《解方程》教學反思
身為一位優(yōu)秀的老師,教學是我們的工作之一,寫教學反思可以快速提升我們的教學能力,教學反思應該怎么寫呢?下面是小編為大家收集的《解方程》教學反思,僅供參考,希望能夠幫助到大家。
《解方程》教學反思1
小學五年級第四單元教材的設計打破了傳統(tǒng)的教學方法。在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數=和-另一個加數;被減數=減數+差等關系來求出方程中的未知數。而新教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數,等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
在教學前,由于我個人比較偏好于傳統(tǒng)的教學方法,總覺得用等式的性質解方程比較麻煩。為了轉變自己的教學思想,更新教學觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質,把抽象的解方程的過程用形象化的方式表現出來,使學生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,通過直觀演示,充分給學生提供小組交流的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數,等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的`學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。 通過近段時間的學習,發(fā)現學生對這種方法掌握的很好,而且很樂意用等式的性質來解方程,但同時讓我感到了一些困惑:
1、教材的編排上,整體難度下降,有意避開了,形如:45—X=23 56÷X=8等類型的題目。把用等式解決的方法單一化了。在實際教學中,如果用等式性質來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數,真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。
2、 內容看似少實際教得多。難度下降后,看起來教師要教的內容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。
總之,要使孩子們愛學、樂學,教師就必須更新教學觀念,充分理解教材,并要懂得為教學去創(chuàng)設合理情境,靈活處理教材中的問題,鼓勵學生算法的多樣化,真正體現課改精神——“人人學有價值的數學,人人都能獲得必須的數學;不同的人在數學上得到不同的發(fā)展。
《解方程》教學反思2
教學《解方程》這部分內容時,我一開始就有些擔心學生不容易學好。因為方程的思維方式和原來的解決問題思考方式完全不同,而學生已經著慣了原來的思考模式,恐怕很難接受新的方法,即使這種方法的思維含量更少,完全不用拐彎抹角地思考,不用逆向思維。學生對于新的東西,總是因為不熟悉而否定它的簡便好用,因為對他們來說用起來不熟練就是不方便的。其次是解方程、驗算、用方程解決問題等都需要固定的格式,學生要花時間適應這種格式記住這種格式,并熟練地應用也是一大難點。
在上課時,我是先按照書上例子展開教學。然后我說明,列方程解決問題就是把實際情況最直接地表示出來,比如天平左邊是杯子和水,水的質量是x 克,就寫100+x ,右邊是砝碼250 克,左右平衡,用等號連接,列成的方程就是100+x=250 。
接著教學怎么解方程,求出方程的解。我讓學生自己來求x 等于多少,學生都能解決。書上介紹的方法是兩邊同時減去同一個數,左右兩邊仍然相等。但是學生的方法都是根據加法算式中各數的關系來求的。即使有些學生說不清自己是用什么方法,我也能看得出來是用這種方法。我肯定了學生的方法,再從天平的原理出發(fā)介紹了書上的方法,然后問學生:你們喜歡哪種方法?學生幾乎異口同聲地肯定了自己的方法。因此,我說,那我們就用自己用得好的方法來求方程中的未知數,。同時, 介紹了使方程左右兩邊相等的未知數的值叫方程的解,求出方程的解的過程叫解方程。認識了概念后,要及時加以鞏固。我出了兩道題幫助學生鞏固概念。
二是讓學生來解方程。學生很快能算出來,我告訴學生解方程的寫法跟我們以前的計算寫法不同,它有特定的格式,我一邊講解格式一邊板書。要求學生讀一讀解方程的過程,看是否理解,再在自己的本子上寫出過程。然后重新做了一道加以鞏固。接下來的難點是驗算。我先講解怎么驗算,再請學生來說驗算過程,然后把驗算過程也按照特定格式寫下來。
學生作業(yè)反饋時,有幾個問題:一、用方程表示題目中的`數量關系很多都用老方法;二、解方程的格式寫法容易出錯;三、方程的解的驗算過程不是很理解,經常出錯。
作業(yè)講評時我們一起糾正了錯誤,概括了錯誤類型,要求學生避免這些錯誤,然而一些學生依然在重復原來的錯誤。這是數學教學中常有的現象,有些題目第一次用了錯誤的方法,往往糾正很多次還是著慣用錯誤的方法。
