數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)7篇
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)1
作法
(1)列表:表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值。
(2)描點(diǎn):在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。
一般地,y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)即可畫出。
正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)畫出即可。
(3)連線: 按照橫坐標(biāo)由小到大的順序把描出的各點(diǎn)用平滑曲線連接起來。
性質(zhì)
(1)在一次函數(shù)圖像上的任取一點(diǎn)P(x,y),則都滿足等式:y=kx+b(k≠0)。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總交于(-b/k,0)。正比例函數(shù)的圖像都經(jīng)過原點(diǎn)。
k,b決定函數(shù)圖像的位置:
y=kx時(shí),y與x成正比例:
當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過第二、四象限,y隨x的增大而減小。
y=kx+b時(shí):
當(dāng) k>0,b>0, 這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;
當(dāng) k>0,b<0,這時(shí)此函數(shù)的圖象經(jīng)過第一、三、四象限;
當(dāng) k<0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、四象限;
當(dāng) k<0,b<0,這時(shí)此函數(shù)的圖象經(jīng)過第二、三、四象限。
當(dāng)b>0時(shí),直線必通過第一、三象限;
當(dāng)b<0時(shí),直線必通過第二、四象限。
特別地,當(dāng)b=0時(shí),直線經(jīng)過原點(diǎn)O(0,0)。
這時(shí),當(dāng)k>0時(shí),直線只通過第一、三象限,不會(huì)通過第二、四象限。當(dāng)k<0時(shí),直線只通過第二、四象限,不會(huì)通過第一、三象限。
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)2
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們說x是自變量(independentvariable),y是x的函數(shù)(function)。
如果當(dāng)x=a時(shí)y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportionalfunction),其中k叫做比例系數(shù)。
形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linearfunction)。正比例函數(shù)是一種特殊的一次函數(shù)。
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)3
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個(gè)步驟
。1)列表;
。2)描點(diǎn);
。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b<0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b.
。2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②
。3)解這個(gè)二元一次方程,得到k,b的值。
。4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt.
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.
六、常用公式:(不全,希望有人補(bǔ)充)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)4
一.常量、變量:
在一個(gè)變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一切實(shí)數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對(duì)于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。
四、函數(shù)圖象的定義:一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的`圖形,就是這個(gè)函數(shù)的圖象.
五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值。)
注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對(duì)稱。
2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法(2)圖像法(3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b=0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y=kx。
(2)性質(zhì):當(dāng)k>0時(shí),直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y=kx經(jīng)過二,四象限,從左向右下降,即隨著x的增大y反而減小。
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
2、乘法公式:
、倨椒讲罟剑(a+b)(a-b)=a2-b2
文字語言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
(1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個(gè)因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個(gè)式子的方法。
1.一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時(shí)函數(shù)y=ax+b的值為0.
2.求ax+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時(shí)函數(shù)y=ax+b的值大于0.
4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=ax+b在x軸上方的部分(射線)所對(duì)應(yīng)的的橫坐標(biāo)的取值范圍.
十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)
1.勾股定理的內(nèi)容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。
注:勾——最短的邊、股——較長的直角邊、弦——斜邊。
勾股定理又叫畢達(dá)哥拉斯定理
2.勾股定理的逆定理:
如果三角形中兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。即
3.勾股數(shù):
滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).常用勾股數(shù):3、4、5;5、12、13;7、24、25;8、15、17。
4.勾股定理常常用來算線段長度,對(duì)于初中階段的線段的計(jì)算起到很大的作用
例題精講:
例1:若一個(gè)直角三角形三邊的長分別是三個(gè)連續(xù)的自然數(shù),則這個(gè)三角形的周長為
解析:可知三邊長度為3,4,5,因此周長為12
(變式)一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),則它的三邊長分別為
解析:可知三邊長度為6,8,10,則周長為24
例2:已知直角三角形的兩邊長分別為3、4,求第三邊長.
解析:第一種情況:當(dāng)直角邊為3和4時(shí),則斜邊為5
第二種情況:當(dāng)斜邊長度為4時(shí),一條直角邊為3,則另一邊為根號(hào)7
《點(diǎn)評(píng)》此題是一道易錯(cuò)題目,同學(xué)們應(yīng)該認(rèn)真審題!
