- 相關(guān)推薦
小升初數(shù)學(xué)必考知識(shí)點(diǎn)參考
上學(xué)的時(shí)候,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。為了幫助大家更高效的學(xué)習(xí),下面是小編精心整理的小升初數(shù)學(xué)必考知識(shí)點(diǎn)參考,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
小升初數(shù)學(xué)必考知識(shí)點(diǎn)參考
1.最小的一位數(shù)是1,最小的自然數(shù)是0
2.小數(shù)的意義:把整數(shù)“1”平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數(shù)來表示。
3.小數(shù)點(diǎn)左邊依次是整數(shù)部分,小數(shù)點(diǎn)右邊是小數(shù)部分,依次是十分位、百分位、千分位……
4.小數(shù)的分類:小數(shù) 有限小數(shù)
無限循環(huán)小數(shù)
無限小數(shù)
無限不循環(huán)小數(shù)
5.整數(shù)和小數(shù)都是按照十進(jìn)制計(jì)數(shù)法寫出的數(shù)。
6.小數(shù)的性質(zhì):小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。
7.小數(shù)點(diǎn)向右移動(dòng)一位、二位、三位……原來的數(shù)分別擴(kuò)大10倍、100倍、1000倍……
小數(shù)點(diǎn)向左移動(dòng)一位、二位、三位……原來的數(shù)分別縮小10倍、100倍、1000倍……
小升初數(shù)學(xué)知識(shí)點(diǎn)
何謂“數(shù)、行、形、算”,也就是數(shù)論,行程,圖形、計(jì)算四個(gè)問題。數(shù)論難在它的抽象,這是區(qū)分尖子生和普通生的關(guān)鍵;行程問題復(fù)雜就在其應(yīng)用,孩子在做這類題目的時(shí)候,要求的不僅是其思維,還有其表述;圖形問題(幾何問題)雜而難,重點(diǎn)要求的是面積的計(jì)算,這是中學(xué)教育的開始;計(jì)算是基礎(chǔ),是孩子取得高分的必要保障。
由于這四個(gè)問題,學(xué)生容易入門,但不易熟練,時(shí)常犯錯(cuò)誤,因此成為近年來重點(diǎn)中學(xué)考試的熱點(diǎn),據(jù)了解,蘇州重點(diǎn)中學(xué)近年來的這幾大問題的考題占據(jù)全部了80%左右,對(duì)這些問題的考察也十分偏重,而數(shù)論和行程問題的考察更是重中之重,往往占到一張?jiān)嚲淼?0%。那么如何復(fù)習(xí)這四方面的內(nèi)容呢?
對(duì)于圖形問題,我們要說的就是培養(yǎng)孩子的形象思維,重點(diǎn)加強(qiáng)的是面積的計(jì)算。計(jì)算的技巧和方法也是在做題的總結(jié)和加強(qiáng)的,這里重點(diǎn)介紹一下數(shù)論和行程問題的復(fù)習(xí)方法。
數(shù)論在數(shù)論學(xué)習(xí)中學(xué)生往往容易犯如下幾個(gè)錯(cuò)誤:
1、讀題障礙。數(shù)論的題目敘述往往只有幾句話,甚至只有一行,可就這短短的幾句話,卻表達(dá)了很多意思,學(xué)生如果讀不出題中的意思,題目通常會(huì)解錯(cuò)。
2、知識(shí)僵化。由于數(shù)論問題非常抽象,大多數(shù)學(xué)生往往采用死記硬背的方法來“消化”所學(xué)的內(nèi)容,導(dǎo)致各個(gè)知識(shí)點(diǎn)都似曾相識(shí),但遇到實(shí)際題目卻一籌莫展。例如,說起奇偶性都知道怎么回事,馬上就開始背:“奇數(shù)+奇數(shù)=偶數(shù)……”可是在做題的時(shí)候就想不到用。
3、只見樹木,不見森林。對(duì)于數(shù)論定理的靈活運(yùn)用很欠缺。提起定理都能一字不差的背下來,但是對(duì)各個(gè)概念和性質(zhì)缺乏整體上的認(rèn)識(shí)和把握,更不用說理解各知識(shí)點(diǎn)之間的內(nèi)部聯(lián)系了。
知識(shí)體系:
整除問題:
(1)數(shù)的整除的特征和性質(zhì) (分班常考內(nèi)容)
(2)位值原理的應(yīng)用(用字母和數(shù)字混合表示多位數(shù))
質(zhì)數(shù)合數(shù):
(1)質(zhì)數(shù)、合數(shù)的概念和判斷
(2)分解質(zhì)因數(shù)(重點(diǎn))
約數(shù)倍數(shù):
(1)最大公約最小公倍數(shù)
(2)約數(shù)個(gè)數(shù)決定法則 (常考內(nèi)容)
余數(shù)問題:
(1)帶余除式的理解和運(yùn)用;
(2)同余的性質(zhì)和運(yùn)用;
(3)中國剩余定理
奇偶問題:
(1)奇偶與四則運(yùn)算;
(2)奇偶性質(zhì)在實(shí)際解題過程中的應(yīng)用
完全平方數(shù):
(1)完全平方數(shù)的判斷和性質(zhì)
(2)完全平方數(shù)的運(yùn)用整數(shù)及分?jǐn)?shù)的分解與分拆(重點(diǎn)、難點(diǎn))
這四個(gè)問題我們需要掌握到什么樣的程度?
