亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

報考指導(dǎo) 百文網(wǎng)手機(jī)站

考研數(shù)學(xué)高數(shù)最常考的題型有哪些

時間:2021-12-05 16:02:02 報考指導(dǎo) 我要投稿

考研數(shù)學(xué)高數(shù)最?嫉念}型有哪些

  高等數(shù)學(xué)是考研數(shù)學(xué)中比重最高,難度最大的一個科目,沖刺復(fù)習(xí)階段,大家要對重點(diǎn)題型集中攻克,把握好復(fù)習(xí)的重點(diǎn)。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)高數(shù)最常考的題型參考資料,歡迎大家前來閱讀。

考研數(shù)學(xué)高數(shù)最常考的題型有哪些

  考研數(shù)學(xué)高數(shù)最?嫉6種題型

  ▶第一:求極限

  無論數(shù)學(xué)一、數(shù)學(xué)二還是數(shù)學(xué)三,求極限是高等數(shù)學(xué)的基本要求,所以也是每年必考的內(nèi)容。區(qū)別在于有時以4分小題形式出現(xiàn),題目簡單;有時以大題出現(xiàn),需要使用的方法綜合性強(qiáng)。比如大題可能需要用到等價無窮小代換、泰勒展開式、洛必達(dá)法則、分離因子、重要極限等中的幾種方法,有時考生需要選擇其中簡單易行的組合完成題目。另外,分段函數(shù)有的點(diǎn)的導(dǎo)數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導(dǎo)性的研究等也需要使用極限手段達(dá)到目的,須引起注意!

  ▶第二:利用中值定理證明等式或不等式,利用函數(shù)單調(diào)性證明不等式

  證明題不能說每年一定考,但基本上十年有九年都會涉及。等式的證明包括使用4個微分中值定理,1個積分中值定理;不等式的證明有時既可使用中值定理,也可使用函數(shù)單調(diào)性。這里泰勒中值定理的使用是一個難點(diǎn),但考查的概率不大。

  ▶第三:一元函數(shù)求導(dǎo)數(shù),多元函數(shù)求偏導(dǎo)數(shù)

  求導(dǎo)問題主要考查基本公式及運(yùn)算能力,當(dāng)然也包括對函數(shù)關(guān)系的處理能力。一元函數(shù)求導(dǎo)可能會以參數(shù)方程求導(dǎo)、變現(xiàn)積分求導(dǎo)或應(yīng)用問題中涉及求導(dǎo),甚或高階導(dǎo)數(shù);多元函數(shù)(主要為二元函數(shù))的偏導(dǎo)數(shù)基本上每年都會考查,給出的函數(shù)可能是較為復(fù)雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。

  另外,二元函數(shù)的極值與條件極值與實際問題聯(lián)系極其緊密,是一個考查重點(diǎn)。極值的充分條件、必要條件均涉及二元函數(shù)的偏導(dǎo)數(shù)。

  ▶第四:級數(shù)問題

  常數(shù)項級數(shù)(特別是正項級數(shù)、交錯級數(shù))的判別,條件收斂與絕對收斂的本質(zhì)含義均是考查的重點(diǎn),但常常以小題形式出現(xiàn)。函數(shù)項級數(shù)(冪級數(shù),對數(shù)一來說還有傅里葉級數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點(diǎn)的冪級數(shù)展開在考試中常占有較高的分值。

  ▶第五:積分的計算

  積分的計算包括不定積分、定積分、反常積分的計算,以及二重積分的計算,對考生來說數(shù)學(xué)主要是三重積分、曲線積分、曲面積分的計算。這是以考查運(yùn)算能力與處理問題的技巧能力為主,以對公式的熟悉及空間想象能力的考查為輔的。需要注意在復(fù)習(xí)中對一些問題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的反用,對稱性的使用等。

  ▶第六:微分方程問題

  解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運(yùn)算準(zhǔn)確性,在考場上正確運(yùn)算都沒有問題。但這里需要注意:研究生考試對微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要考生對方程與其通解、特解之間的關(guān)系熟練掌握。

  考研數(shù)學(xué)證明題解答的步驟

  ▶1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  ▶2.借助幾何意義尋求證明思路

  一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點(diǎn)外還有一個函數(shù)值相等的點(diǎn),那就是兩個函數(shù)分別取最大值的點(diǎn)(正確審題:兩個函數(shù)取得最大值的.點(diǎn)不一定是同一個點(diǎn))之間的一個點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。

  ▶3.逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。

  考研數(shù)學(xué)復(fù)習(xí)之初需糾正6個錯誤

  ▶一、消極迎戰(zhàn),效率低下

  “考研難,考研數(shù)學(xué)更難”的論調(diào)深入人心,不少考生愛尚未了解考試內(nèi)容和題型時,就已經(jīng)對數(shù)學(xué)產(chǎn)生了畏難情緒,這直接導(dǎo)致在復(fù)習(xí)中就是消極應(yīng)付,而非積極準(zhǔn)備,“過線就行,差不多就可以了”成為他們普遍的目標(biāo)。因此,要想學(xué)好數(shù)學(xué),首先要克服懼怕心理,樹立必勝的信心,化消極被動為主動,才可以在數(shù)學(xué)的學(xué)習(xí)和解題中體會到真正的樂趣。

