- 高中等差數(shù)列的教學設計 推薦度:
- 《等差數(shù)列》教學設計 推薦度:
- 相關(guān)推薦
等差數(shù)列教學設計(精選5篇)
作為一名默默奉獻的教育工作者,時常要開展教學設計的準備工作,借助教學設計可以讓教學工作更加有效地進行。一份好的教學設計是什么樣子的呢?以下是小編幫大家整理的等差數(shù)列教學設計(精選5篇),歡迎大家分享。
等差數(shù)列教學設計1
教學目標:
1.知識與技能目標:理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學建!钡乃枷敕椒ú⒛苓\用。
2.過程與方法目標:培養(yǎng)學生觀察分析、猜想歸納、應用公式的能力;在領會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。
3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知的'精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
教學重點:
等差數(shù)列的概念及通項公式。
教學難點:
(1)理解等差數(shù)列“等差”的特點及通項公式的含義。
(2)等差數(shù)列的通項公式的推導過程及應用。
教具:多媒體、實物投影儀
教學過程:
一、復習引入:
1.回憶上一節(jié)課學習數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學習一類特殊的數(shù)列——等差數(shù)列。
2.由生活中具體的數(shù)列實例引入
(1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關(guān)系嗎?
(2)某劇場前10排的座位數(shù)分別是:
48、46、44、42、40、38、36、34、32、30
引導學生觀察:數(shù)列①、②有何規(guī)律?
引導學生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。
二.新課探究,推導公式
1.等差數(shù)列的概念
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
強調(diào)以下幾點:
、 “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。
在學生對等差數(shù)列有了直觀認識的基礎上,我將給出練習題,以鞏固知識的學習。
[練習一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在這個過程中我將采用邊引導邊提問的方法,以充分調(diào)動學生學習的積極性。
2.等差數(shù)列通項公式
如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
將這(n-1)個等式左右兩邊分別相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。
三.應用舉例
例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;
例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
四.反饋練習
1.P293練習A組第1題和第2題(要求學生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學生熟悉通項公式對學生進行基本技能訓練。
五.歸納小結(jié)提煉精華
(由學生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學表達式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一
六.課后作業(yè)運用鞏固
必做題:課本P284習題A組第3,4,5題
等差數(shù)列教學設計2
[教學目標]
1.知識與技能目標:掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應的一些問題。
2.過程與方法目標:讓學生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養(yǎng)學生分析問題解決問題的能力。
3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習慣。
[教學重難點]
1.教學重點:等差數(shù)列的概念的理解,通項公式的推導及應用。
2.教學難點:
(1)對等差數(shù)列中“等差”兩字的把握;
(2)等差數(shù)列通項公式的推導。
[教學過程]
一.課題引入
創(chuàng)設情境引入課題:(這節(jié)課我們將學習一類特殊的數(shù)列,下面我們看這樣一些例子)
二、新課探究
(一)等差數(shù)列的定義
1、等差數(shù)列的定義
如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(1)定義中的關(guān)健詞有哪些?
(2)公差d是哪兩個數(shù)的差?
(二)等差數(shù)列的通項公式
探究1:等差數(shù)列的通項公式(求法一)
如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?
根據(jù)等差數(shù)列的定義可得:
因此等差數(shù)列的通項公式就是:,
探究2:等差數(shù)列的通項公式(求法二)
根據(jù)等差數(shù)列的定義可得:
將以上-1個式子相加得等差數(shù)列的通項公式就是:,
三、應用與探索
例1、(1)求等差數(shù)列8,5,2,…,的第20項。
(2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?
(2)、分析:要判斷-401是不是數(shù)列的.項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。
例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.
解:由,得。
在應用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。
鞏固練習
1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。
2.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。
四、小結(jié)
1.等差數(shù)列的通項公式:
公差;
2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;
3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;
4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學系規(guī)律或解決數(shù)學問題.
