亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

《解方程》教學(xué)反思

時間:2025-03-20 09:18:37 教學(xué)反思 我要投稿

《解方程》教學(xué)反思

  作為一名人民老師,教學(xué)是重要的工作之一,借助教學(xué)反思可以快速提升我們的教學(xué)能力,如何把教學(xué)反思做到重點突出呢?以下是小編收集整理的《解方程》教學(xué)反思 ,希望對大家有所幫助。

《解方程》教學(xué)反思

《解方程》教學(xué)反思 1

  解方程是是數(shù)學(xué)知識里面很關(guān)鍵很重要的一個知識點。,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點。

  在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運用“移項”解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。

  因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的`方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學(xué)孩子會解簡單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學(xué)老教材的“四則運算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會解各種題型的方程。在我看來,這樣的教學(xué)書本的知識不丟,方法又可以多種變通。所以我在教學(xué)解方程的時候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項”,在這里的時候,我給初中的“移項”起了一個新的名字:移——變號。引入了這一個方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。

  但是在移-變號這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運用到四則運算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來的是,學(xué)生忘了等式的興致,忘了移—變號是怎么來的,而我,則在移-變號的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號的立腳點就是等式的性質(zhì),如此反復(fù),學(xué)生加強了對解方程的認(rèn)識,也更牢固的記住了等式的興致。而通過這一次的上課,我意識到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識點,只有這樣,才能夠給學(xué)生清晰的思路。

《解方程》教學(xué)反思 2

  這節(jié)課,先復(fù)習(xí)了方程的概念后,馬上讓學(xué)生說說方程需要滿足幾個條件,讓學(xué)生意識到方程是一種特殊的未知數(shù),然后出判斷題,讓學(xué)生進一步加深理解方程的意義,并讓學(xué)生明白等式和方程的區(qū)別聯(lián)系,緊接對有關(guān)方程的知識進行梳理,構(gòu)建網(wǎng)絡(luò)。并解決實際問題。

  本節(jié)課的教學(xué)目標(biāo)是結(jié)合具體情境,了解方程的含義以及會用方程表示簡單情境中的等量關(guān)系。在教學(xué)的過程中,我設(shè)計導(dǎo)學(xué)案,先課件出示幾個情境圖,讓學(xué)生從生活中的'蹺蹺板引入,看清情境圖。讓孩子們從中找出數(shù)學(xué)信息,從而找到等量關(guān)系,讓孩子用自己的語言進行描述,嘗試著列出方程。知道了什么是等式,接著在交流書本的三個情境圖,逐漸加大難度。多請幾位孩子說說他們找到的等量關(guān)系。嘗試列出等式。然后觀察列出交流,從而知道含有未知數(shù)的等式叫方程。做練習(xí)進行鞏固如何找等量關(guān)系,從而列出方程。本節(jié)課,我力求讓學(xué)生通過自主探索,利用生活的例子,讓每個學(xué)生都有觀察、作分析、思考的機會,提供給學(xué)生一個廣泛的,自由的活動空間,讓學(xué)生大膽嘗試,探索,感受數(shù)學(xué)的趣味。學(xué)生也都表現(xiàn)得比較積極,通過同桌交流等形式,找出等量關(guān)系,列方程時,同學(xué)們用不同的方式列出了式子,有些學(xué)生可能還受到舊知識的影響,把要求的未知數(shù)單獨放在了等式一邊,當(dāng)時我雖然告訴孩子們方程不能這樣列,但從某些后進生做的練習(xí)來看要轉(zhuǎn)變過來還是有些困難,我想,可能是我沒能把書本第一個出現(xiàn)天平的情境圖講的還不夠透徹,不能真正掌握找出等量關(guān)系的方法。整堂課當(dāng)中,感覺對后進生的關(guān)注度不夠,如果多加關(guān)注,可能可以找出錯誤資源,然后教師再加以引導(dǎo),讓同學(xué)們能更好的快速找出等量關(guān)系,更快的列出方程。最后,對自己比較不滿意的是,1、學(xué)生說的問題與我設(shè)想的有出入。2、學(xué)生展示的時候不大膽。流程走完了,留給學(xué)生的空間太少了。

