎn)。

  4.概率的公式非常難背,有什么好方法嗎?

  答:背下來(lái)是基本的要求,概率的公式并不多,但是概率的公式和高等數(shù)學(xué)的公式相比,僅僅記住它是不夠的,比如給一個(gè)函數(shù)求導(dǎo)數(shù),你會(huì)做,因?yàn)槟阒朗乔髮?dǎo)數(shù),概率問題,比如全概率公式,考試的時(shí)候從來(lái)沒有哪一年是請(qǐng)你用全概率公式求求某概率,所以從分析問題的層面來(lái)說(shuō)概率的要求高一點(diǎn),但是從計(jì)算技巧來(lái)說(shuō)概率的技巧低一些,所以我建議大家結(jié)合實(shí)際的例子和模型記它。比如二向概率公式,你可以這么記它,記一個(gè)模型,把一枚硬幣重復(fù)拋N次,正面沖上的概率是多少呢?這個(gè)公式哪一個(gè)符號(hào)在實(shí)際問題里面是什么東西,這樣才是在理解的基礎(chǔ)上記憶,當(dāng)然就不容易忘記了。

  5.關(guān)于數(shù)理統(tǒng)計(jì)先階段復(fù)習(xí)應(yīng)該抓哪些?

  答:考試要注意,只有數(shù)學(xué)1和數(shù)學(xué)3的同學(xué)要考數(shù)理統(tǒng)計(jì),按照以前考試數(shù)學(xué)1一般來(lái)說(shuō)考三分之一分?jǐn)?shù)的題,數(shù)學(xué)3是四分之一,但是僅僅是一個(gè)很例外的情況,2003年數(shù)學(xué)1考了16分的數(shù)理統(tǒng)計(jì),但是今年沒有考這部分,今年考試這個(gè)地方的命題是有一點(diǎn)有失偏頗,我個(gè)人的看法為了避免這樣的情況,所以這個(gè)地方一定要看,一般要考8分左右的題是比較合適的,到底考什么,我可以把這個(gè)范圍縮的比較小,考這么幾種題型,第一個(gè)是求統(tǒng)計(jì)量的數(shù)字特征或者是統(tǒng)計(jì)量的分布,統(tǒng)計(jì)量大家知道就是樣本的函數(shù),樣本就是X1X2-Xn,就是期望、方差、系方差,相關(guān)系數(shù)等等,求統(tǒng)計(jì)量的數(shù)字特征。

  第二個(gè)題型,統(tǒng)計(jì)量既然是隨機(jī)變量,當(dāng)然可以求統(tǒng)計(jì)量的分布,2001年數(shù)學(xué)3是考了,2002年數(shù)學(xué)3考了,所以這個(gè)地方也是重要的題型。其次第三種題型是參數(shù)估計(jì),你要會(huì)求。要考你背兩到三個(gè)區(qū)間估計(jì)的公式就可以了,所以為什么這個(gè)地方考的次數(shù)最多,每一種方法你都要會(huì)做。第四種題型就是對(duì)估計(jì)量的好壞進(jìn)行評(píng)價(jià),估計(jì)是無(wú)偏是有效的還是抑制的。2003年就考了一個(gè)大題。

  另外第五種題型就是假設(shè)間接這個(gè)地方,這么年以來(lái)只考過兩次,而且從99年以來(lái)練習(xí)五年這一章是沒有考,但是也正音連續(xù)五年沒有考,我個(gè)人估測(cè)2004年在這個(gè)上面考一個(gè)小題的可能是非常大的,我想同學(xué)們這部分花一點(diǎn)點(diǎn)時(shí)間看一看它,可能考一個(gè)小題,考一個(gè)什么題,就是把統(tǒng)計(jì)量寫出來(lái),你會(huì)不會(huì)把分布寫出來(lái),以填空的'方式。另外一種考法,它的只對(duì)什么進(jìn)行檢驗(yàn),對(duì)什么參數(shù)進(jìn)行檢驗(yàn),你把統(tǒng)計(jì)參數(shù)寫出來(lái)。第三種方法,設(shè)計(jì)一個(gè)問題,把架設(shè)檢驗(yàn)的十個(gè)步驟做出來(lái),第一個(gè)步驟是提出架設(shè),第二步寫出檢驗(yàn)統(tǒng)計(jì)量。這個(gè)部分也不會(huì)出一個(gè)大題,應(yīng)該是以小題的形式出現(xiàn)。

  6.數(shù)學(xué)一概率和統(tǒng)計(jì)一般是怎樣的分值比例?重點(diǎn)分別是什么?