五、作業(yè):
1、必做題:課本第40頁習題2.2第1,3,5題
2、選做題:如何以最快的速度求:1+2+3+?+100=
等差數(shù)列教學設計3
一、教材分析
1、教學目標:
A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;
B.培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
C 通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。
2、教學重點和難點
、俚炔顢(shù)列的概念。
②等差數(shù)列的通項公式的推導過程及應用。用不完全歸納法推導等差數(shù)列的通項公式。
二、教法分析
采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。
三、教學程序
本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。
(一)復習引入:
1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是
21,22,23,24,25,
2.某劇場前10排的座位數(shù)分別是:
38,40,42,44,46,48,50,52,54,56。
3.某長跑運動員7天里每天的訓練量(單位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特點:
從第2項起,每一項與前一項的差都等于同一個常數(shù)。
(二) 新課探究
1、給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
、 “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
、酃羁梢允钦龜(shù)、負數(shù),也可以是0。
2、推導等差數(shù)列的通項公式
若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
進而歸納出等差數(shù)列的通項公式:
= +(n-1)d
此時指出:
這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
– =d
– =d
– =d
– =d
將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d
當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。
接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運用
。ㄈ⿷门e例
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當其中的.部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;
(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式
例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固
例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
(四)反饋練習
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列
此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
。ㄎ澹w納小結(jié) (由學生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學表達式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式 = +(n-1) d會知三求一
(六) 布置作業(yè)
必做題:課本P114 習題3.2第2,6 題
選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
四、板書設計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。
等差數(shù)列教學設計4
【教學目標】
一、知識與技能
1.掌握等差數(shù)列前n項和公式;
2.體會等差數(shù)列前n項和公式的推導過程;
3.會簡單運用等差數(shù)列前n項和公式。
二、過程與方法
1. 通過對等差數(shù)列前n項和公式的推導,體會倒序相加求和的思想方法;
2. 通過公式的運用體會方程的思想。
三、情感態(tài)度與價值觀
結(jié)合具體模型,將教材知識和實際生活聯(lián)系起來,使學生感受數(shù)學的實用性,有效激發(fā)學習興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學史和數(shù)學文化。
【教學重點】
等差數(shù)列前n項和公式的推導和應用。
【教學難點】
在等差數(shù)列前n項和公式的推導過程中體會倒序相加的思想方法。
【重點、難點解決策略】
本課在設計上采用了由特殊到一般、從具體到抽象的教學策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學生自主探究、分析、整理出推導公式的思路,同時,借助多媒體的直觀演示,幫助學生理解,師生互動、講練結(jié)合,從而突出重點、突破教學難點。
【教學用具】
多媒體軟件,電腦
【教學過程】
一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務:
本節(jié)課我們來學習《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。
二、問題牽引,探究發(fā)現(xiàn)
問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?
即: S100=1+2+3+······+100=?
著名數(shù)學家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學們思考高斯方法的特點,適合類型和方法本質(zhì)。
特點: 首項與末項的和: 1+100=101,
第2項與倒數(shù)第2項的和: 2+99 =101,
第3項與倒數(shù)第3項的和: 3+98 =101,
· · · · · ·
第50項與倒數(shù)第50項的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同學們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運算為相同數(shù)的乘法運算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?
即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學生發(fā)現(xiàn)當項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導幫助學生思考解決問題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學生探究的同時通過動畫演示幫助學生思考剛才的方法是否同樣可行?請同學們自主探究一下(老師演示動畫幫助學生)
S8=5+6+7+8+9+10+11+12=
【設計意圖】進一步引導學生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?
問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?
解:(根據(jù)前面的學習,請學生自主思考獨立完成)
【設計意圖】強化倒序相加法的理解和運用,為更一般的等差數(shù)列求和打下基礎。
至此同學們已經(jīng)掌握了倒序相加法,相信大家可以推導更一般的等差數(shù)列前n項和公式了。
問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導它的前n項和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴公式變形:將代入可得:
【設計意圖】學生在前面的探究基礎上水到渠成順理成章很快就可以推導出一般等差數(shù)列的前n項和公式,從而完成本節(jié)課的中心任務。在這個過程中放手讓學生自主推導,同時也復習等差數(shù)列的通項公式和基本性質(zhì)。
三、公式的認識與理解:
1、根據(jù)前面的推導可知等差數(shù)列求和的'兩個公式為:
。ü揭唬
。ü蕉
探究: 1、
。1)相同點: 都需知道a1與n;
。2)不同點: 第一個還需知道an ,第二個還需知道d;
。3)明確若a1,d,n,an中已知三個量就可求Sn。
2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數(shù)列 n 項和的兩個公式.,請學生聯(lián)想思考總結(jié)來有助于記憶。
【設計意圖】幫助學生類比聯(lián)想,拓展思維,增加興趣,強化記憶
四、公式應用、講練結(jié)合
1、練一練:
有了兩個公式,請同學們來練一練,看誰做的快做的對!
根據(jù)下列各題中的條件,求相應的等差數(shù)列{an}的Sn :
。1)a1=5,an=95,n=10
解:500
。2)a1=100,d=-2,n=50
解:
【設計意圖】熟悉并強化公式的理解和應用,進一步鞏固“知三求二”。
下面我們來看個例題:
2、2000年11月14日教育部下發(fā)了<<關(guān)于在中小學實施“校校通”工程的通知>>.某市據(jù)此提出了實施“校校通”工程的總目標:從2001年起用10年時間,在全市中小學建成不同標準的校園網(wǎng). 據(jù)測算,2001年該市用于“校校通”工程的經(jīng)費為500萬元.為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元.那么從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?