近幾年來,雖然一些重點(diǎn)中學(xué)對(duì)以上的幾個(gè)問題考察較多,但是難度通常不大,中等難度題目出現(xiàn)的頻率很高,通常在60%以上,因此我們的同學(xué)只要夯實(shí)基礎(chǔ),對(duì)于這樣的一張分班試卷的完成應(yīng)該是能取得很好的成績的。對(duì)此,編輯給出建議:如果我們的孩子不是要搞競(jìng)賽,只是為了進(jìn)入重點(diǎn)中學(xué),中等題的掌握絕對(duì)是我們的重點(diǎn),不能盲目追求難度,否則容易適得其反。
比和比例
1.比的意義:兩個(gè)數(shù)相除又叫做兩個(gè)數(shù)的比。
比例的意義:表示兩個(gè)比相等的式子叫做比例。
2.求比值:比的前項(xiàng)除以比的后項(xiàng)所得的商叫做比值。
3.比的基本性質(zhì):比的前項(xiàng)和后項(xiàng)都乘或除以相同的數(shù)(0除外),比值不變。
比例的基本性質(zhì):在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。
4.應(yīng)用比的基本性質(zhì)可以化簡(jiǎn)比;
應(yīng)用比例的基本性質(zhì)可以判斷兩個(gè)比是否能組成比例,也可以求比例里的未知項(xiàng),也就是解比例。
5.用字母表示比與除法和分?jǐn)?shù)的關(guān)系。
a:b=a÷b=(b≠0)
6.比例尺:我們把圖上距離和實(shí)際距離的比,叫做這幅圖的比例尺。
7.圖上距離:實(shí)際距離=比例尺
或=比例尺
實(shí)際距離=圖上距離÷比例尺 圖上距離=實(shí)際距離×比例尺
8.求比值的方法:根據(jù)比值的意義,用前項(xiàng)除以后項(xiàng),結(jié)果是一個(gè)數(shù)。
化簡(jiǎn)比的方法:根據(jù)比的基本性質(zhì),把比的前項(xiàng)和后項(xiàng)都乘或除以相同的數(shù)(零除外),結(jié)果是一個(gè)最簡(jiǎn)整數(shù)比。
9.正比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。
用式子表示:=k(一定),用圖表示正比例關(guān)系是一條直線。
10.反比例關(guān)系:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。
用式子表示:x×y=k(一定),用圖表示反比例關(guān)系是一條曲線。
數(shù)學(xué)知識(shí)點(diǎn)
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進(jìn)率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進(jìn)率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進(jìn)率。
質(zhì)量單位有:噸、千克、克,寫出它們之間的進(jìn)率。
時(shí)間單位有:世紀(jì)、年、月、日、時(shí)、分、秒,寫出它們之間的進(jìn)率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個(gè),每月31天。
小月有:4、6、9、11月,共4個(gè),每月30天。 二月平年是28天,閏年是29天。
3.一年有4個(gè)季度,每個(gè)季度3個(gè)月。
4.平年閏年:公歷年份是4的倍數(shù)的一般是閏年,公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。
5.名數(shù):把計(jì)量得到的數(shù)和單位名稱合起來叫做名數(shù)。
單名數(shù):只帶有一個(gè)單位名稱的叫做單名數(shù)。
復(fù)名數(shù):帶有兩個(gè)或兩個(gè)以上單位名稱的叫做復(fù)名數(shù)。
6.名數(shù)的改寫:高級(jí)單位的名數(shù)化成低級(jí)單位的名數(shù)乘進(jìn)率,低級(jí)單位的名數(shù)化成高級(jí)單位的名數(shù)除以進(jìn)率。
數(shù)的整除
1.整除:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
一個(gè)數(shù)約數(shù)的個(gè)數(shù)是有限的,最小的約數(shù)是1,最大的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個(gè)數(shù)約數(shù)的個(gè)數(shù),非0自然數(shù)可分為1、質(zhì)數(shù)、合數(shù)三類。