例3:一個(gè)直角三角形中,兩直角邊長分別為3和4,下列說法正確的是()
A.斜邊長為25
B.三角形周長為25
C.斜邊長為5
D.三角形面積為20
解析:根據(jù)勾股定理,可知斜邊長度為5,選擇C
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)5
一次函數(shù)的解析式
、冱c(diǎn)斜式:y-y1=k(x-x1)(k為直線斜率,(x1,y1)為該直線所過的一個(gè)點(diǎn));
、趦牲c(diǎn)式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直線上(x1,y1)與(x2,y2)兩點(diǎn)),
、劢鼐嗍剑簒/a+y/b=1 (a、b分別為直線在x、y軸上的截距)。
解析式表達(dá)的局限性:
、偎钘l件較多(2個(gè)點(diǎn),因?yàn)槭褂么ㄏ禂?shù)法需要列一個(gè)二元一次方程組);
、鄄荒鼙磉_(dá)沒有斜率的直線(即垂直于x軸的直線;注意沒有斜率的直線平行于y軸表述不準(zhǔn),因?yàn)閤=0與y軸重合);
④不能表達(dá)平行于坐標(biāo)軸的直線和過原點(diǎn)的直線。
x軸的正半軸逆時(shí)針旋轉(zhuǎn)到直線所成的角(直線與x軸正方向所成的角)稱為直線的傾斜角。設(shè)一直線的傾斜角為,則該直線的斜率k=tan。傾斜角的范圍為(0, )。
只要這樣踏踏實(shí)實(shí)完成每天的計(jì)劃和小目標(biāo),就可以自如地應(yīng)對(duì)新學(xué)習(xí),達(dá)到長遠(yuǎn)目標(biāo)。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)6
一、函數(shù)
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。
。2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線。
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
4、正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大;
。2)當(dāng)k<0時(shí),圖像經(jīng)過第二、四象限,y隨x的增大而減小。
5、一次函數(shù)的性質(zhì)
一般地,一次函數(shù)有下列性質(zhì):
。1)當(dāng)k>0時(shí),y隨x的增大而增大
(2)當(dāng)k<0時(shí),y隨x的增大而減小
6、正比例函數(shù)和一次函數(shù)解析式的確定
確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
7、一次函數(shù)與一元一次方程的關(guān)系:
任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式。而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0)。當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同。
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值。
從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點(diǎn)的橫坐標(biāo)值。
數(shù)學(xué)一次函數(shù)學(xué)習(xí)方法
及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學(xué)習(xí)模式
數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。
要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
數(shù)學(xué)一次函數(shù)學(xué)習(xí)技巧
1.必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習(xí)題,都是針對(duì)一個(gè)知識(shí)點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對(duì)性也強(qiáng),應(yīng)該能夠迅速做出。許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。
2.在解題過程中有意識(shí)地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢(shì)。
數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會(huì)反映出一定的思維方法,如果我們有意識(shí)地注重這些思維方法,時(shí)間長了頭腦中便形成了對(duì)每一類題型的“通用”解法,即正確的思維定勢(shì),這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。
3.多做綜合題。
綜合題,由于用到的知識(shí)點(diǎn)較多,頗受命題人青睞。做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高。“多做練習(xí)”要長期堅(jiān)持,每天都要做幾道,時(shí)間長了才會(huì)有明顯的效果和較大的收獲。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)7
一次函數(shù)的表達(dá)式是=x+b (≠b 、b是常數(shù)),其中是x自變量,是因變量,讀作是x的一次函數(shù),當(dāng)x取一個(gè)值時(shí),有且只有一個(gè)值與x對(duì)應(yīng),如果有兩個(gè)或兩個(gè)以上的值與x對(duì)應(yīng),那么這個(gè)函數(shù)就不是一次函數(shù)。
一次函數(shù)表達(dá)式求解:
一次函數(shù)也叫做線性函數(shù),一般在X,坐標(biāo)軸中用一條直線來表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來解答出另一個(gè)變量的值。
一次函數(shù)的表達(dá)方式一般都為=x+b的函數(shù),叫做是X的一次函數(shù),當(dāng)常數(shù)項(xiàng)為零時(shí)的一次函數(shù),可表示為=x(≠0),這時(shí)的常數(shù)也叫比例系數(shù)。常用來表示一次函數(shù)的方法有解析法,圖像法和列表法。一次函數(shù)的解析式一般分為點(diǎn)斜式,兩點(diǎn)式,截距式。
解答一次函數(shù)的作法最簡單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下=x+b(≠0)的圖象過(0,b)和(-b/,0)兩點(diǎn)即可畫出。
一次函數(shù)與一次方程之間的關(guān)系:
一次函數(shù)、方程和不等式是初中數(shù)學(xué)的主要內(nèi)容之一,也是中考的必考知識(shí)點(diǎn),新課程標(biāo)準(zhǔn)把三部分的關(guān)系提到了十分明朗化的程度。因此,應(yīng)該重視這部分內(nèi)容的教學(xué)在教學(xué)中,可以從以下幾個(gè)知識(shí)點(diǎn)進(jìn)行辨析。
任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來看,就相當(dāng)于已知直線=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。
利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。
注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)是同一個(gè)問題。不同的是前者從數(shù)的角度來解決問題,后者從形的角度來解決問題。
每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。
【數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)7篇】相關(guān)文章:
2016中考數(shù)學(xué)知識(shí)點(diǎn):一次函數(shù)09-15
一次函數(shù)—中考常見數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納11-24
初三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)一次函數(shù)的解析式08-09
八年級(jí)上冊(cè)數(shù)學(xué)書一次函數(shù)知識(shí)點(diǎn)10-11
高一年級(jí)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)06-21
數(shù)學(xué)高考知識(shí)點(diǎn)11-23
數(shù)學(xué)向量知識(shí)點(diǎn)11-17