解:設從2001年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50
那么,到2010年(n=10),投入的資金總額為
答: 從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。
【設計意圖】讓學生體會數(shù)列知識在生活中的應用及簡單的數(shù)學建模思想方法。
3、反饋達標:
練習一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
練習2: 已知{an}為等差數(shù)列,,求公差。
解:由公式得
即d=2
【設計意圖】進一強化求和公式的靈活應用及化歸的思想(化歸到首項和公差這兩個基本元)。
五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學生大膽發(fā)言,培養(yǎng)總結(jié)和表達能力)
1、倒序相加法求和的思想及應用;
2、等差數(shù)列前n項和公式的推導過程;
3、掌握等差數(shù)列的兩個求和公式,;
4、前n項和公式的靈活應用及方程的思想。
六、作業(yè)布置:
。ㄒ唬⿻孀鳂I(yè):
1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。
2.在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。
(二)課后思考:
思考:等差數(shù)列的前n項和公式的推導方法除了倒序相加法還有沒有其它方法呢?
【設計意圖】通過布置書面作業(yè)鞏固所學知識及方法,同時通過布置課后思考題來延伸知識拓展思維。
附:板書設計
等差數(shù)列的前n項和
1、數(shù)列前n項和的定義:
2、等差數(shù)列前n項和公式的推導:
3、公式的認識與理解:
公式一:
公式二:
四:例題及解答:
議練活動:
等差數(shù)列教學設計5
教學目標:
(1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;
(2)利用等差數(shù)列的通項公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項公式的推導過程及思想;
。3)通過作等差數(shù)列的圖像,進一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列的通項公式應用,滲透方程思想。
教學重、難點:
等差數(shù)列的定義及等差數(shù)列的通項公式。
知識結(jié)構(gòu):
一般數(shù)列定義通項公式法
遞推公式法
等差數(shù)列表示法應用
圖示法
性質(zhì)列舉法
教學過程:
。ㄒ唬﹦(chuàng)設情境:
1.觀察下列數(shù)列:
1,2,3,4,……;(軍訓時某排同學報數(shù))①
10000,9000,8000,7000,……;(溫州市房價平均每月每平方下跌的價位)②
2,2,2,2,……;(坐38路公交車的車費)③
問題:上述三個數(shù)列有什么共同特點?(學生會發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個非整數(shù)等差數(shù)列例子讓學生觀察)
規(guī)律:從第2項起,每一項與前一項的差都等于同一常數(shù)。
引出等差數(shù)列。
。ǘ┬抡n講解:
1.等差數(shù)列定義:
一般地,如果一個數(shù)列從第項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。
問題:(a)能否用數(shù)學符號語言描述等差數(shù)列的定義?
用遞推公式表示為或.
(b)例1:觀察下列數(shù)列是否是等差數(shù)列:
。1)1,-1,1,-1,…
(2)1,2,4,6,8,10,…
意在強調(diào)定義中“同一個常數(shù)”
(c)例2:求上述三個數(shù)列的公差;公差d可取哪些值?d>0,d=0,d<0時,數(shù)列有什么特點
。╠有不同的分類,如按整數(shù)分數(shù)分類,再舉幾個等差數(shù)列的例子觀察d的.分類對數(shù)列的影
響)
說明:等差數(shù)列(通?煞Q為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。
例3:求等差數(shù)列13,8,3,-2,…的第5項。第89項呢?
放手讓學生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然
后引出求一般等差數(shù)列的通項公式。
2.等差數(shù)列的通項公式:已知等差數(shù)列的首項是,公差是,求.
。1)由遞推公式利用用不完全歸納法得出
由等差數(shù)列的定義:
所以,該等差數(shù)列的通項公式:.
(驗證n=1時成立)。
這種由特殊到一般的推導方法,不能代替嚴格證明。要用數(shù)學歸納法證明的。
。2)累加法求等差數(shù)列的通項公式
讓學生體驗推導過程。(驗證n=1時成立)
3.例題及練習:
應用等差數(shù)列的通項公式
追問:(1)-232是否為例3等差數(shù)列中的項?若是,是第幾項?
。2)此數(shù)列中有多少項屬于區(qū)間[-100,0]?
法一:求出a1,d,借助等差數(shù)列的通項公式求a20。
法二:求出d,a20=a5+15d=a12+8d
在例4基礎上,啟發(fā)學生猜想證明
練習:
梯子的最高一級寬31cm,最低一級寬119cm,中間還有3級,各級的寬度成等差數(shù)列,請計算中間各級的寬度。
觀察圖像特征。
思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?
課后反思:這節(jié)課的重點是等差數(shù)列定義和通項公式概念的理解,而不是公式的應用,有些應試教育的味道。有時搶學生的回答,沒有真正放手讓學生的思維發(fā)展,學生活動太少,課堂氛圍不好。學生對問題的反應出乎設計的意料時,應該順著學生的思維發(fā)展。
【等差數(shù)列教學設計】相關(guān)文章:
《等差數(shù)列》教學設計06-20
高三等差數(shù)列教案設計07-31
數(shù)學等差數(shù)列教案06-18
2015年等差數(shù)列教案06-30
數(shù)學等差數(shù)列教案9篇04-17
經(jīng)典的教學設計03-25
教學設計07-08