質(zhì)數(shù):一個(gè)數(shù),如果只有1和它本身兩個(gè)約數(shù),這樣的數(shù)叫做質(zhì)數(shù)。質(zhì)數(shù)都有2個(gè)約數(shù)。
合數(shù):一個(gè)數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個(gè)約數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4
1~20以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19
1~20以內(nèi)的合數(shù)有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的數(shù)的特征:個(gè)位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個(gè)位上是0或者5的數(shù),都能被5整除。
能被3整除的數(shù)的特征:一個(gè)數(shù)的各位上 數(shù)的和能被3整除,這個(gè)數(shù)就能被3整除。
7.質(zhì)因數(shù):如果一個(gè)自然數(shù)的因數(shù)是質(zhì)數(shù),這個(gè)因數(shù)就叫做這個(gè)自然數(shù)的質(zhì)因數(shù)。
8.分解質(zhì)因數(shù):把一個(gè)合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
9.公約數(shù)、公倍數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。
幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。
10.一般關(guān)系的兩個(gè)數(shù)的最大公約數(shù)、最小公倍數(shù)用短除法來求;互質(zhì)關(guān)系的兩個(gè)數(shù)最大公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關(guān)系的兩個(gè)數(shù)的最大公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。
11.互質(zhì)數(shù):公約數(shù)只有1的兩個(gè)數(shù)叫做互質(zhì)數(shù)。
12.兩數(shù)之積等于最小公倍數(shù)和最大公約數(shù)的積。
小升初數(shù)學(xué)知識(shí)點(diǎn)參考
內(nèi)容概述
涉及知識(shí)點(diǎn)多、解題過程比較復(fù)雜的整數(shù)綜合題,以及基本依靠數(shù)論手段求解的其他類型問題。
1.如果把任意n個(gè)連續(xù)自然數(shù)相乘,其積的個(gè)位數(shù)字只有兩種可能,那么n是多少?
【分析與解】 我們知道如果有5個(gè)連
續(xù)的自然數(shù),因?yàn)槠鋬?nèi)必有2的倍數(shù),也有5的倍數(shù),則它們乘積的個(gè)位數(shù)字只能是0。
所以n小于5.
第一種情況:當(dāng)n為4時(shí),如果其內(nèi)含有5的倍數(shù)(個(gè)位數(shù)字為O或5),顯然其內(nèi)含有2的倍數(shù),那么它們乘積的個(gè)位數(shù)字為0;
如果不含有5的倍數(shù),則這4個(gè)連續(xù)的個(gè)位數(shù)字只能是1,2,3,4或6,7,8,9;它們的積的個(gè)位數(shù)字都是4;
所以,當(dāng)n為4時(shí),任意4個(gè)連續(xù)自然數(shù)相乘,其積的個(gè)位數(shù)字只有兩科可能。
第二種情況:當(dāng)n為3時(shí),有123的個(gè)位數(shù)字為6,234的個(gè)位數(shù)字為4,345的個(gè)位數(shù)字為0,,不滿足。
第三種情況:當(dāng)n為2時(shí),有12,23,34,45的個(gè)位數(shù)字分別為2,6,4,0,顯然不滿足。
至于n取1顯然不滿足了。
所以滿足條件的n是4.
2.如果四個(gè)兩位質(zhì)數(shù)a,b,c,d兩兩不同,并且滿足,等式a+b=c+d.那么
(1)a+b的最小可能值是多少?
(2)a+b的最大可能值是多少?
【分析與解】兩位的質(zhì)數(shù)有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,
67,71,73,79,83,89,97.
可得出,最小為11+19=13+17=30,最大為97+71=89+79=168.
所以滿足條件的a+b最小可能值為30,最大可能值為168.