我反思了自己的教學,也有幾點想法:
一、用方程來表示數量關系學生出現困難,是通過我的幫助列出方程,我并沒有及時讓學生鞏固方法。
二、解方程、驗算的過程和格式的教學以我的講解為主,而那時我沒有想辦法很好的提高學生的注意力,因此學生練著時丟三落四較多。
三、我的講解過多,學生自己的思考過少,類似于灌輸,學生學著較被動,到最后模仿解法和格式為主,卻沒有理解為什么這樣寫,因此學生有時正確,有時出錯,沒有掌握好。
四、這個教學內容對我們的學生來說,難點較多,而我并沒有為學生的接受能力進行減負思考,一股腦地把所有新的東西都倒給學生,造成學生超負荷。
《解方程》教學反思3
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。
本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向學生補充講解,且屬于學生必會、考試必考內容。原因如下:1、在列方程解決實際問題時,學生中往往會出現以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學生產生等式的基本性質只適用于部分方程的錯誤理解。
基于上述原因,我今天在教學完例2后為學生補充了相應內容,但教學效果較差。雖然許多學生能根據加減乘除各部分之間的關系推導出X的值,但當要求他們根據等式的性質來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據等式的'基本性質,但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現明顯混淆的現象。如5X=1.5本應根據等式的性質直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關系教好呢,還是按等式的性質教學好呢?
《解方程》教學反思4
五年級上冊利用等式的性質解方程一直困擾著老師們,因為類似a-x=b的方程,則比較麻煩,因此許多老師就避開等式的性質,轉而用四則運算各部分之間的關系進行教學,這樣以來勢必會削弱學生對等式的性質的理解和掌握。我教學中是這樣做的:第一節(jié)課時教學學習等式的性質和用等式的性質解方程,在書寫上要求學生按這樣的格式書寫如:
x+100=250
解:x-100+100-100=250-100
X=150
強調我們解方程的根據是等式的性質,即把等式的兩邊同時減去100,等式左右兩邊仍然相等,通過練習使學生達到熟練程度。
第二課時教學時,引入類似a-x=b的方程,例如10.5-x=7.5這樣的方程,讓學生討論,這樣的方程我們如何解呢?有的學生想到了運用減法各部分之間的關系來解方程,即除數等于被除數除以商,也有一部分同學運用等式的性質來解方程,先將方程的左右兩邊同時加上x,,即10.5-x+x=7.5+x:方程變成了x+7.5=10.5,再把方程左右兩邊同時減去7.5,求出x的值;然后引導學生觀察在運用等式的基本性質解方程時,方程左邊加一個數又減一這個數,可以相互抵消,因此在書寫時,可以省略不寫,如:15+x=85,15+x-15=85-15,左邊可以將加15和減15省略不寫,學生很快學會了這種方法。最后引導學生把我們所學習的加減法方程的樣式及解法可以歸納如下:
x+a=b
x=b-a(根據:把方程的左右兩邊同時減去a,等式仍然成立;
或者是想:一個加數=和-另一個加數)
x-a=b
x=b+a(根據:把方程的左右兩邊同時加a,等式仍然成立;
或者想:被減數=減數+差)
a-x=b
x=a-b(根據:把方程的'左右兩邊同時加x,再把方程左右兩邊同時減去b等式仍然成立;或者想:減數=被減數-差)
通過以上幾個步驟的教學,我班學生對于用等式的基本性質解方程,或是運用加減法各部分間的關系解方程,都能運用自如,并能在后面學習了乘除法的方程后能夠自覺進行整理,概括方程的樣式和解方程的根據,收到了較好的教學效果。
《解方程》教學反思5
教學重難點是掌握較復雜方程的解法,會正確分析題目中的數量關系;教學目的是進一步掌握列方程解決問題的方法。這一小節(jié)內容是在前面初步學會列方程解比較容易的應用題的基礎上,教學解答稍復雜的兩步計算應用題。例1若用算術方法解,需逆思考,思維難度大,學生容易出現先除后減的錯誤,用方程解,思路比較順,體現了列方程解應用題的優(yōu)越性。
一、從學生喜聞樂見的事物入手,降低問題的難度。
解答例1這類應用題的關鍵是找題里數量間的相等關系。為了幫助學生找準題量的等量關系。我從學生喜歡的足球入手,引出數學問題,激發(fā)學生的學習數學的興趣,建立學生熱愛體育 1
運動的良好情感,又為學習新知識做了很多的鋪墊。
二、放手讓學生思考、解答,選擇解題最佳方案。
讓學生當小老師,從問題中找出數量之間的關系,弄清解決問題的思路,展示講解自己的思考過程和結果,這樣既增加學生學習的信心,又培養(yǎng)學生分析問題的能力,發(fā)展學生的思維空間;然后,我大膽放手,讓學生用自己學過的'方法來解答例1,最后老師讓學生把各種不同的解法板演在黑板上,讓學生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強化了列方程解題的優(yōu)越性和解題的關鍵,促進了學生邏輯思維的發(fā)展。