  想讓學(xué)生有個輕松愉悅的學(xué)習(xí)氛圍,但可能我還需要一些時間,希望以后能上出讓學(xué)生輕松愉悅的數(shù)學(xué)課。

《解方程》教學(xué)反思 3

  一、認(rèn)知基礎(chǔ)的“頑固性”

  心理學(xué)研究表明,當(dāng)人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學(xué)生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學(xué)生十分熟悉的運算規(guī)律,同時又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當(dāng)然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的,具有相對的“頑固性”,甚至在一定程度上會排斥新學(xué)的`等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。

  以前教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,比較兩種思路:第一種方法是把未知數(shù)x優(yōu)先從背景中篩選出來,依據(jù)四則運算各部分之間的關(guān)系求出x的值;第二種方法用“結(jié)構(gòu)性觀點”去看待方程,著眼于其所表明的等量關(guān)系,體現(xiàn)了方程思想的本質(zhì),較好地解決了中小學(xué)關(guān)于方程解法的銜接問題。《數(shù)學(xué)課程標(biāo)準(zhǔn)》也明確要求學(xué)生能“理解等式的性質(zhì),會利用等式的性質(zhì)解簡單的方程”。那么,教材編排的價值是不容置疑的,即不能因為學(xué)生思維的輕車熟路,而忽視新知的教學(xué),忽視學(xué)生數(shù)學(xué)思想的進一步提升。利用關(guān)系式這種方法解方程書寫較少,形式簡單,但教學(xué)時總碰到差生不理解關(guān)系式也記不住關(guān)系式,因此在解方程時因想不起關(guān)系式而不會解。這幾星期的教學(xué),我發(fā)現(xiàn)孩子們還是比較喜歡學(xué)的,學(xué)得也不錯,教材利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。教材又通過天平平衡原理過渡到等式的性質(zhì),從而利用等式的性質(zhì)教學(xué)解方程,使得解方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。雖然這樣教學(xué)學(xué)生有興趣,學(xué)得不錯,但也存在局限性,如a-x=b和a÷x=b,雖然教材沒有要求解這類方程,但試卷和相應(yīng)的練習(xí)有出現(xiàn),因此,有必要特別利用一些時間給學(xué)生補充講解這類方程解法。我發(fā)現(xiàn)用等式性質(zhì)教這類方程,比較麻煩,學(xué)生學(xué)起來有一定難度。

  二、兩種方法形式上的相似引發(fā)學(xué)生思維的惰性

  第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。

  方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認(rèn)識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

《解方程》教學(xué)反思 4

  本節(jié)課的內(nèi)容是在學(xué)生學(xué)習(xí)了用字母表示數(shù)、等式的性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的。本冊教材的解方程不僅安排了形如x+a=bx-a=bax=bx÷a=b這樣的簡單方程,還安排了形如a-x=ba÷x=b這樣的特殊方程。

  成功之處:

  1、淡化依據(jù)逆運算關(guān)系解方程,與初中數(shù)學(xué)相銜接。根據(jù)《標(biāo)準(zhǔn)(20xx)》的要求,從小學(xué)就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法,這樣就避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。從而摒棄了原來依據(jù)逆運算解方程的思路,能有效降低學(xué)生學(xué)習(xí)的難度,也降低了記憶的難度。實際上依據(jù)逆運算解方程就是用算術(shù)的思路求未知數(shù),只適合解一些簡單的方程,到了中學(xué)還要重新另起爐灶。因此,利用等式的性質(zhì)解方程能夠幫助學(xué)生深入的'理解方程的意義,能深入理解方程所揭示的等量關(guān)系,也更有助于逐步感悟方程的實質(zhì)、等價思想和建模思想。