3.如果某整數(shù)同時(shí)具備如下3條性質(zhì):
①這個(gè)數(shù)與1的差是質(zhì)數(shù);
、谶@個(gè)數(shù)除以2所得的商也是質(zhì)數(shù);
、圻@個(gè)數(shù)除以9所得的余數(shù)是5.
那么我們稱這個(gè)整數(shù)為幸運(yùn)數(shù)。求出所有的兩位幸運(yùn)數(shù)。
【分析與解】 條件①也就是這個(gè)數(shù)與1的差是2或奇數(shù),這個(gè)數(shù)只能是3或者偶數(shù),再根據(jù)條件③,除以9余5,在兩位的偶數(shù)中只有14,32,50,68,86這5個(gè)數(shù)滿足條件。
其中86與50不符合①,32與68不符合②,三個(gè)條件都符合的只有14.
所以兩位幸運(yùn)數(shù)只有14.
4.在555555的約數(shù)中,最大的三位數(shù)是多少?
【分析與解】555555=51111001
=357111337
顯然其最大的三位數(shù)約數(shù)為777.
5.從一張長2002毫米,寬847毫米的長方形紙片上,剪下一個(gè)邊長盡可能大的正方形,如果剩下的部分不是正方形,那么在剩下的紙片上再剪下一個(gè)邊長盡可能大的正方形。按照上面的過程不斷地重復(fù),最后剪得正方形的邊長是多少毫米?
【分析與解】 從長2002毫米、寬847毫米的長方形紙板上首先可剪下邊長為847毫米的正方形,這樣的正方形的個(gè)數(shù)恰好是2002除以847所得的商。而余數(shù)恰好是剩下的長方形的寬,于是有:2002847=2308,847308=2231,308231=177.23177=3.
不難得知,最后剪去的正方形邊長為77毫米。
6.已知存在三個(gè)小于20的自然數(shù),它們的最大公約數(shù)是1,且兩兩均不互質(zhì)。請(qǐng)寫出所有可能的答案。
【分析與解】 設(shè)這三個(gè)數(shù)為a、b、c,且a
小于20的合數(shù)有4,6,8,9,10,12,14,15,16,18.其中只含1種因數(shù)的合數(shù)不滿足,所以只剩下6,10,12,14,15,18這6個(gè)數(shù),但是14=27,其中質(zhì)因數(shù)7只有14含有,無法找到兩個(gè)不與14互質(zhì)的數(shù)。
小學(xué)數(shù)學(xué)必考知識(shí)點(diǎn)
1.和差倍問題
和差問題 和倍問題 差倍問題
已知條件 幾個(gè)數(shù)的和與差 幾個(gè)數(shù)的和與倍數(shù) 幾個(gè)數(shù)的差與倍數(shù)
公式適用范圍 已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系
公式 ①(和-差)2=較小數(shù)
較小數(shù)+差=較大數(shù)
和-較小數(shù)=較大數(shù)
、(和+差)2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和(倍數(shù)+1)=小數(shù)
小數(shù)倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差(倍數(shù)-1)=小數(shù)
小數(shù)倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
關(guān)鍵問題 求出同一條件下的
和與差 和與倍數(shù) 差與倍數(shù)
2.年齡問題的三個(gè)基本特征:
①兩個(gè)人的年齡差是不變的;
、趦蓚(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
、蹆蓚(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問題的基本特點(diǎn):?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)單一量,題目一般用照這樣的速度等詞語來表示。
關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;
4.植樹問題
基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 封閉曲線上植樹
基本公式 棵數(shù)=段數(shù)+1
棵距段數(shù)=總長 棵數(shù)=段數(shù)-1
棵距段數(shù)=總長 棵數(shù)=段數(shù)
棵距段數(shù)=總長
關(guān)鍵問題 確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
、茉俑鶕(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù))
、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
6.盈虧問題
基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭?