三、教會學生學習方法,比教會知識更重要。
應用題的教學,關鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學中,教師敢于大膽放手,讓學生觀察圖畫,了解畫面信息,白色皮多少塊,黑色皮多少塊,白色皮比黑色皮少多少等信息,組織學生小組討論交流,再在練習本上畫線段圖,然后指導學生根據線段圖,分析數量之間的關系,討論交流解決問題的方法,讓學生
成為學習的主人,參與到教學的全過程中去。所以在應用題的教學中,教師要指導學生 學會分析應用題的解題方法,一句話,教會學生學習方法比教會知識更重要,讓學生真正成為學習的主體。教師是教學過程的組織者、引導者。
《解方程》教學反思6
《解方程》是人教課標版小學數學五年級上冊第四單元內容,本節(jié)課是在認識用字母表示數的基礎上進行教學的,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質解方程。
我對課時安排及教學設計均做了較大調整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學,要求學生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學。調整后的教案改為第一課時完成“方程的解”及“解方程”概念教學、會解形如X±A=B的方程,掌握檢驗的格式;第二課時只完成乘除法方程的解法。我上的是第一課時,其次對于教學設計也做了相應處理,將例1 改為:X+20=70,又將X-a=b形式的方程穿插學習過程之中。
為什么我會做如此改動呢?基于以下兩點原因:
1、考慮到學生一節(jié)課內如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內容太多,怕影響教學效果。2、如果能將“解方程”與“方程的解”這兩個概念結合規(guī)范的解方程書寫過程和結果來向學生解釋,更利于學生理解掌握?傮w思路如下:
1、從復習天平保持平衡的道理入手,引出課題,引導學習質疑,有利于激發(fā)學生主動探究、深入學習的積極性。
2、通過自主學習、組內交流、合作,達到培養(yǎng)學生自主、互助的精神。
3、給足夠的時間讓學生學習,讓學生發(fā)現。
4、多層次的練習形式,有利于學生對知識進一步的理解與掌握,并及時有效地鞏固強化概念。
5、教師始終把學生放在主體地位,為學生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學生掌握正確的學習方法,總結失敗原因,發(fā)揚成功經驗,培養(yǎng)良好的學習習慣。
6、自學思考匯報交流既有利于每個學生的自主探索,保證個性發(fā)展,也有利于教師考察學生思維的合理性和靈活性,考察學生是否能用清晰的數學語言表達自己的觀點。
在具體教學過程中,我從以下幾個方面入手:
一、感受天平的平衡現象,悟出等式的性質變化。
教學中我先利用課件演示了“我說你答”的游戲讓學生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例題X+20=70
二、利用 等式性質解方程-,初步感悟它的妙用
在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數,等式仍然成立”這個規(guī)律,通過討論:方程X+20=70中左右兩邊同時減去的為什么是20,而不是其它數呢?讓學生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現孩子們的'學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。
三、確保正確率,及時進行檢驗。
原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學生在這個方面就會顯得不耐煩,在經歷了一個詳細的檢驗過程之后,然后教給學生一個簡便的檢驗方法,學生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。
通過教學,發(fā)現學生對這種方法掌握的很好,而且很樂意用等式的性質來解方程,但同時讓我感到了一點困惑:
從教材的編排上,整體難度下降,有意避開了,形如:A—X=B 和 A÷X=B等類型的題目。把用等式解決的方法單一化了。在實際教學中,如果用等式性質來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數,真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。這會不會與教材主倡導的用等式的性質解決問題有矛盾呢?