  2、重點教學(xué)特殊方程,體會用等式性質(zhì)解方程的優(yōu)勢。在例3的教學(xué)中,先讓學(xué)生自主嘗試解方程20-x=9,大部分學(xué)生依據(jù)前面學(xué)習(xí)的內(nèi)容寫成了下面的過程:20-x=9

  解:20-x+20=9+20

  X=29

  可是學(xué)生經(jīng)過檢驗發(fā)現(xiàn)x=29并不是方程的解,從而引導(dǎo)學(xué)生討論怎樣把新知識轉(zhuǎn)化為舊知識來解決問題。

  不足之處:

  1、在練習(xí)中由于課本這樣的練習(xí)太少,沒有增加相應(yīng)的題目,學(xué)生熟練的程度還是比較欠缺。

  2、學(xué)生對于歸納總結(jié)出來的特殊方程的解法還沒有內(nèi)化,導(dǎo)致學(xué)生出現(xiàn)解普通方程和特殊方程在解法上相混淆。

  再教設(shè)計:

  1、及時總結(jié)特殊方程的解法:當(dāng)未知數(shù)是減數(shù)或除數(shù)時,方程兩邊要同時加上或乘未知數(shù),再解方程。

  2、要弄清什么是減數(shù)和除數(shù),避免出現(xiàn)不必要的錯誤。

《解方程》教學(xué)反思 5

  有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順?biāo)浦,毫不費力。學(xué)生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會解形如a-x=b及a÷x=b方程。

  本以為按新課標(biāo)教材這兩類方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學(xué)生必會、考試必考內(nèi)容。原因如下:

  1、在列方程解決實際問題時,學(xué)生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。

  2、如果教師有意回避,會使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。

  基于上述原因,我今天在教學(xué)完例2后為學(xué)生補充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的'值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的`原因可能是安排的時機還不夠成熟。因為學(xué)生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學(xué)困生聽完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學(xué)生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復(fù)雜。

  值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,我覺得按加減乘除法各部分之間的關(guān)系教好呢,而用等式的性質(zhì)教學(xué)好比較復(fù)雜。

《解方程》教學(xué)反思 6

  解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運用上都有一定的困難,而且本部分教學(xué)很是枯燥無味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:

  一、本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),它能使方程的左右兩邊相等,不信咱們試一試!庇纱艘鹆藢W(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學(xué)會了本節(jié)課的知識。對于概念的理解也很扎實。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進行了“填空練習(xí)”,這四個練習(xí)題的安排也是經(jīng)過精心考慮的:第一個方程中的`數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對解方程掌握的還不錯。

  本節(jié)課不足之處在于最后留的時間過少,檢驗的格式?jīng)]有完整的交給孩子們?蓛(nèi)心矛盾:檢驗的目的已經(jīng)達(dá)到了,必須要重視其格式嗎?

  總體來說,喜歡讓孩子們在快樂中學(xué)到知識,喜歡聽孩子們說:“我還想再寫!

《解方程》教學(xué)反思 7

  本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。

  你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標(biāo)是求一個x的'多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。

  在做練習(xí)時我發(fā)現(xiàn)大部分的學(xué)生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來求出方程中的未知數(shù),只有個別學(xué)生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

《解方程》教學(xué)反思 8

  今天,上了冀教版五年級上冊《解方程》一課,我就本節(jié)課的得與失做一下反思。

  一、課程分析

  方程是五年級學(xué)生接觸的一種新的知識內(nèi)容,在建立了用字母表示數(shù)的已有知識基礎(chǔ)上,進一步學(xué)習(xí)本節(jié)課內(nèi)容,方程是數(shù)學(xué)數(shù)與代數(shù)部分的內(nèi)容,起著舉足輕重的作用。方程是學(xué)生解決數(shù)學(xué)問題一種重要工具,日后初中、高中時時刻刻離不開方程。所以,我對本單元內(nèi)容很重視,也給學(xué)生講述其重要性,重點還是要讓學(xué)生在學(xué)習(xí)、使用的過程中體會方程的優(yōu)勢。本節(jié)課是本單元的第三節(jié)內(nèi)容,在學(xué)習(xí)了等式的性質(zhì)的基礎(chǔ)上,解簡單的方程。因此,我制訂了以下教學(xué)目標(biāo):

