數(shù)學的由來范文
導語:對數(shù)學的由來,各位趕快來了解一下吧。下面是小編整理的數(shù)學的由來,供各位閱讀和參考。
數(shù)學的由來
數(shù)學,其英文是mathematics,這是一個復數(shù)名詞,“數(shù)學曾經(jīng)是四門學科:算術、幾何、天文學和音樂,處于一種比語法、修辭和辯證法這三門學科更高的地位!
自古以來,多數(shù)人把數(shù)學看成是一種知識體系,是經(jīng)過嚴密的邏輯推理而形成的系統(tǒng)化的理論知識總和,它既反映了人們對“現(xiàn)實世界的空間形式和數(shù)量關系的認識(恩格斯),又反映了人們對“可能的量的關系和形式”的認識。數(shù)學既可以來自現(xiàn)實世界的直接抽象,也可以來自人類思維的勞動創(chuàng)造。
從人類社會的發(fā)展史看,人們對數(shù)學本質特征的認識在不斷變化和深化!皵(shù)學的根源在于普通的常識,最顯著的例子是非負整數(shù)。"歐幾里德的算術來源于普通常識中的非負整數(shù),而且直到19世紀中葉,對于數(shù)的科學探索還停留在普通的常識,”另一個例子是幾何中的相似性,“在個體發(fā)展中幾何學甚至先于算術”,其“最早的征兆之一是相似性的知識,”相似性知識被發(fā)現(xiàn)得如此之早,“就象是大生的。”因此,19世紀以前,人們普遍認為數(shù)學是一門自然科學、經(jīng)驗科學,因為那時的數(shù)學與現(xiàn)實之間的聯(lián)系非常密切,隨著數(shù)學研究的不斷深入,從19世紀中葉以后,數(shù)學是一門演繹科學的觀點逐漸占據(jù)主導地位,這種觀點在布爾巴基學派的研究中得到發(fā)展,他們認為數(shù)學是研究結構的科學,一切數(shù)學都建立在代數(shù)結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數(shù)學是研究模式的學問,數(shù)學家懷特海(A. N. Whiiehead,186----1947)在《數(shù)學與善》中說,“數(shù)學的本質特征就是:在從模式化的個體作抽象的過程中對模式進行研究,”數(shù)學對于理解模式和分析模式之間的關系,是最強有力的技術!1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統(tǒng)中存在的缺憾,這樣,人們又想到了數(shù)學是經(jīng)驗科學的觀點,著名數(shù)學家馮·諾伊曼就認為,數(shù)學兼有演繹科學和經(jīng)驗科學兩種特性。
對于上述關于數(shù)學本質特征的看法,我們應當以歷史的眼光來分析,實際上,對數(shù)本質特征的認識是隨數(shù)學的發(fā)展而發(fā)展的。由于數(shù)學源于分配物品、計算時間、丈量土地和容積等實踐,因而這時的數(shù)學對象(作為抽象思維的產(chǎn)物)與客觀實在是非常接近的,人們能夠很容易地找到數(shù)學概念的現(xiàn)實原型,這樣,人們自然地認為數(shù)學是一種經(jīng)驗科學;隨著數(shù)學研究的深入,非歐幾何、抽象代數(shù)和集合論等的產(chǎn)生,特別是現(xiàn)代數(shù)學向抽象、多元、高維發(fā)展,人們的注意力集中在這些抽象對象上,數(shù)學與現(xiàn)實之間的距離越來越遠,而且數(shù)學證明(作為一種演繹推理)在數(shù)學研究中占據(jù)了重要地位,因此,出現(xiàn)了認為數(shù)學是人類思維的自由創(chuàng)造物,是研究量的關系的科學,是研究抽象結構的理論,是關于模式的學問,等等觀點。這些認識,既反映了人們對數(shù)學理解的深化,也是人們從不同側面對數(shù)學進行認識的結果。正如有人所說的,“恩格斯的關于數(shù)學是研究現(xiàn)實世界的數(shù)量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數(shù)學的來源,后者反映了現(xiàn)代數(shù)學的水平,現(xiàn)代數(shù)學是一座由一系列抽象結構建成的大廈!倍P于數(shù)學是研究模式的學問的說法,則是從數(shù)學的抽象過程和抽象水平的角度對數(shù)學本質特征的闡釋,另外,從思想根源上來看,人們之所以把數(shù)學看成是演繹科學、研究結構的科學,是基于人類對數(shù)學推理的必然性、準確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現(xiàn),因此人們認為,發(fā)展數(shù)學理論的這套方法,即從不證自明的公理出發(fā)進行演繹推理,是絕對可靠的,也即如果公理是真的,那么由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數(shù)學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數(shù)學本質特征的認識是從數(shù)學的來源、存在方式、抽象水平等方面進行的,并且主要是從數(shù)學研究的結果來看數(shù)學的本質特征的。