《解方程》教學反思7
今天,上了冀教版五年級上冊《解方程》一課,我就本節(jié)課的得與失做一下反思。
一、課程分析
方程是五年級學生接觸的一種新的知識內容,在建立了用字母表示數的已有知識基礎上,進一步學習本節(jié)課內容,方程是數學數與代數部分的內容,起著舉足輕重的作用。方程是學生解決數學問題一種重要工具,日后初中、高中時時刻刻離不開方程。所以,我對本單元內容很重視,也給學生講述其重要性,重點還是要讓學生在學習、使用的過程中體會方程的優(yōu)勢。本節(jié)課是本單元的第三節(jié)內容,在學習了等式的性質的基礎上,解簡單的方程。因此,我制訂了以下教學目標:
1.經歷自主探究、合作交流學習利用等式的性質解方程的過程。
2.能根據具體情境,找到等量關系、列方程并解簡單的方程。
3.積極參與數學活動,獲得運用已有知識解決問題的成功體驗,激發(fā)解方程的興趣。
二、教學過程
1.復習舊知導入。復習剛剛學過的等式的性質,學生舉例說明。
2.交流解疑。先對子交流、小組交流,解決預習過程中的疑問,同時整理出小組未能解決的疑難問題。
3.展示交流。學生代表1展示問題1的'解決方法,學生提問、補充。這里使學生理解用方程解決問題的步驟、解方程的方法、檢驗的方法。學生代表2展示問題2的解決方法,再次理解以上問題。
4.理解新概念。觀察兩個解方程的式子,理解方程的解、解方程的概念。讓學生對比理解方程的解是結果,解方程是過程。
5.鞏固訓練、強調細節(jié)。學生自主完成試一試兩題,出錯時讓學生指正。若未出錯,強調注意寫“解”、等號對齊等細節(jié)。
三、課后反思
本節(jié)課需要改進的地方
1.學習目標的制定與出示。上課之前只給學生說了我們本節(jié)課要利用等式基本性質來解方程,目標不具體。我們應為學生制定具體的學習目標,同時要讓學生知道?梢栽诮o學生預習時,給學生以問題的形式出示給學生。一次本節(jié)課學習目標應為:(1)用方程解決問題的步驟是什么?(2)解方程的依據是什么?(3)什么叫方程的解?什么叫解方程?
2.舊知復習時間過長。學生復習等式性質時,舉例出現問題,浪費了許多時間,造成了前松后緊的局面。應該簡單復習,或讓學生在探索新知的過程中發(fā)現舊知,復習舊知。
3.小組合作的實效性,F在我班的小組合作還不扎實,或者說實效性不強。學生在討論的過程中不知道該如何合作、如何交流?梢哉f是有形無實,接下來要再次培訓組長,讓組長有組織、帶領小組同學有效合作。同時,訓練其他同學如何參與,交流什么。使小組合作更具實效性。
四、教學思考
1.教學有法,但無定法。我們在求疑嘗試的主體學習方法下,應探索出屬于自己的上課模式或者方法。我一直在想數學四大模塊應有不同的教學方法,例如圖形問題注重操作、可能性問題注重游戲體驗等。
2.全面關注學生,關注全體學生。我的班級是一個比較活躍的班級,這里的活躍其實只是課堂上七、八個積極同學的表現,這種現象的背后還有更多的同學沒有參與、只是聽眾,沒有參與就沒有思考,沒有思考地學數學何來成效。所以最近一直在關注大號同學的表現,教師關注會使他們獲得自信,獲得成功后的喜悅,學習也自然有動力。舉個我們班的例子:上《認識方程》一課時,因為較簡單,整節(jié)課我一直在關注3、4號同學的表現,給他們更多的機會展示,結果課后我發(fā)現3、4號同學的作業(yè)有明顯的進步,甚至有個別4號同學比組長寫的都要好。也就是欣賞、關注的成果。
以上兩個問題有待我們一起思考,請各位領導、戰(zhàn)友多提寶貴意見!