  1.經(jīng)歷自主探究、合作交流學(xué)習(xí)利用等式的性質(zhì)解方程的過程。

  2.能根據(jù)具體情境,找到等量關(guān)系、列方程并解簡單的方程。

  3.積極參與數(shù)學(xué)活動,獲得運用已有知識解決問題的成功體驗,激發(fā)解方程的興趣。

  二、教學(xué)過程

  1.復(fù)習(xí)舊知導(dǎo)入。復(fù)習(xí)剛剛學(xué)過的等式的.性質(zhì),學(xué)生舉例說明。

  2.交流解疑。先對子交流、小組交流,解決預(yù)習(xí)過程中的疑問,同時整理出小組未能解決的疑難問題。

  3.展示交流。學(xué)生代表1展示問題1的解決方法,學(xué)生提問、補充。這里使學(xué)生理解用方程解決問題的步驟、解方程的方法、檢驗的方法。學(xué)生代表2展示問題2的解決方法,再次理解以上問題。

  4.理解新概念。觀察兩個解方程的式子,理解方程的解、解方程的概念。讓學(xué)生對比理解方程的解是結(jié)果,解方程是過程。

  5.鞏固訓(xùn)練、強調(diào)細(xì)節(jié)。學(xué)生自主完成試一試兩題,出錯時讓學(xué)生指正。若未出錯,強調(diào)注意寫“解”、等號對齊等細(xì)節(jié)。

  三、課后反思

  本節(jié)課需要改進的地方

  1.學(xué)習(xí)目標(biāo)的制定與出示。上課之前只給學(xué)生說了我們本節(jié)課要利用等式基本性質(zhì)來解方程,目標(biāo)不具體。我們應(yīng)為學(xué)生制定具體的學(xué)習(xí)目標(biāo),同時要讓學(xué)生知道?梢栽诮o學(xué)生預(yù)習(xí)時,給學(xué)生以問題的形式出示給學(xué)生。一次本節(jié)課學(xué)習(xí)目標(biāo)應(yīng)為:(1)用方程解決問題的步驟是什么?(2)解方程的依據(jù)是什么?(3)什么叫方程的解?什么叫解方程?

  2.舊知復(fù)習(xí)時間過長。學(xué)生復(fù)習(xí)等式性質(zhì)時,舉例出現(xiàn)問題,浪費了許多時間,造成了前松后緊的局面。應(yīng)該簡單復(fù)習(xí),或讓學(xué)生在探索新知的過程中發(fā)現(xiàn)舊知,復(fù)習(xí)舊知。

  3.小組合作的實效性。現(xiàn)在我班的小組合作還不扎實,或者說實效性不強。學(xué)生在討論的過程中不知道該如何合作、如何交流?梢哉f是有形無實,接下來要再次培訓(xùn)組長,讓組長有組織、帶領(lǐng)小組同學(xué)有效合作。同時,訓(xùn)練其他同學(xué)如何參與,交流什么。使小組合作更具實效性。

  四、教學(xué)思考

  1.教學(xué)有法,但無定法。我們在求疑嘗試的主體學(xué)習(xí)方法下,應(yīng)探索出屬于自己的上課模式或者方法。我一直在想數(shù)學(xué)四大模塊應(yīng)有不同的教學(xué)方法,例如圖形問題注重操作、可能性問題注重游戲體驗等。