顯然,結果(作為一種理論的演繹體系)并不能反映數(shù)學的全貌,組成數(shù)學整體的另一個非常重要的方面是數(shù)學研究的過程,而且從總體上來說,數(shù)學是一個動態(tài)的過程,是一個“思維的實驗過程”,是數(shù)學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數(shù)學研究的過程中,數(shù)學對象的豐富、生動且富于變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,“數(shù)學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什么東西。由歐幾里德方法提出來的數(shù)學看來象是一門系統(tǒng)的演繹科學,但在創(chuàng)造過程中的數(shù)學看來卻像是一門實驗性的歸納科學。”弗賴登塔爾說,“數(shù)學是一種相當特殊的活動!边@種觀點是區(qū)別于數(shù)學作為印在書上和銘記在腦子里的東西。他認為,數(shù)學家或者數(shù)學教科書喜歡把數(shù)學表示成“一種組織得很好的狀態(tài),”也即“數(shù)學的形式”是數(shù)學家將數(shù)學(活動)內(nèi)容經(jīng)過自己的組織(活動)而形成的;但對大多數(shù)人來說,他們是把數(shù)學當成一種工具,他們不能沒有數(shù)學是因為他們需要應用數(shù)學,這就是,對于大眾來說,是要通過數(shù)學的形式來學習數(shù)學的內(nèi)容,從而學會相應的(應用數(shù)學的)活動。這大概就是弗賴登塔爾所說的“數(shù)學是在內(nèi)容和形式的互相影響之中的一種發(fā)現(xiàn)和組織的活動”的含義。菲茨拜因(Efraim Fischbein)說,“數(shù)學家的理想是要獲得嚴謹?shù)、條理清楚的、具有邏輯結構的知識實體,這一事實并不排除必須將數(shù)學看成是個創(chuàng)造性過程:數(shù)學本質上是人類活動,數(shù)學是由人類發(fā)明的',”數(shù)學活動由形式的、算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,“數(shù)學是人類意志的表達,反映積極的意愿、深思熟慮的推理,以及精美而完善的愿望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統(tǒng)可能強調(diào)不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數(shù)學科學的生命、效用與高度的價值。”
另外,對數(shù)學還有一些更加廣義的理解。如,有人認為,“數(shù)學是一種文化體系”;“數(shù)學是一種語言”;數(shù)學活動是社會性的,它是在人類文明發(fā)展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數(shù)學對人類的思維方式產(chǎn)生了關鍵性的影響;也有人認為,數(shù)學是一門藝術,這和把數(shù)學看作一門學科相比,我?guī)缀醺矚g把它看作一門藝術,因為數(shù)學家在理性世界指導下(雖然不是控制下)所表現(xiàn)出的經(jīng)久的創(chuàng)造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而并非臆造的。數(shù)學家嚴格的演繹推理在這里可以比作專門的技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數(shù)學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優(yōu)秀的藝術家或優(yōu)秀的數(shù)學家的素質,其中最主要的一條在兩種情況下都是想象力;“數(shù)學是推理的音樂,”而“音樂是形象的數(shù)學”。這是從數(shù)學研究的過程和數(shù)學家應具備的品質來論述數(shù)學的本質;還有人把數(shù)學看成是一種對待事物的基本態(tài)度和方法,一種精神和觀念,即數(shù)學精神、數(shù)學觀念和態(tài)度;尼斯(Mogens Niss)等在《社會中的數(shù)學》一文中認為,數(shù)學是一門學科,“在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現(xiàn)象、關系和機制等。如果這個領域是由我們通常認為的數(shù)學實體所構成的,數(shù)學就扮演著純粹科學的角色。在這種情況下,數(shù)學以內(nèi)在的自我發(fā)展和自我理解為目標,獨立于外部世界...另一方面,如果所考慮的領域存在于數(shù)學之外...數(shù)學就起著用科學的作用...數(shù)學的這兩個側面之間的差異并非數(shù)學內(nèi)容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數(shù)學有助于產(chǎn)生知識和洞察力。數(shù)學也是一個工具、產(chǎn)品以及過程構成的系統(tǒng),它有助于我們作出與掌握數(shù)學以外的實踐領域有關的決定和行動...數(shù)學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗...作為一門學科,數(shù)學的傳播和發(fā)展都要求它能被新一代的人們所掌握。數(shù)學的學習不會同時而自動地進行,需要靠人來傳授,所以,數(shù)學也是我們社會的教育體系中的一個教學科目!