  答:我們1997年實(shí)行新大綱以后,除了1997年沒有考,數(shù)學(xué)一從1998年到今年每一年都考到數(shù)理統(tǒng)計(jì)這塊內(nèi)容,也可以更多的情況下通過大題形式考,這里頭大家復(fù)習(xí)時(shí)候應(yīng)該稍微注意一下,數(shù)理統(tǒng)計(jì)它的公式特別多,但是本質(zhì)上全部概括起來(lái),三個(gè)動(dòng)態(tài)總體的抽樣分布,當(dāng)總體方向是未知的時(shí)候,我們這幾年考題表面上考數(shù)理統(tǒng)計(jì)的問題,有相當(dāng)一部分考數(shù)理統(tǒng)計(jì)它在具體計(jì)算過程里頭的期望和方差的計(jì)算問題。所以經(jīng)常把數(shù)理統(tǒng)計(jì)和我們數(shù)字特征結(jié)合起來(lái)考,這種情況我認(rèn)為沒有必要過于區(qū)分?jǐn)?shù)理統(tǒng)計(jì)占怎樣的分值比例,本身都是緊密相連的。

  7.數(shù)理統(tǒng)計(jì)中考試重點(diǎn)是什么?參數(shù)估計(jì)占多大比重?

  答:參數(shù)估計(jì)這部分它占數(shù)理統(tǒng)計(jì)的一多半內(nèi)容,參數(shù)估計(jì)這塊應(yīng)該是最重要的。統(tǒng)計(jì)里面第一章就是關(guān)于樣本還有統(tǒng)計(jì)量分布這部分,這部分就是求統(tǒng)計(jì)量的數(shù)字特征,統(tǒng)計(jì)量是隨機(jī)變量。統(tǒng)計(jì)里面有什么題型?一個(gè)參數(shù)估計(jì),一個(gè)求統(tǒng)計(jì)量數(shù)字特征或者求統(tǒng)計(jì)量的分布,統(tǒng)計(jì)量是隨機(jī)變量,任何隨機(jī)變量都有分布。自然會(huì)有這樣的題型。求統(tǒng)計(jì)量的數(shù)字特征,求統(tǒng)計(jì)量的分布,然后參數(shù)估計(jì),然后估計(jì)的標(biāo)準(zhǔn)。統(tǒng)計(jì)這個(gè)內(nèi)容對(duì)大家來(lái)說(shuō)應(yīng)該是比較好掌握的,題型比較少,你比較好把這個(gè)題做好。

  8.數(shù)一中假設(shè)檢驗(yàn)怎么考?參數(shù)估計(jì)中區(qū)間估計(jì)的公式是否都要記住?也就是統(tǒng)計(jì)量及其分布這些公式很復(fù)雜如何更好記憶,歷年考試出現(xiàn)的好象不是特別多,今年是否會(huì)有變化?

  答:區(qū)間估計(jì)不是考試重點(diǎn),屬于最低層次的,你只要知道兩到三個(gè)區(qū)間公式就可以了,以前只考過前面兩個(gè),你多記一個(gè)留有一些余地,這個(gè)地方要求比較低,復(fù)雜的公式你不一定非得記住。

  考研數(shù)學(xué)沖刺的解題定思路

  第一部分 《高數(shù)解題的四種思維定勢(shì)》

  1.在題設(shè)條件中給出一個(gè)函數(shù)f(x)二階和二階以上可導(dǎo),"不管三七二十一",把f(x)在指定點(diǎn)展成泰勒公式再說(shuō)。