基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))兩次每份數(shù)的差
、诋(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差
、郛(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差
基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問題:確定對(duì)象總量和總的組數(shù)。
7.牛吃草問題
基本思路:假設(shè)每頭牛吃草的速度為1份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點(diǎn):原草量和新草生長速度是不變的;
關(guān)鍵問題:確定兩個(gè)不變的量。
基本公式:
生長量=(較長時(shí)間長時(shí)間牛頭數(shù)-較短時(shí)間短時(shí)間牛頭數(shù))(長時(shí)間-短時(shí)間);
總草量=較長時(shí)間長時(shí)間牛頭數(shù)-較長時(shí)間生長量;
8.周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時(shí)間叫周期。
關(guān)鍵問題:確定循環(huán)周期。
閏 年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
、倌攴莶荒鼙4整除;②如果年份能被100整除,但不能被400整除;
9.平均數(shù)
基本公式:①平均數(shù)=總數(shù)量總份數(shù)
總數(shù)量=平均數(shù)總份數(shù)
總份數(shù)=總數(shù)量平均數(shù)
、谄骄鶖(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和總份數(shù)
基本算法:
、偾蟪隹倲(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.
、诨鶞(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差; 再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②。
10.抽屜原理
抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。
例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:
、4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中nm,那么必有一個(gè)抽屜至少有:
、賙=[n/m ]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。
、趉=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn):[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11.定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號(hào)的意義。
注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
、诿總(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。
12.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項(xiàng)公式:an = a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1) 公差;
數(shù)列和公式:sn,= (a1+ an)n
數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)
項(xiàng)數(shù)公式:n= (an+ a1)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;
公差公式:d =(an-a1))(n-1);
公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
13.二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7++A3102+A2101+A1100
注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7
++A322+A221+A120
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
、谙日页霾淮笥谠摂(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。
14.加法乘法原理和幾何計(jì)數(shù)
加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1m2....... mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn):沒有端點(diǎn),沒有長度。
線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):有兩個(gè)端點(diǎn),有長度。
射線:把直線的一端無限延長。
射線特點(diǎn):只有一個(gè)端點(diǎn);沒有長度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3++(點(diǎn)數(shù)一1);
、跀(shù)角規(guī)律=1+2+3++(射線數(shù)一1);
、蹟(shù)長方形規(guī)律:個(gè)數(shù)=長的線段數(shù)寬的線段數(shù):
④數(shù)長方形規(guī)律:個(gè)數(shù)=11+22+33++行數(shù)列數(shù)
15.質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1 p
求約數(shù)個(gè)數(shù)的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)
互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
16.約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì):
1、 幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。
2、 幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。
3、 幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。
4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法:
1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。
2、短除法:先找公有的約數(shù),然后相乘。
3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。
公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48
18的倍數(shù)有:18、36、54、72
那么12和18的公倍數(shù)有:36、72、108
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì):
1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。
求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
17.數(shù)的整除
一、基本概念和符號(hào):
1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號(hào):整除符號(hào)|,不能整除符號(hào)因?yàn)榉?hào)∵,所以的符號(hào)
二、整除判斷方法:
1. 能被2、5整除:末位上的數(shù)字能被2、5整除。
2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
4. 能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。
5. 能被7整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。
②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。
6. 能被11整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
、谄鏀(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
、壑鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字后能被11整除。
7. 能被13整除:
、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的9倍后能被13整除。
三、整除的性質(zhì):
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
18.余數(shù)及其應(yīng)用
基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得ab=qr,且0
余數(shù)的性質(zhì):
①余數(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
19.余數(shù)、同余與周期
一、同余的定義:
、偃魞蓚(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。
、谝阎齻(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作ab(mod m),讀作a同余于b模m。
二、同余的性質(zhì):
①自身性:aa(mod m);
、趯(duì)稱性:若ab(mod m),則ba(mod m);
、蹅鬟f性:若ab(mod m),bc(mod m),則a c(mod m);
、芎筒钚裕喝鬭b(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);
、菹喑诵裕喝鬭 b(mod m),cd(mod m),則ac bd(mod m);
⑥乘方性:若ab(mod m),則anbn(mod m);
⑦同倍性:若a b(mod m),整數(shù)c,則ac bc(mod m
三、關(guān)于乘方的預(yù)備知識(shí):
、偃鬉=ab,則MA=Mab=(Ma)b
、谌鬊=c+d則MB=Mc+d=McMd
四、被3、9、11除后的余數(shù)特征:
①一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);
②一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);
五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。
20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用
基本概念與性質(zhì):
分?jǐn)?shù):把單位1平均分成幾份,表示這樣的一份或幾份的數(shù)。
分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
分?jǐn)?shù)單位:把單位1平均分成幾份,表示這樣一份的數(shù)。
百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。
常用方法:
、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。
、趯(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。
、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。
、芗僭O(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。
、萘坎蛔兯季S方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。
、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。
、酀舛扰浔确ǎ阂话銘(yīng)用于總量和分量都發(fā)生變化的狀況。
21.分?jǐn)?shù)大小的比較
基本方法:
、偻ǚ址肿臃ǎ菏顾蟹?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。
、谕ǚ址帜阜ǎ菏顾蟹?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。
、刍鶞(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。
、芊肿雍头帜复笮”容^法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。
⑤倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見同倍率變化規(guī)律)
⑥轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。
、弑稊(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。
、啻笮”容^法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。
⑨倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。
、饣鶞(zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。
22.分?jǐn)?shù)拆分
一、 將一個(gè)分?jǐn)?shù)單位分解成兩個(gè)分?jǐn)?shù)之和的公式:
、 =+;
②=+(d為自然數(shù));
23.完全平方數(shù)
完全平方數(shù)特征:
1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。
5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。
6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。
7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。
比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。
比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。
比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或
比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。
正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。
反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。
比例尺:圖上距離與實(shí)際距離的比叫做比例尺。
按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。
25.綜合行程
基本概念:行程問題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.