從上所述可以看出,人們是從數(shù)學內(nèi)部(又從數(shù)學的內(nèi)容、表現(xiàn)形式及研究過程等幾個角度)。數(shù)學與社會的關系、數(shù)學與其它學科的關系、數(shù)學與人的發(fā)展的關系等幾個方面來討論數(shù)學的性質的。它們都從一個側面反映了數(shù)學的本質特征,為我們?nèi)嬲J識數(shù)學的性質提供了一個視角。
基于對數(shù)學本質特征的上述認識,人們也從不同側面討論了數(shù)學的具體特點。比較普遍的觀點是,數(shù)學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。亞歷山大洛夫說,“甚至對數(shù)學只有很膚淺的知識就能容易地覺察到數(shù)學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最后是它的應用的極端廣泛、性!蓖醮饫ふf,“數(shù)學的特點是:內(nèi)容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必。”這種看法主要從數(shù)學的內(nèi)容、表現(xiàn)形式和數(shù)學的作用等方面來理解數(shù)學的特點,是數(shù)學特點的一個方面。另外,從數(shù)學研究的過程方面、數(shù)學與其它學科之間的關系方面來看,數(shù)學還有形象性、似真性、擬經(jīng)驗性、“可證偽性”的特點。對數(shù)學特點的認識也是有時代特征的,例如,關于數(shù)學的嚴謹性,在各個數(shù)學歷史發(fā)展時期有不同的標準,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關于嚴謹性的評價標準有很大差異,尤其是哥德爾提出并證明了“不完備性定理…以后,人們發(fā)現(xiàn)即使是公理化這一曾經(jīng)被極度推崇的嚴謹?shù)目茖W方法也是有缺陷的。因此,數(shù)學的嚴謹性是在數(shù)學發(fā)展歷史中表現(xiàn)出來的,具有相對性。關于數(shù)學的似真性,波利亞在他的《數(shù)學與猜想》中指出,“數(shù)學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最后確定的形式出現(xiàn)的定型的數(shù)學,好像是僅含證明的純論證性的材料,然而,數(shù)學的創(chuàng)造過程是與任何其它知識的創(chuàng)造過程一樣的,在證明一個數(shù)學定理之前,你先得猜測這個定理的內(nèi)容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然后加以類比,你得一次又一次地進行嘗試。數(shù)學家的創(chuàng)造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發(fā)現(xiàn)的。只要數(shù)學的學習過程稍能反映出數(shù)學的發(fā)明過程的話,那么就應當讓猜測、合情推理占有適當?shù)奈恢谩!闭菑倪@個角度,我們說數(shù)學的確定性是相對的,有條件的,對數(shù)學的形象性、似真性、擬經(jīng)驗性!翱勺C偽性”特點的強調(diào),實際上是突出了數(shù)學研究中觀察、實驗、分析。比較、類比、歸納、聯(lián)想等思維過程的重要性。