  2.在題設(shè)條件或欲證結(jié)論中有定積分表達(dá)式時(shí),則"不管三七二十一"先用積分中值定理對(duì)該積分式處理一下再說(shuō)。

  3.在題設(shè)條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=0或f(b)=0或f(a)=f(b)=0,則"不管三七二十一"先用拉格朗日中值定理處理一下再說(shuō)。

  4.對(duì)定限或變限積分,若被積函數(shù)或其主要部分為復(fù)合函數(shù),則"不管三七二十一"先做變量替換使之成為簡(jiǎn)單形式f(u)再說(shuō)。

  第二部分 《線性代數(shù)解題的八種思維定勢(shì)》

  1.題設(shè)條件與代數(shù)余子式Aij或A*有關(guān),則立即聯(lián)想到用行列式按行(列)展開定理以及AA*=A*A=|A|E。

  2.若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。

  3.若題設(shè)n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說(shuō)。

  4.若要證明一組向量a1,a2,...,as線性無(wú)關(guān),先考慮用定義再說(shuō)。

  5.若已知AB=0,則將B的每列作為Ax=0的解來(lái)處理再說(shuō)。

  6.若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說(shuō)。

  7.若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理一下再說(shuō)。

  8.若要證明抽象n階實(shí)對(duì)稱矩陣A為正定矩陣,則用定義處理一下再說(shuō)。

  第三部分《概率與數(shù)理統(tǒng)計(jì)解題的九種思維定勢(shì)》

  1.如果要求的是若干事件中"至少"有一個(gè)發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當(dāng)事件組相互獨(dú)立時(shí),用對(duì)立事件的概率公式。

  2.若給出的試驗(yàn)可分解成(0-1)的n重獨(dú)立重復(fù)試驗(yàn),則馬上聯(lián)想到Bernoulli試驗(yàn),及其概率計(jì)算公式。

  3.若某事件是伴隨著一個(gè)完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計(jì)算。關(guān)鍵:尋找完備事件組。

  4.若題設(shè)中給出隨機(jī)變量X ~ N 則馬上聯(lián)想到標(biāo)準(zhǔn)化X ~ N(0,1)來(lái)處理有關(guān)問題。

  5.求二維隨機(jī)變量(X,Y)的邊緣分布密度的問題,應(yīng)該馬上聯(lián)想到先畫出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內(nèi)畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而Y的求法類似。

  6.欲求二維隨機(jī)變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應(yīng)該馬上聯(lián)想到二重積分的計(jì)算,其積分域D是由聯(lián)合密度的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。

  7.涉及n次試驗(yàn)?zāi)呈录l(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對(duì)X作(0-1)分解。

  8.凡求解各概率分布已知的若干個(gè)獨(dú)立隨機(jī)變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機(jī)變量個(gè)數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。

  9.若為總體X的一組簡(jiǎn)單隨機(jī)樣本,則凡是涉及到統(tǒng)計(jì)量的分布問題,一般聯(lián)想到用分布,t分布和F分布的定義進(jìn)行討論。

  考研數(shù)學(xué)沖刺線性代數(shù)常考的內(nèi)容

  ▶一、行列式部分,強(qiáng)化概念性質(zhì),熟練行列式的求法

  在這里我們需要明確下面幾條:行列式對(duì)應(yīng)的是一個(gè)數(shù)值,是一個(gè)實(shí)數(shù),明確這一點(diǎn)可以幫助我們檢查一些疏漏的低級(jí)錯(cuò)誤;行列式的計(jì)算方法中常用的是定義法,比較重要的是加邊法,數(shù)學(xué)歸納法,降階法,利用行列式的性質(zhì)對(duì)行列式進(jìn)行恒等變形,化簡(jiǎn)之后再按行或列展開。另外范德蒙行列式也是需要掌握的;行列式的考查方式分為低階的數(shù)字型矩陣和高階抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算等。

