高二數(shù)學(xué)平面向量知識(shí)點(diǎn)
1.有向線(xiàn)段的定義
線(xiàn)段的端點(diǎn)A為始點(diǎn),端點(diǎn)B為終點(diǎn),這時(shí)線(xiàn)段AB具有射線(xiàn)AB的方向.像這樣,具有方向的線(xiàn)段叫做有向線(xiàn)段.記作:.
2.有向線(xiàn)段的三要素:有向線(xiàn)段包含三個(gè)要素:始點(diǎn)、方向和長(zhǎng)度.
3.向量的定義:
(1)具有大小和方向的量叫做向量.向量有兩個(gè)要素:大小和方向.
(2)向量的表示方法:①用兩個(gè)大寫(xiě)的英文字母及前頭表示,有向線(xiàn)段來(lái)表示向量時(shí),也稱(chēng)其為向量.書(shū)寫(xiě)時(shí),則用帶箭頭的小寫(xiě)字母,,,來(lái)表示.
4.向量的長(zhǎng)度(模):如果向量=,那么有向線(xiàn)段的長(zhǎng)度表示向量的大小,叫做向量的長(zhǎng)度(或模),記作||.
5.相等向量:如果兩個(gè)向量和的方向相同且長(zhǎng)度相等,則稱(chēng)和相等,記作:=.
6.相反向量:與向量等長(zhǎng)且方向相反的向量叫做的相反向量,記作:-.
7.向量平行(共線(xiàn)):如果兩個(gè)向量方向相同或相反,則稱(chēng)這兩個(gè)向量平行,向量平行也稱(chēng)向量共線(xiàn).向量平行于向量,記作//.規(guī)定: //.
8.零向量:長(zhǎng)度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問(wèn)題時(shí),一定要看清題目中是零向量還是非零向量.
9.單位向量:長(zhǎng)度等于1的向量叫做單位向量.
10.向量的加法運(yùn)算:
(1)向量加法的三角形法則
11.向量的減法運(yùn)算
12、兩向量的和差的模與兩向量模的和差之間的關(guān)系
對(duì)于任意兩個(gè)向量,,都有|||-|||||+||.
13.?dāng)?shù)乘向量的定義:
實(shí)數(shù)和向量的乘積是一個(gè)向量,這種運(yùn)算叫做數(shù)乘向量,記作.
向量()的`長(zhǎng)度與方向規(guī)定為:
(1)||=|
(2)當(dāng)0時(shí),與方向相同;當(dāng)0時(shí),與方向相反.
(3)當(dāng)=0時(shí),當(dāng)=時(shí),=.
14.?dāng)?shù)乘向量的運(yùn)算律:
(1))= (結(jié)合律)
(2)(+) =+(第一分配律)
(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,則//的充分必要條件是,存在唯一的實(shí)數(shù),使得=.
如果與不共線(xiàn),若m=n,則m=n=0.
16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.
=||,即==(,)
17.線(xiàn)段中點(diǎn)的向量表達(dá)式
點(diǎn)M是線(xiàn)段AB的中點(diǎn),O是平面內(nèi)任意一點(diǎn),則=(+).
18.平面向量的直角坐標(biāo)運(yùn)算:如果=(a1,a2),=(b1,b2),則
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用兩點(diǎn)表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).
20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則
=a1=b1且a2=b2.
//a1b2-a2b1=0.特別地,如果b10,b20,則// =.
21.向量的長(zhǎng)度公式:若=(a1,a2),則||=.
22.平面上兩點(diǎn)間的距離公式:若A(x1,y1),B(x2,y2),則||=.
23.中點(diǎn)公式
若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),點(diǎn)M(x,y)是線(xiàn)段AB的中點(diǎn),則x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則
x=,y=
25.(1)兩個(gè)向量夾角的取值范圍是[0,p],即0,p.
當(dāng)=0時(shí),與同向;當(dāng)=p時(shí),與反向
當(dāng)= 時(shí),與垂直,記作.
(3)向量的內(nèi)積定義:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.
(4)內(nèi)積的幾何意義
與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積
當(dāng)0,90時(shí),0;=90時(shí),
90時(shí),0.
26.向量?jī)?nèi)積的運(yùn)算律:
(1)交換率
(2)數(shù)乘結(jié)合律
(3)分配律
(4)不滿(mǎn)足組合律
27.向量?jī)?nèi)積滿(mǎn)足乘法公式
29.向量?jī)?nèi)積的應(yīng)用:
【高二數(shù)學(xué)平面向量知識(shí)點(diǎn)】相關(guān)文章:
高二數(shù)學(xué)平面向量知識(shí)點(diǎn)整理01-26
高二數(shù)學(xué)平面向量知識(shí)點(diǎn)歸納07-18
高二數(shù)學(xué)平面向量的知識(shí)點(diǎn)歸納01-01
高二數(shù)學(xué)平面向量知識(shí)點(diǎn)梳理01-26
數(shù)學(xué)平面向量知識(shí)點(diǎn)11-12
高二數(shù)學(xué)關(guān)于平面向量的知識(shí)點(diǎn)歸納11-20
高二數(shù)學(xué)《平面向量的線(xiàn)性運(yùn)算》的知識(shí)點(diǎn)12-13