綜上所述,對數(shù)學本質特征的認識是發(fā)展的、變化的,用歷史的、發(fā)展的觀點來看待數(shù)學的本質特征,恩格斯的“純數(shù)學的對象是現(xiàn)實世界的空間形式和數(shù)量關系”的論斷并不過時,對初等數(shù)學來說就更是如此。當然,對“空間形式和數(shù)量關系”的內(nèi)涵,我們應當作適當?shù)耐卣购蜕罨m槺阒赋,對?shù)學本質特征的討論中,采取現(xiàn)象與本質并重、過程與結果并重、形式與內(nèi)容并重的觀點,這對數(shù)學教學具有重要的指導意義。
數(shù)學的由來和發(fā)展
數(shù)學是研究事物的數(shù)量關系和空間形式的一門科學。
數(shù)學的產(chǎn)生和發(fā)展始終圍繞著數(shù)和形這兩個基本概念不斷地深化和演變。大體上說,凡是研究數(shù)和它的關系的部分,劃為代數(shù)學的范疇;凡是研究形和它的關系的部分,劃為幾何學的范疇。但同時數(shù)和形也是相互聯(lián)系的有機整體。
數(shù)學是一門高度概括性的科學,具有自己的特征。抽象性是它的第一個特征;數(shù)學思維的正確性表現(xiàn)在邏輯的嚴密上,所以精確性是它的第二個特征;應用的廣泛性是它的第三個特征。
一切科學、技術的發(fā)展都需要數(shù)學,這是因為數(shù)學的抽象,使外表完全不同的問題之間有了深刻的聯(lián)系。因此數(shù)學是自然科學中最基礎的學科,因此常被譽為科學的皇后。
數(shù)學在提出問題和解答問題方面,已經(jīng)形成了一門特殊的科學。在數(shù)學的發(fā)展史上,有很多的例子可以說明,數(shù)學問題是數(shù)學發(fā)展的主要源泉。數(shù)學家門為了解答這些問題,要花費較大力量和時間。盡管還有一些問題仍然沒有得到解答,然而在這個過程中,他們創(chuàng)立了不少的新概念、新理論、新方法,這些才是數(shù)學中最有價值的東西。
數(shù)學概覽
數(shù)學是研究現(xiàn)實世界中數(shù)量關系和空間形式的科學。簡單地說,就是研究數(shù)和形的科學。
由于生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數(shù),并由用手指或實物計數(shù)發(fā)展到用數(shù)字計數(shù)。在中國,最遲在商代,即已出現(xiàn)用十進制數(shù)字表示大數(shù)的方法;至秦漢之際,即已出現(xiàn)完滿的十進位制。在 不晚于公元一世紀的《九章算術》中,已載了只有位值制才有可能進行的開平方、開立方的計算法則,并載有分數(shù)的各種運算以及解線性聯(lián)立方程組的方法,還引入了負數(shù)概念。
劉徽在他注解的《九章算術》中,還提出過用十進制小數(shù)表示無理數(shù)平方根的奇零部分,但直至唐宋時期(歐洲則在16世紀斯蒂文以后)十進制小數(shù)才獲通用。在這本著作中,劉徽又用圓內(nèi)接正多邊形的周長逼近圓周長,成為后世求圓周率 的一般方法。
雖然中國從來沒有過無理數(shù)或實數(shù)的一般概念,但在實質上,那時中國已完成了實數(shù)系統(tǒng)的一切運算法則與方法,這不僅在應用上不可缺,也為數(shù)學初期教育所不可少。至于繼承了巴比倫、埃及、希臘文化的歐洲地區(qū),則偏重于數(shù)的性質及這些性質間的邏輯關系的研究。
早在歐幾里得的《幾何原本》中,即有素數(shù)的概念和素數(shù)個數(shù)無窮及整數(shù)惟一分解等論斷。古希臘發(fā)現(xiàn)了有非分數(shù)的數(shù),即現(xiàn)稱的無理數(shù)。16世紀以來,由于解高次方程又出現(xiàn)了復數(shù)。在近代,數(shù)的概念更進一步抽象化,并依據(jù)數(shù)的不同運算規(guī)律,對一般的數(shù)系統(tǒng)進行了獨立的理論探討,形成數(shù)學中的若干不同分支。