  2.全面關(guān)注學(xué)生,關(guān)注全體學(xué)生。我的班級是一個比較活躍的班級,這里的活躍其實只是課堂上七、八個積極同學(xué)的表現(xiàn),這種現(xiàn)象的背后還有更多的同學(xué)沒有參與、只是聽眾,沒有參與就沒有思考,沒有思考地學(xué)數(shù)學(xué)何來成效。所以最近一直在關(guān)注大號同學(xué)的表現(xiàn),教師關(guān)注會使他們獲得自信,獲得成功后的喜悅,學(xué)習(xí)也自然有動力。舉個我們班的例子:上《認(rèn)識方程》一課時,因為較簡單,整節(jié)課我一直在關(guān)注3、4號同學(xué)的表現(xiàn),給他們更多的機會展示,結(jié)果課后我發(fā)現(xiàn)3、4號同學(xué)的作業(yè)有明顯的進步,甚至有個別4號同學(xué)比組長寫的都要好。也就是欣賞、關(guān)注的成果。

  以上兩個問題有待我們一起思考,請各位領(lǐng)導(dǎo)、戰(zhàn)友多提寶貴意見!

《解方程》教學(xué)反思 9

  五年級上冊利用等式的性質(zhì)解方程一直困擾著老師們,因為類似a-x=b的方程,則比較麻煩,因此許多老師就避開等式的性質(zhì),轉(zhuǎn)而用四則運算各部分之間的關(guān)系進行教學(xué),這樣以來勢必會削弱學(xué)生對等式的性質(zhì)的理解和掌握。我教學(xué)中是這樣做的:第一節(jié)課時教學(xué)學(xué)習(xí)等式的性質(zhì)和用等式的性質(zhì)解方程,在書寫上要求學(xué)生按這樣的格式書寫如:

  x+100=250

  解:x-100+100-100=250-100

  X=150

  強調(diào)我們解方程的根據(jù)是等式的性質(zhì),即把等式的兩邊同時減去100,等式左右兩邊仍然相等,通過練習(xí)使學(xué)生達(dá)到熟練程度。

  第二課時教學(xué)時,引入類似a-x=b的方程,例如10.5-x=7.5這樣的方程,讓學(xué)生討論,這樣的方程我們?nèi)绾谓饽?有的學(xué)生想到了運用減法各部分之間的關(guān)系來解方程,即除數(shù)等于被除數(shù)除以商,也有一部分同學(xué)運用等式的性質(zhì)來解方程,先將方程的左右兩邊同時加上x,,即10.5-x+x=7.5+x:方程變成了x+7.5=10.5,再把方程左右兩邊同時減去7.5,求出x的值;然后引導(dǎo)學(xué)生觀察在運用等式的`基本性質(zhì)解方程時,方程左邊加一個數(shù)又減一這個數(shù),可以相互抵消,因此在書寫時,可以省略不寫,如:15+x=85,15+x-15=85-15,左邊可以將加15和減15省略不寫,學(xué)生很快學(xué)會了這種方法。最后引導(dǎo)學(xué)生把我們所學(xué)習(xí)的加減法方程的樣式及解法可以歸納如下:

  x+a=b

  x=b-a(根據(jù):把方程的左右兩邊同時減去a,等式仍然成立;

  或者是想:一個加數(shù)=和-另一個加數(shù))

  x-a=b

  x=b+a(根據(jù):把方程的左右兩邊同時加a,等式仍然成立;

  或者想:被減數(shù)=減數(shù)+差)

  a-x=b

  x=a-b(根據(jù):把方程的左右兩邊同時加x,再把方程左右兩邊同時減去b等式仍然成立;或者想:減數(shù)=被減數(shù)-差)

  通過以上幾個步驟的教學(xué),我班學(xué)生對于用等式的基本性質(zhì)解方程,或是運用加減法各部分間的關(guān)系解方程,都能運用自如,并能在后面學(xué)習(xí)了乘除法的方程后能夠自覺進行整理,概括方程的樣式和解方程的根據(jù),收到了較好的教學(xué)效果。

《解方程》教學(xué)反思 10

  教學(xué)重難點是掌握較復(fù)雜方程的解法,會正確分析題目中的數(shù)量關(guān)系;教學(xué)目的是進一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學(xué)會列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計算應(yīng)用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。

  一、從學(xué)生喜聞樂見的事物入手,降低問題的難度。

  解答例1這類應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的足球入手,引出數(shù)學(xué)問題,激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的`興趣,建立學(xué)生熱愛體育 1