《解方程》教學反思8
縱觀整節(jié)課教學,我認為已經基本把握教材的重難點。在講解“方程的解”定義時,能從驗算例子答案出發(fā),讓學生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。
在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的解,讓學生明白“解方程的各種方法,目的只有一個,那就是求出解,但不同的方法有自身不同的求解過程”著重讓學生理解“求解過程”。
在這基礎上,讓學生討論發(fā)現兩個概念定義之間的區(qū)別。
在講授“解方程:X+7=13”例題時,我安排一個成績中等的學生上來解答(因為是新課,學生還沒有接觸過正確規(guī)范的.書寫格式,學生的求解方法和過程步驟,能代表整個班級的情況。況且學生的求解過程能起到反例的作用,為下面比較教學——從對比中認識正確的求解過程做好鋪墊)
板書正確書寫格式后,讓學生通過比較發(fā)現該如何正確規(guī)范地求解方程的解。
整節(jié)課教學存在幾點不足:
1、學生課堂練習量少。這與定義的教學花費太多時間有關。
2、對學生新課之前的求解方程的解的方法缺少關注。解方程是可以有很多方法的,需要鼓勵學生的多向發(fā)散思維。
3、教師課堂上雖然提到“對于一個X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關練習,因為這一內容對理解“方程的解”有極強的意義。
《解方程》教學反思9
五年級第四單元教材的設計打破了傳統(tǒng)的教學方法。在以前人教版教材中,學著解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數=和-另一個加數;被減數=減數+差等關系來求出方程中的未知數。而新教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數,等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
在教學前,由于我個人比較偏好于傳統(tǒng)的.教學方法,總覺得用等式的性質解方程比較麻煩。為了轉變自己的教學思想,更新教學觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質,把抽象的解方程的過程用形象化的方式表現出來,使學生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學生是學著的主人”和“教師是學著的組織者、引導者與合作者”的這一角度上,()為學生創(chuàng)設學著此課的情境,通過直觀演示,充分給學生提供小組交流的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數,等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現孩子們的學著活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。
《解方程》教學反思10
前兩天講解了簡單的方程的解法,加法、減法乘法除法的,覺得孩子們接受的不錯,一節(jié)課下來練習了好多題,每個孩子都能得心應手,自己還有點竊喜。可是今天卻讓我大跌眼鏡。
昨天上課講解了例4和例5,孩子們對了復雜的方程有了初步認識,但在每一步的分析之下孩子們也覺得很熟悉,原來是簡單的方程結合在一起變成復雜的`,只要掌握運算順序就不難,結合例題的圖示,分彩筆的例子,先分什么再分什么,讓學生明白在具體算式中也是結合著實物圖來做,先把3x看做一個整體,把剩下的4根彩筆減掉,要想得到一整盒x根的彩筆,就得把3整盒再平均分配,這樣下來孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來理解也不是問題,又練了幾道同類的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號看做一個整體,但在講解和練習下也能做上了。
今天我想驗收一下昨天學的怎么樣,結果讓我很頭疼,為什么過了一宿好多同學又沒了思緒,留了6道題,少數幾個好同學能夠順利的做上,大部分同學還在思索著,課下輔導了幾個差生,原來他們又把前面學的簡單的方程解法又忘了,自己思考了一下,得給孩子們消化時間,課上會了不代表他們一直不忘,還得多加練習啊
《解方程》教學反思11
方程是應用非常廣泛的數學工具,它在義務教育階段的數學課程中占重要地位。一元一次方程是最簡單、最基本的代數方程,它不僅在實際中有廣泛的應用,而且是學習二元一次方程組、一元二次方程、分式方程等等知識的基礎。解方程既是本章的重點,也為今后學習其他方程、不等式及函數有重要基礎作用。為了使學生牢固掌握解方程體會方程是刻畫現實世界的一個有效的數學模型,產生學習解方程的欲望,教材設置了新穎的問題情境,讓學生從具體的情境中獲取信息,列方程,然后嘗試主動探究方程的解法。并通過練習歸納掌握解方程的基本步驟和技能。
