必修二數(shù)學空間幾何相關(guān)知識點
漫長的學習生涯中,是不是經(jīng)常追著老師要知識點?知識點就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編為大家收集的必修二數(shù)學空間幾何相關(guān)知識點,僅供參考,希望能夠幫助到大家。
空間幾何體表面積計算公式
1、直棱柱和正棱錐的表面積
設棱柱高為h、底面多邊形的周長為c、則得到直棱柱側(cè)面面積計算公式:
S=ch、即直棱柱的側(cè)面積等于它的底面周長和高的乘積、
正棱錐的側(cè)面展開圖是一些全等的等腰三角形、底面是正多邊形、
如果設它的底面邊長為a、底面周長為c、斜高為h'、則得到正n棱錐的側(cè)面積計算公式
S=1/2xnah'=1/2xch'、即正棱錐的側(cè)面積等于它的底面的周長和斜高乘積的一半、
2、正棱臺的表面積
正棱臺的側(cè)面展開圖是一些全等的等腰梯形、
設棱臺下底面邊長為a、周長為c、上底面邊長為a'、周長為c'、斜高為h'則得到正n棱臺的側(cè)面積公式: S=1/2xn(a+a')h'=1/2(c+c')h'、
3、球的表面積
S=4πR2、即球面面積等于它的大圓面積的四倍、
4.圓臺的表面積
圓臺的側(cè)面展開圖是一個扇環(huán),它的表面積等于上,下兩個底面的面積和加上側(cè)面的面積,即
S=π(r'2+r2+r'l+rl)
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形;②側(cè)面是梯形;③側(cè)棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的.頂點;③側(cè)面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學知識點3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
【必修二數(shù)學空間幾何相關(guān)知識點】相關(guān)文章:
數(shù)學必修二空間幾何知識點10-21
數(shù)學必修二空間幾何知識點2篇10-21
必修二數(shù)學空間兩直線的位置關(guān)系知識點10-18
數(shù)學必修二概率知識點10-15
數(shù)學必修二知識點的歸納02-08
人教版必修二數(shù)學知識點10-14
數(shù)學必修二第二章知識點11-20