基本公式:路程=速度時(shí)間;路程時(shí)間=速度;路程速度=時(shí)間
關(guān)鍵問題:確定運(yùn)動(dòng)過程中的位置和方向。
相遇問題:速度和相遇時(shí)間=相遇路程(請(qǐng)寫出其他公式)
追及問題:追及時(shí)間=路程差速度差(寫出其他公式)
流水問題:順?biāo)谐?(船速+水速)順?biāo)畷r(shí)間
逆水行程=(船速-水速)逆水時(shí)間
順?biāo)俣?船速+水速
逆水速度=船速-水速
靜水速度=(順?biāo)俣?逆水速度)2
水 速=(順?biāo)俣?逆水速度)2
流水問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。
過橋問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。
26.工程問題
基本公式:
、俟ぷ骺偭=工作效率工作時(shí)間
、诠ぷ餍=工作總量工作時(shí)間
③工作時(shí)間=工作總量工作效率
基本思路:
、偌僭O(shè)工作總量為1(和總工作量無關(guān));
、诩僭O(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.
關(guān)鍵問題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。
經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。
27.邏輯推理
基本方法簡(jiǎn)介:
①條件分析假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。
②條件分析列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。
、蹢l件分析圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示是,有等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒有表示不認(rèn)識(shí)。
④邏輯計(jì)算:在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。
⑤簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。
28.幾何面積
基本思路:
在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。
常用方法:
1. 連輔助線方法
2. 利用等底等高的兩個(gè)三角形面積相等。
3. 大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。
4. 利用特殊規(guī)律
、俚妊苯侨切危阎我庖粭l邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)
、谔菪螌(duì)角線連線后,兩腰部分面積相等。
、蹐A的面積占外接正方形面積的78.5%。
29.立體圖形
名稱 圖形 特征 表面積 體積
長
方
體 8個(gè)頂點(diǎn);6個(gè)面;相對(duì)的面相等;12條棱;相對(duì)的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正
方
體 8個(gè)頂點(diǎn);6個(gè)面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3
圓
柱
體 上下兩底是平行且相等的圓;側(cè)面展開后是長方形; S=S側(cè)+2S底
S側(cè)=Ch V=Sh
圓
錐
體 下底是圓;只有一個(gè)頂點(diǎn);l:母線,頂點(diǎn)到底圓周上任意一點(diǎn)的距離; S=S側(cè)+S底
S側(cè)=rl V=Sh
球
體 圓心到圓周上任意一點(diǎn)的距離是球的半徑。 S=4r2 V=r3
30.時(shí)鐘問題快慢表問題
基本思路:
1、 按照行程問題中的思維方法解題;
2、 不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體;
3、 路程的單位是分格(表一周為60分格);
4、 時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過的時(shí)間;
【小升初數(shù)學(xué)必考知識(shí)點(diǎn)參考】相關(guān)文章:
關(guān)于小升初數(shù)學(xué)必考知識(shí)點(diǎn)大全01-29
小升初科學(xué)必考知識(shí)點(diǎn),小升初科學(xué)08-31
長沙小升初數(shù)學(xué)數(shù)的整除必考知識(shí)點(diǎn)匯總09-09
小升初數(shù)學(xué)四則運(yùn)算必考知識(shí)點(diǎn)09-04
小升初必考的綜合知識(shí)06-26