亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

數(shù)學 百文網(wǎng)手機站

數(shù)學橢圓知識點

時間:2022-04-02 17:00:22 數(shù)學 我要投稿

數(shù)學橢圓知識點匯總

  在現(xiàn)實學習生活中,相信大家一定都接觸過知識點吧!知識點就是學習的重點。哪些知識點能夠真正幫助到我們呢?下面是小編整理的數(shù)學橢圓知識點,希望對大家有所幫助。

數(shù)學橢圓知識點匯總

  數(shù)學橢圓知識點 篇1

  橢圓的面積公式

  S=(圓周率)ab(其中a,b分別是橢圓的長半軸,短半軸的長).

  或S=(圓周率)AB/4(其中A,B分別是橢圓的長軸,短軸的長).

  橢圓的周長公式

  橢圓周長沒有公式,有積分式或無限項展開式。

  橢圓周長(L)的精確計算要用到積分或無窮級數(shù)的求和。如

  L = /2]4a * sqrt(1-(e*cost)^2)dt((a^2+b^2)/2) [橢圓近似周長], 其中a為橢圓長半軸,e為離心率

  橢圓離心率的定義為橢圓上的點到某焦點的距離和該點到該焦點對應(yīng)的準線的距離之比,設(shè)橢圓上點P到某焦點距離為PF,到對應(yīng)準線距離為PL,則

  e=PF/PL

  橢圓的準線方程

  x=a^2/C

  橢圓的離心率公式

  e=c/a(e1,因為2a2c)

  橢圓的焦準距 :橢圓的焦點與其相應(yīng)準線(如焦點(c,0)與準線x=+a^2/C)的距離,數(shù)值=b^2/c

  橢圓焦半徑公式 |PF1|=a+ex0 |PF2|=a-ex0

  橢圓過右焦點的半徑r=a-ex

  過左焦點的半徑r=a+ex

  橢圓的通徑:過焦點的垂直于x軸(或y軸)的直線與橢圓的兩交點A,B之間的距離,數(shù)值=2b^2/a

  點與橢圓位置關(guān)系 點M(x0,y0) 橢圓 x^2/a^2+y^2/b^2=1

  點在圓內(nèi): x0^2/a^2+y0^2/b^21

  點在圓上: x0^2/a^2+y0^2/b^2=1

  點在圓外: x0^2/a^2+y0^2/b^21

  直線與橢圓位置關(guān)系

  y=kx+m ①

  x^2/a^2+y^2/b^2=1 ②

  由①②可推出x^2/a^2+(kx+m)^2/b^2=1

  相切△=0

  相離△0無交點

  相交△0 可利用弦長公式:A(x1,y1) B(x2,y2)

  |AB|=d = (1+k^2)|x1-x2| = (1+k^2)(x1-x2)^2 = (1+1/k^2)|y1-y2| = (1+1/k^2)(y1-y2)^2

  橢圓通徑(定義:圓錐曲線(除圓外)中,過焦點并垂直于軸的弦)公式:2b^2/a

  橢圓的斜率公式 過橢圓上x^2/a^2+y^2/b^2=1上一點(x,y)的切線斜率為 -(b^2)X/(a^2)y

  數(shù)學橢圓知識點 篇2

  ⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

 、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

  ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

  ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

 、善矫嫦蛄浚河嘘P(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

  ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的.位置關(guān)系

 、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

 、闻帕、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

 、细怕逝c統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

 、袑(shù):導數(shù)的概念、求導、導數(shù)的應(yīng)用

 、褟(fù)數(shù):復(fù)數(shù)的概念與運算

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2—2accosB注:角B是邊a和邊c的夾角

  圓的標準方程(x—a)2+(y—b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  拋物線標準方程y2=2pxy2=—2p_2=2pyx2=—2py

  直棱柱側(cè)面積S=c_h斜棱柱側(cè)面積S=c'_h

  正棱錐側(cè)面積S=1/2c_h'正棱臺側(cè)面積S=1/2(c+c')h'

  圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2

  圓柱側(cè)面積S=c_h=2pi_h圓錐側(cè)面積S=1/2_c_l=pi_r_l

  弧長公式l=a_ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2_l_r

  錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

  柱體體積公式V=s_h圓柱體V=p_r2h

  乘法與因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b

  |a—b|≥|a|—|b|—|a|≤a≤|a|

  一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=—b/aX1_X2=c/a注:韋達定理

  判別式

  b2—4ac=0注:方程有兩個相等的實根

  b2—4ac>0注:方程有兩個不等的實根

  b2—4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA

  cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)

  倍角公式

  tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga

  cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)

  tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)

  2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)

  sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB

【數(shù)學橢圓知識點匯總】相關(guān)文章:

高中數(shù)學橢圓知識點必看12-13

初中數(shù)學中考橢圓的知識點歸納01-26

數(shù)學知識點匯總03-07

數(shù)學中考知識點匯總10-26

高考數(shù)學重點知識點匯總11-08

數(shù)學高考易錯知識點匯總09-26

高考數(shù)學易錯知識點匯總09-26

初三數(shù)學必考知識點匯總10-20

中考數(shù)學易考知識點匯總10-31

中考數(shù)學匯總函數(shù)的知識點10-30