  ▶二、矩陣部分,重視矩陣運(yùn)算,掌握矩陣秩的應(yīng)用

  通過歷年真題分類統(tǒng)計(jì)與考點(diǎn)分布,矩陣部分的重點(diǎn)考點(diǎn)集中在逆矩陣、伴隨矩陣及矩陣方程,其內(nèi)容包括伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩,在課堂輔導(dǎo)的時(shí)候會(huì)重點(diǎn)強(qiáng)調(diào).此外,伴隨矩陣的矩陣方程以及矩陣與行列式的結(jié)合也是需要同學(xué)們熟練掌握的細(xì)節(jié)。涉及秩的應(yīng)用,包含矩陣的秩與向量組的秩之間的關(guān)系,矩陣等價(jià)與向量組等價(jià),對(duì)矩陣的秩與方程組的解之間關(guān)系的分析,備考需要在理解概念的基礎(chǔ)上,系統(tǒng)地進(jìn)行歸納總結(jié),并做習(xí)題加以鞏固。

  ▶三、向量部分,理解相關(guān)無(wú)關(guān)概念,靈活進(jìn)行判定

  向量組的線性相關(guān)問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點(diǎn)。如何掌握這部分內(nèi)容呢?首先在于對(duì)定義概念的理解,然后就是分析判定的重點(diǎn),即:看是否存在一組全為零的或者有非零解的實(shí)數(shù)對(duì);A(chǔ)線性相關(guān)問題也會(huì)涉及類似的題型:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無(wú)關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。

  ▶四、線性方程組部分,判斷解的個(gè)數(shù),明確通解的求解思路

  線性方程組解的情況,主要涵蓋了齊次線性方程組有非零解、非齊次線性方程組解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明以及帶參數(shù)的線性方程組的解的情況。通解的求法有兩種,若為齊次線性方程組,首先求解方程組的矩陣對(duì)應(yīng)的行列式的值,在特征值為零和不為零的情況下分別進(jìn)行討論,為零說(shuō)明有解,帶入增廣矩陣化簡(jiǎn)整理;不為零則有唯一解直接求出即可。若為非齊次方程組,則按照對(duì)增廣矩陣的討論進(jìn)行求解。

  ▶五、矩陣的特征值與特征向量部分,理解概念方法,掌握矩陣對(duì)角化的求解

  矩陣的特征值、特征向量部分可劃分為三給我板塊:特征值和特征向量的概念及計(jì)算、方陣的相似對(duì)角化、實(shí)對(duì)稱矩陣的正交相似對(duì)角化。相關(guān)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對(duì)角化、有關(guān)實(shí)對(duì)稱矩陣的問題。

  ▶六、二次型部分,熟悉正定矩陣的判別,了解規(guī)范性和慣性定理

  二次型矩陣是二次型問題的一個(gè)基礎(chǔ),且大部分都可以轉(zhuǎn)化為它的實(shí)對(duì)稱矩陣的問題來(lái)處理。另外二次型及其矩陣表示,二次型的秩和標(biāo)準(zhǔn)形等概念、二次型的規(guī)范形和慣性定理也是填空選擇題中的不可或缺的部分,二次型的標(biāo)準(zhǔn)化與矩陣對(duì)角化緊密相連,要會(huì)用配方法、正交變換化二次型為標(biāo)準(zhǔn)形;掌握二次型正定性的判別方法等等。


【考研數(shù)學(xué)概率論首輪復(fù)習(xí)有哪些常見疑問】相關(guān)文章:

考研數(shù)學(xué)概率論首輪復(fù)習(xí)常見疑問12-22

考研數(shù)學(xué)概率論首輪復(fù)習(xí)的常見疑問11-24

考研數(shù)學(xué)概率論首輪復(fù)習(xí)的疑問12-18

考研數(shù)學(xué)首輪復(fù)習(xí)有哪些原則10-30

考研數(shù)學(xué)復(fù)習(xí)常見的問題有哪些11-10

考研數(shù)學(xué)首輪復(fù)習(xí)有什么方法11-10

考研數(shù)學(xué)首輪復(fù)習(xí)的原則12-05

考研數(shù)學(xué)復(fù)習(xí)有哪些常見問題11-25

考研數(shù)學(xué)備考首輪復(fù)習(xí)的策略12-12