本節(jié)課的整體過程是這樣的:先利用等式的性質來解方程,從而引出了移項的概念,然后讓學生利用移項的方法來解方程,第一次接觸這部分內容,所以在方程的選擇上,都是移項后,同類項的.合并比較簡單,與前一節(jié)內容相比較,可輕易感受到這種解法的簡潔性;講解完成后,進一步給出了練一練的兩個方程,讓學生動手去做;仔細觀察學生的練習過程,出現了很多困難。
總結一下,大致有以下幾種比較常見的情況:①含未知數的項不知道如何處理;②移項沒有變號;③沒移動的項也改變了符號;針對以上情況,利用課堂時間,先讓有困難的學生說一下自己在解題過程中出現的困難,讓其他同學幫助他找出錯誤并加以解決,這樣更能促進同學間的相互進步。由于時間的關系,本節(jié)課這一點做得還不夠完善,可從學生的課堂練習中反應出來。再讓學生總結注意點,教師進行點撥。最后的學生小結并不是一種形式,通過小結教師能很好地看出學生的知識形成和掌握情況。
總的來說,雖然課堂上同學們總結錯誤點總結得不錯,但學生對解方程的掌握仍浮于表面,練習少了,課后作業(yè)中的問題也就出來了;第一,解題中部分同學仍采用原來的等式性質進行;第二,移項時符號還是一個大問題;所以總的說來,這課堂效率不高,沒有完成基本的課堂任務;學生一節(jié)課下來還是少了練習的機會,看來對求解的題目,課堂上需要更多的練習,從題目中去反饋會顯得更加適合。在新教材的講解中,有時還是要借鑒老教材的一些好的方法。另外,本節(jié)課沒完成的任務,希望能在下面的時間里盡快進行補充,讓學生能及時對知識進行掌握。
我始終遵照“堅持啟發(fā)式,反對注入式”的教學原則。即在課堂上,凡是學生自己努力能解的方程都應由學生自己解決完成。
解方程是重點,要求人人過關。通過實驗教學,達到預期滿意效果。不僅有利于學生的學習,更有利于教師的發(fā)展。
《解方程》教學反思12
《解方程》是學生接觸方程以來的第一堂計算課,理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎上,本節(jié)課我采用的是課前預習,課上交流的形式進行,整節(jié)課大多數孩子在預習的基礎上能夠掌握方程的解法,但是個別孩子沒有掌握。現反思如下:
1、出示預習提綱,讓孩子預習有根據。
為讓孩子形成自覺的學習習慣,師指導孩子進行預習,出示了以下三個問題:
一是什么是方程的解?舉例說明。
二是什么是解方程?你是根據什么來解方程?
三是如何進行方程的檢驗?
好多孩子能夠對這幾個問題進行探究,并對意義理解比較深刻。
2、課上交流。
交流是學生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據例題來詮釋方程的解的意義。在進行交流根據什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的是用加法中各部分間的關系,有的是用等式的性質,還有的還接口答。依次把方法展示給大家,讓孩子明白方程的'解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個環(huán)節(jié)孩子興趣很高,大部分孩子能夠學會利用等式的性質進行解方程。整個的環(huán)節(jié)讓孩子在探究中發(fā)現規(guī)律,找到方法,學生學的開心,對于概念的理解也很扎實。
《解方程》教學反思13
這節(jié)課,先復習了方程的概念后,馬上讓學生說說方程需要滿足幾個條件,讓學生意識到方程是一種特殊的未知數,然后出判斷題,讓學生進一步加深理解方程的意義,并讓學生明白等式和方程的區(qū)別聯(lián)系,緊接對有關方程的知識進行梳理,構建網絡。并解決實際問題。
本節(jié)課的教學目標是結合具體情境,了解方程的含義以及會用方程表示簡單情境中的等量關系。在教學的過程中,我設計導學案,先課件出示幾個情境圖,讓學生從生活中的蹺蹺板引入,看清情境圖。讓孩子們從中找出數學信息,從而找到等量關系,讓孩子用自己的語言進行描述,嘗試著列出方程。知道了什么是等式,接著在交流書本的三個情境圖,逐漸加大難度。多請幾位孩子說說他們找到的等量關系。嘗試列出等式。然后觀察列出交流,從而知道含有未知數的等式叫方程。做練習進行鞏固如何找等量關系,從而列出方程。本節(jié)課,我力求讓學生通過自主探索,利用生活的例子,讓每個學生都有觀察、作分析、思考的機會,提供給學生一個廣泛的,自由的活動空間,讓學生大膽嘗試,探索,感受數學的趣味。學生也都表現得比較積極,通過同桌交流等形式,找出等量關系,列方程時,同學們用不同的方式列出了式子,有些學生可能還受到舊知識的.影響,把要求的未知數單獨放在了等式一邊,當時我雖然告訴孩子們方程不能這樣列,但從某些后進生做的練習來看要轉變過來還是有些困難,我想,可能是我沒能把書本第一個出現天平的情境圖講的還不夠透徹,不能真正掌握找出等量關系的方法。整堂課當中,感覺對后進生的關注度不夠,如果多加關注,可能可以找出錯誤資源,然后教師再加以引導,讓同學們能更好的快速找出等量關系,更快的列出方程。最后,對自己比較不滿意的是,1、學生說的問題與我設想的有出入。2、學生展示的時候不大膽。流程走完了,留給學生的空間太少了。