  運動的良好情感,又為學(xué)習(xí)新知識做了很多的鋪墊。

  二、放手讓學(xué)生思考、解答,選擇解題最佳方案。

  讓學(xué)生當(dāng)小老師,從問題中找出數(shù)量之間的關(guān)系,弄清解決問題的思路,展示講解自己的思考過程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過的方法來解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進了學(xué)生邏輯思維的發(fā)展。

  三、教會學(xué)生學(xué)習(xí)方法,比教會知識更重要。

  應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫,了解畫面信息,白色皮多少塊,黑色皮多少塊,白色皮比黑色皮少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問題的方法,讓學(xué)生

  成為學(xué)習(xí)的主人,參與到教學(xué)的全過程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生 學(xué)會分析應(yīng)用題的解題方法,一句話,教會學(xué)生學(xué)習(xí)方法比教會知識更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過程的組織者、引導(dǎo)者。

《解方程》教學(xué)反思 11

  這次教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  原來教學(xué)由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,在教學(xué)的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學(xué)生沒能很好地理解等式的性質(zhì),所以大部分的學(xué)生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來計算,只有極個別的學(xué)生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學(xué)的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的'理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。

  盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應(yīng)從一個一個具體的等式抽象到未知的等式,學(xué)生容易接受,而我是直接用抽象的等式驗證的,學(xué)生不太容易接受。還有在解方程時,算理講得不太清楚,學(xué)生在解方程時,有部分學(xué)困生學(xué)起來有困難。

  在今后的教學(xué)中,一定要吃透教材,認(rèn)真鉆研教材,才能上出優(yōu)質(zhì)課。

《解方程》教學(xué)反思 12

  《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。

  在開課時,通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。

  教學(xué)時,我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗,根據(jù)課本上的“注意”強調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進行檢驗,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  在出示概念時,先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的強調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的`突破也是一個很好的方法,可以讓學(xué)生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。

  在后面的反饋練習(xí)時,因前面例題的格式講的還不夠明確,所以練習(xí)時有點反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。

  這節(jié)課整體來說我比較滿意,對于細(xì)節(jié)上的處理。在今后的教學(xué)中我會更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會更注意教材的研讀,爭取上一節(jié)完美的好課。

《解方程》教學(xué)反思 13

  最近課堂上學(xué)習(xí)了《解方程》,是以等式的基本性質(zhì)為基礎(chǔ)來解決的。過去在小學(xué)教學(xué)簡易方程,方程變形的依據(jù)是加減運算的關(guān)系或乘除運算的關(guān)系。這實際上是用算數(shù)的思路求未知數(shù),但學(xué)生到了中學(xué)又要另起爐灶,引入等式的基本形式或方程的同解原理來學(xué)習(xí)解方程,F(xiàn)在,根據(jù)《標(biāo)準(zhǔn)(20xx)》的要求,從小學(xué)起就引起等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。新課程數(shù)學(xué)教學(xué)這樣安排體現(xiàn)了“瞻前顧后”的道理,更加注重知識的遷移和聯(lián)系,使得小學(xué)的知識要與初中的知識更加的接軌。

  教材中分為5個例題,分別是不同類型:x±a=b;

  ax=b;

  a-x=b;

  ax+b=c;

  a(x±b)=c,這幾個類型層次依次遞進,難度由簡到難。其中例1不僅是教授x±a=b類型的解方程,還要讓學(xué)生理解“方程的解”、“解方程”兩個概念。剛開始時學(xué)生不易區(qū)分,但隨著后面例題的講解,并且在解方程的過程中,學(xué)生慢慢理解并內(nèi)化能區(qū)分開這兩個概念。

  通過幾天對解方程的.練習(xí),大部分學(xué)生對解方程的目的以及檢驗的方法和步驟都有了較好的掌握,也能分清該利用哪個等式性質(zhì)來解方程。但是在課堂練習(xí)和改作業(yè)時,發(fā)現(xiàn)部分學(xué)生還有一些問題存在:

  一、用方程來表示較復(fù)雜的數(shù)量關(guān)系學(xué)生出現(xiàn)困難,是通過我的幫助列出方程,應(yīng)及時讓學(xué)生鞏固方法。

  二、對于例3形式的解方程,學(xué)生還容易出錯,如32-x=45,6÷x=3這樣的方程,x前面是“-和÷”,學(xué)生不好理解為什么方程兩邊同時“+x”或同時“×x”,我又借助天平講解:如果兩邊同時減32或同時除以6,依然算不出x,如果同時加x或同時×x,然后就能變成x+a=b或ax=b的形式,再利用所學(xué)方法進行解方程就可以了。這個類型還需要加強訓(xùn)練,讓學(xué)生能快速區(qū)分開來是加數(shù)還是要加一個含有未知數(shù)的式子。

  三、解方程時學(xué)生丟步驟,如:2x+6=18這樣的方程,學(xué)生都知道第一步要等式兩邊同時減去6,得到“2x=12”,但這一步有部分學(xué)生會直接寫成“x=12”,說明還需強調(diào)2x是一個整體,第一步解完后并不是最后的解,還需讓等式兩邊同時除以2才能得出。

  四、檢驗時學(xué)生的步驟丟三落四較多,或丟掉“=方程右邊”;

  或丟掉最后一句話“x=2是方程的解”。

  《簡易方程》這單元是本冊的重點,解方程又是本單元的一大難點,所以后面的教學(xué)時,我除了讓學(xué)生觀察方程中未知數(shù)的位置和前面符號來解方程外,還應(yīng)要求學(xué)生說得清,能講清楚理由,從而在理解變形依據(jù)、過程的基礎(chǔ)上掌握所學(xué)方程的解法。

《解方程》教學(xué)反思 14

  小學(xué)五年級第四單元教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  在教學(xué)前,由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,通過直觀演示,充分給學(xué)生提供小組交流的機會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)習(xí)活動是那么的有滋有味,進而使我很順利地就完成了本課的教學(xué)任務(wù)。 通過近段時間的學(xué)習(xí),發(fā)現(xiàn)學(xué)生對這種方法掌握的`很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一些困惑:

  1、教材的編排上,整體難度下降,有意避開了,形如:45—X=23 56÷X=8等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。但是用減法和除法各部分之間的關(guān)系解答就比較簡單。

  2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。

  總之,要使孩子們愛學(xué)、樂學(xué),教師就必須更新教學(xué)觀念,充分理解教材,并要懂得為教學(xué)去創(chuàng)設(shè)合理情境,靈活處理教材中的問題,鼓勵學(xué)生算法的多樣化,真正體現(xiàn)課改精神——“人人學(xué)有價值的數(shù)學(xué),人人都能獲得必須的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展。

《解方程》教學(xué)反思 15

  今天對五年級上冊《解方程》進行了教學(xué)。本課主要對教學(xué)例一和例二進行了教學(xué)。

  一、本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的`是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學(xué)會了本節(jié)課的知識。對于概念的理解也很扎實。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進行了“填空練習(xí)”,這四個練習(xí)題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對解方程掌握的還不錯。

  三、本課主要對解方程進行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!

  四、通過本課的作業(yè)檢測,有少量學(xué)生還是對本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  五、學(xué)生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。

  總之,“興趣是學(xué)生最好的老師”,只要緊緊抓住這一點,教學(xué)質(zhì)量的提高指日可待。

【《解方程》教學(xué)反思 】相關(guān)文章:

《解方程》的教學(xué)反思08-02

《解方程》教學(xué)反思08-08

解方程二教學(xué)反思08-06

數(shù)學(xué)解方程教學(xué)反思07-17

解方程一教學(xué)反思10-15

解方程教學(xué)設(shè)計07-19

五年級數(shù)學(xué)《解方程》教學(xué)反思10-20

解方程教學(xué)設(shè)計15篇10-23

教學(xué)教學(xué)反思08-07