亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

高一數(shù)學的教學計劃

時間:2025-03-21 04:45:02 教學計劃 我要投稿

高一數(shù)學的教學計劃

  時間流逝得如此之快,又將迎來新的工作,新的挑戰(zhàn),是時候開始制定計劃了。相信大家又在為寫計劃犯愁了?下面是小編精心整理的高一數(shù)學的教學計劃,僅供參考,希望能夠幫助到大家。

高一數(shù)學的教學計劃

高一數(shù)學的教學計劃1

  平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形 。

  教學目標

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學,培養(yǎng)學生靈活的思維品質(zhì)和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.

  (2)重點、難點分析

 、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.

  解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

 、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的.整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應關(guān)系,為繼續(xù)學習曲線方程打下基礎(chǔ).

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點

  (3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).

  (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關(guān)的問題指導學生練習,培養(yǎng)學生的綜合能力.

  (7)直線方程的理論在其他學科和生產(chǎn)生活實際中有大量的應用.教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力.

  (8)本節(jié)不少內(nèi)容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

高一數(shù)學的教學計劃2

  一、高考要求

  ①了解映射的概念,理解函數(shù)的概念;

 、诹私夂瘮(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調(diào)性奇偶性的方法;

 、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會求一些簡單函數(shù)的反函數(shù);

 、芾斫夥謹(shù)指數(shù)冪的概念,掌握有理數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);

 、堇斫鈱(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)解決某些簡單實際問題.

  二、兩點解讀

  重點:①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問題;⑤指數(shù)函數(shù)與對數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.

  難點:①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.

  三、課前訓練

  1.函數(shù)的'定義域是 ( D )

  (A) (B) (C) (D)

  2.函數(shù)的反函數(shù)為 ( B )

  (A) (B)

  (C) (D)

  3.設(shè)則 .

  4.設(shè),函數(shù)是增函數(shù),則不等式的解集為 (2,3)

  四、典型例題

  例1 設(shè),則的定義域為 ( )

  (A) (B)

  (C) (D)

  解:∵在中,由,得, ∴,

  ∴在中,.

  故選B

  例2 已知是上的減函數(shù),那么a的取值范圍是 ( )

  (A) (B) (C) (D)

  解:∵是上的減函數(shù),當時,,∴;又當時,,∴,∴,且,解得:.∴綜上,,故選C

  例3 函數(shù)對于任意實數(shù)滿足條件,若,則

  解:∵函數(shù)對于任意實數(shù)滿足條件,

  ∴,即的周期為4,

高一數(shù)學的教學計劃3

  教學分析

  課本從學生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.

  值得注意的問題:在集合間的關(guān)系教學中,建議重視使用Venn圖,這有助于學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.

  三維目標

  1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.

  2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達集合的關(guān)系,加強學生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.

  重點難點

  教學重點:理解集合間包含與相等的含義.

  教學難點:理解空集的含義.

  課時安排

  1課時

  教學過程

  導入新課

  思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導學生)

  (2)學生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

  (3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)

  師:(板書學生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學生試圖說明結(jié)論的合理性,可提供機會.)大家認為底數(shù)a>1或0

  [階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):

 、俣x域為R.

 、谥涤驗(0, +∞).

  ③圖象過定點(0, 1).

 、芊瞧娣桥己瘮(shù).

 、莓攁>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;

  當0

 、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.

 、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:

  x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;

  x=0時,兩圖象相交;

  x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.

  [意圖分析]通過探究活動,使學生獲得對指數(shù)函數(shù)圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結(jié)提升學習方法,優(yōu)化學習策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發(fā)學生的相互學習能力,能有效幫助學生突破難點.

  3.新知運用鞏固深化

  (方案一)(分析函數(shù)性質(zhì)的用途)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?

  生:可以求最值,可以比較兩個函數(shù)值的大小.

  師:那你能舉出運用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調(diào)性,那應該有指數(shù)式.)

  生:(舉例并判斷大小.)

  師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

  師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)

  (方案二)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:(口述并板書)你能比較32與33的大小嗎?

  生:直接計算比較.

  師:那比較30.2與30.3的大小呢?能不能不計算呢?

  生:利用函數(shù)y=3x的單調(diào)性.

  師:能具體說明嗎?(引導學生規(guī)范表達)我們再試一試.

  (出示例1)

  【例1】比較下列各組數(shù)中兩個值的大。

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [設(shè)計意圖] 引導學生運用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調(diào)性,也可能直接運用單調(diào)性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.

  [師生活動]學生板演,教師組織學生點評.

  [教學預設(shè)] ①②兩題,學生能運用指數(shù)函數(shù)單調(diào)性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達,正確運用性質(zhì).③學生可能運用不同方法,應給予充分的時間,并在具體問題解決后引導學生總結(jié)一般方法.

  師:(引導學生規(guī)范表達)你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?

  師:(對③的引導)你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導學生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)

  生:它們都過點(0, 1).

  師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

  生:比較1.50.3,0.81.2和1的大小.

  師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.

  【例2】

  ①已知3x≥30.5,求實數(shù)x的取值范圍;

 、谝阎0.2x<25,求實數(shù)x的取值范圍.

  [設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.

  4.概括知識總結(jié)方法

  〖問題4本節(jié)課我們學習了哪些知識?你還學會了哪些方法?

  [設(shè)計意圖] 回顧所學內(nèi)容,深化認知.開放式小結(jié),不同學生有不同的收獲.

  [師生活動]學生發(fā)言總結(jié),交流所得.

  [教學預設(shè)]

  通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:

  ①指數(shù)函數(shù)的定義與性質(zhì);

 、谘芯亢瘮(shù)的一般方法和步驟.

  師:本節(jié)課我們學習了什么知識?

  生:指數(shù)函數(shù)的定義和性質(zhì).

  師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

  生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).

  生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.

  師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).

  [意圖分析]課堂總結(jié)不是對所學知識的簡單回顧,應讓學生在知識、方法和策略上多層次地整理,促進學生理解所用學習方法的合理性與普遍性,使學生獲得知識與能力的共同進步.

  5.分層作業(yè),因材施教

  (1)感受理解:課本第54頁,習題2.2(2):1,2,3,4;

  (2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?

  [設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運用”提供學生運用函數(shù)研究的一般方法自主研究的機會.

 、觯毯蠓此蓟仡

  一、對于指數(shù)函數(shù)概念的認識

  指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.

  二、對于培養(yǎng)學生思維習慣的考慮

  在學生自主探索的過程中,教師應注意培養(yǎng)學生良好的思維習慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應養(yǎng)成有序進行觀察和歸納的良好的思維習慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明.學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法.

  三、關(guān)于設(shè)計定位的反思

  本節(jié)課的教學設(shè)計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應采用不同的教學策略.如果學生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程.、

【高一數(shù)學的教學計劃】相關(guān)文章:

高一數(shù)學教學計劃09-21

高一數(shù)學教學計劃09-18

高一數(shù)學的教學計劃15篇06-20

高一數(shù)學教學計劃精選15篇10-27

高一數(shù)學教學計劃14篇06-10

高一上數(shù)學教學計劃11-02

數(shù)學高一上教學計劃09-01

高一數(shù)學的教學計劃(15篇)09-01

高一數(shù)學教學計劃(15篇)07-06