想讓學生有個輕松愉悅的學習氛圍,但可能我還需要一些時間,希望以后能上出讓學生輕松愉悅的數學課。
《解方程》教學反思14
這次教材的設計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用關系來求出方程中的未知數。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(或除以同一個不為0的數),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質,所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來計算,只有極個別的學生懂得運用等式的.性質來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質,把抽象的解方程的過程用形象化的方式表現出來,使學生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(或除以同一個不為0的數),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。
在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質課。
《解方程》教學反思15
方程最大的意義,就是讓未知數參與進式子,利用順向思維,降低思考的難度。
五年級數學上冊第四單元的教學內容是“簡易方程”。為了更好地實現小學與初中知識的接軌,新教材對簡易方程的解法進行了一次改革,將舊教材利用加減乘除法各部分之間關系解方程,改為讓學生根據天平的原理來學習方程解法,也就是利用等式的基本性質來解方程。舉個例子:
舊教材:
x+48=127
x=127-48
依據運算之間的關系:一個加數等于和減另一個加數。
新教材:
x+48=127
x+48-48=127-48
依據等式的基本性質1:等式兩邊加上或減去相等的數,等式不變。
在實際教學中發(fā)現,同舊教材的方法相比,現行教材中的`這種解法,學生更容易接受,他們不必再去記“一個加數=和-另一個加數、被減數=減數+差……”這些關系式了,只需根據等式的基本性質,想辦法讓方程左邊只剩下X就行。學生很快就將這種解法運用自如,毫不費力。
可是,當學到用方程解決實際問題時,卻出現了狀況。
新教材在改革方程解法的同時,有一個相應的調整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因為利用等式的基本性質解a-x=b、a÷x=b,方程變形的過程及算理解釋比較麻煩。然而,在列方程解決實際問題時,卻不可避免地會出現以上兩種類型的方程。如:“一本書有65頁,王紅看了一部分后,還剩27頁。王紅已經看了多少頁?”學生很自然就列出65—x=27這樣的方程。
如何解決這個難題?細讀教參,發(fā)現編者的思路是,當需要列出形如a-x=b或a÷x=b的方程時,要求學生根據實際問題的數量關系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現了。
我們知道,方程最大的意義,就是讓未知數參與進式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時,往往會出現和方程思想的基本理念相違背的現象。
如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”
合理的做法應是“設鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學生無法解這樣的方程,只能轉列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學生們都不假思索地列出了128÷X=8,等到解方程時才發(fā)現利用天平的原理沒法繼續(xù),只好改列成8X=128。
如此一來,學生怎么能充分體會方程順向思維的優(yōu)越性?
如果說用舊教材的思路解方程對初中學習有負遷移,需要改革,現在改成用等式基本性質解方程,同樣出現問題,如何是好?
我只能把新舊教材兩種方法進行互補,告訴學生,遇到這類方程時,一種解決的辦法是按減法和除法各部分之間的關系進行解答;另一種方法就是先按等式的性質,把方程的左右邊都加或乘一個x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進行解答。
【《解方程》教學反思】相關文章:
《解方程》教學反思03-20
《解方程》的教學反思08-02
數學解方程教學反思07-17
解方程一教學反思05-22
解方程二教學反思08-06
解方程教學設計07-19
五年級數學《解方程》教學反思01-12
解方程教學設計15篇03-04
教學教學反思08-07