  ▶二、只重技巧,不重理解

  這是一種投機(jī)心理的表現(xiàn)。學(xué)習(xí)是一件很艱苦的工作,很多學(xué)生片面追求別人現(xiàn)成的方法和技巧,殊不知方法和技巧是建立在自己對基本概念和基礎(chǔ)知識深入理解的基礎(chǔ)上的,每一種方法和技巧都有它特定的適用范圍和使用前提。也就是說,單純的模仿是絕對行不通的,這就要求我們必須放棄投機(jī)心理,塌實的透徹理解每一個方法的來龍去脈。

  ▶三、把看題等同于做題

  由于時間原因,很多人買了資料后只是匆匆茫茫的看書而不動手練習(xí),造成眼高手低。數(shù)學(xué)是一門嚴(yán)謹(jǐn)?shù)膶W(xué)科,容不得半點(diǎn)紕漏,在我們還沒有建立起來完備的知識結(jié)構(gòu)之前,一帶而過的復(fù)習(xí)必然會難以把握題目中的重點(diǎn),忽略精妙之處。況且,通過動手練習(xí),我們還能規(guī)范答題模式,提高解題和運(yùn)算的熟練程度,要知道三個小時那么大的題量,本身就是對計算能力和熟練程度的考察,而且現(xiàn)在的閱卷都是分步給分的,怎么作答有效果,這些都要通過自己不斷的餓摸索去體會。

  ▶四、只追高難,不重基礎(chǔ)

  萬丈高樓平地起,基礎(chǔ)知識的學(xué)習(xí)對于任何一門學(xué)科都不例外。很多同學(xué)在復(fù)習(xí)的時候,放棄研究教材,每天都是拿著教輔材料了復(fù)習(xí)高數(shù),這是極其錯誤的做法。因為歷年考研在高數(shù)上失分的重要原因就是對基本概念、定理理解不準(zhǔn)確,對數(shù)學(xué)基本方法掌握不好,給解題帶來困難。

  考研數(shù)學(xué)中大部分是中檔題和容易題,難度比較大的題目只占20%左右,而且難題不過是簡單題目的進(jìn)一步綜合,如果你在某個問題卡住了,必定是因為對于某一個知識點(diǎn)理解不夠,或者是對一個簡單問題的思路模糊。忽略基礎(chǔ)造成考生在很多簡單的問題上丟分慘重,為了不確定的30%而放棄可以比較確定的70%,實在是不劃算。這一點(diǎn)從很多人選擇參考資料上就能看出來。

  因此,在復(fù)習(xí)過程中,一定要按照大綱對數(shù)學(xué)基本概念、基本方法、基本定理準(zhǔn)確把握。因為只有對基本概念有深入理解,對基本定理和公式牢牢記住,才能找到解題的突破口和切入點(diǎn)。大家一定要從實際出發(fā),打到基礎(chǔ),深入理解,這樣即便遇到一些難度大的題目也會順利分解,這才是根本的解決方法。

  ▶五、題海戰(zhàn)術(shù),不歸納總結(jié)

  高等數(shù)學(xué)的復(fù)習(xí)必然離不開做題,但是做題并不等于題海戰(zhàn)術(shù),在做題的同時一定要善于總結(jié)題型和解題方法,要學(xué)會舉一反三,這才是做題的真正目的。

  我們作題,是要把整個知識通過題目加深理解并有機(jī)的串聯(lián)起來。數(shù)學(xué)的學(xué)習(xí)離不開作題,但從來不等于作題,抽象性是數(shù)學(xué)的重要特征之一,在復(fù)習(xí)過程中,我們通過作題,發(fā)散開來對抽象知識點(diǎn)的內(nèi)涵和外延進(jìn)行深入理解,這是非常必要的。

  但是時刻不要忘了我恩最根本的目的是要對知識點(diǎn)進(jìn)行理解進(jìn)而形成我們自己有機(jī)聯(lián)系的知識結(jié)構(gòu)。因此我嫩作題的思路,必然應(yīng)該是從理解到作題歸納再回到理解。在此之外,再做一些題目增加熟練度是有必要的,單如果超出了這個限度。讓作題成為一種機(jī)械化的勞動,就沒必要了。要記住,時刻目標(biāo)明確、深入思考才識提高數(shù)學(xué)思維和數(shù)學(xué)能力的關(guān)鍵。

  ▶六、做題翻書,不記公式

  有許多人還有這樣的習(xí)慣,不牢記公式,作題的時候看書,查完了作完了也就完了。數(shù)學(xué)的邏輯性很強(qiáng),公式和公式、定理和定理之間有著必然的內(nèi)在聯(lián)系,我們應(yīng)該在平時的復(fù)習(xí)過程中有理解的加以記憶,而不是單純的背誦。機(jī)械的記憶容易遺忘和產(chǎn)生差錯,這樣的話到時候我們用錯了都全然不知,如此造成失分豈不冤枉?


【考研數(shù)學(xué)高數(shù)最?嫉念}型有哪些】相關(guān)文章:

考研數(shù)學(xué)高數(shù)最?寄男╊}型12-19

考研數(shù)學(xué)高數(shù)必考的題型有哪些12-05

考研數(shù)學(xué)高數(shù)復(fù)習(xí)有哪些?純(nèi)容及題型12-01

考研數(shù)學(xué)高數(shù)?嫉膬(nèi)容及題型01-26

考研數(shù)學(xué)常考的題型有哪些11-07

考研數(shù)學(xué)高數(shù)有哪些考點(diǎn)12-15

考研數(shù)學(xué)高數(shù)復(fù)習(xí)的方法有哪些12-18

考研數(shù)學(xué)高數(shù)有哪些復(fù)習(xí)的方法12-15

考研數(shù)學(xué)高數(shù)解題有哪些方法11-08