開平方和開立方是解最簡單的高次方程所必須用到的運算。在《九章算術》中,已出現(xiàn)解某種特殊形式的二次方程。發(fā)展至宋元時代,引進了“天元”(即未知數(shù))的明確觀念,出現(xiàn)了求高次方程數(shù)值解與求多至四個未知數(shù)的高次代數(shù)聯(lián)立方程組的解的方法,通稱為天元術與四元術。與之相伴出現(xiàn)的多項式的表達、運算法則以及消去方法,已接近于近世的代數(shù)學。
在中國以外,九世紀阿拉伯的花拉米子的著作闡述了二次方程的解法,通常被視為代數(shù)學的鼻祖,其解法實質上與中國古代依賴于切割術的幾何方法具有同一風格。中國古代數(shù)學致力于方程的具體求解,而源于古希臘、埃及傳統(tǒng)的歐洲數(shù)學則不同,一般致力于探究方程解的性質。
16世紀時,韋達以文字代替方程系數(shù),引入了代數(shù)的符號演算。對代數(shù)方程解的性質進行探討,是從線性方程組引出的行列式、矩陣、線性空間、線性變換等概念與理論的出現(xiàn);從代數(shù)方程導致復數(shù)、對稱函數(shù)等概念的引入以至伽羅華理論與群論的創(chuàng)立。而近代極為活躍的代數(shù)幾何,則無非是高次聯(lián)立代數(shù)方程組解所構成的集合的理論研究。
形的研究屬于幾何學的范疇。古代民族都具有形的簡單概念,并往往以圖畫來表示,而圖形之所以成為數(shù)學對象是由于工具的制作與測量的要求所促成的。規(guī)矩以作圓方,中國古代夏禹泊水時即已有規(guī)、矩、準、繩等測量工具。
《墨經(jīng)》中對一系列的幾何概念,有抽象概括,作出了科學的定義!吨荀滤憬(jīng)》與劉徽的《海島算經(jīng)》給出了用矩觀測天地的一般方法與具體公式。在《九章算術》及劉徽注解的《九章算術》中,除勾股定理外,還提出了若干一般原理以解決多種問題。例如求任意多邊形面積的出入相補原理;求多面體的體積的陽馬鱉需的二比一原理(劉徽原理);5世紀祖(日恒)提出的用以求曲形體積特別是球的體積的“冪勢既同則積不容異”的原理;還有以內(nèi)接正多邊形逼近圓周長的極限方法(割圓術)。但自五代(約10世紀)以后,中國在幾何學方面的建樹不多。
中國幾何學以測量和計算面積、體積的量度為中心任務,而古希臘的傳統(tǒng)則是重視形的性質與各種性質間的相互關系。歐幾里得的《幾何原本》,建立了用定義、公理、定理、證明構成的演繹體系,成為近代數(shù)學公理化的楷模,影響遍及于整個數(shù)學的發(fā)展。特別是平行公理的研究,導致了19世紀非歐幾何的產(chǎn)生。
歐洲自文藝復興時期起通過對繪畫的透視關系的研究,出現(xiàn)了射影幾何。18世紀,蒙日應用分析方法對形進行研究,開微分幾何學的先河。高斯的曲面論與黎曼的流形理論開創(chuàng)了脫離周圍空間以形作為獨立對象的研究方法;19世紀克萊因以群的觀點對幾何學進行統(tǒng)一處理。此外,如康托爾的點集理論,擴大了形的范圍;龐加萊創(chuàng)立了拓撲學,使形的連續(xù)性成為幾何研究的對象。這些都使幾何學面目一新。
在現(xiàn)實世界中,數(shù)與形,如影之隨形,難以分割。中國的古代數(shù)學反映了這一客觀實際,數(shù)與形從來就是相輔相成,并行發(fā)展的。例如勾股測量提出了開平方的要求,而開平方、開立方的方法又奠基于幾何圖形的考慮。二次、三次方程的產(chǎn)生,也大都來自幾何與實際問題。至宋元時代,由于天元概念與相當于多項式概念的引入,出現(xiàn)了幾何代數(shù)化。
在天文與地理中的星表與地圖的繪制,已用數(shù)來表示地點,不過并未發(fā)展到坐標幾何的地步。在歐洲,十四世紀奧爾斯姆的著作中已有關于經(jīng)緯度與函數(shù)圖形表示的萌芽。十七世紀笛卡爾提出了系統(tǒng)的把幾何事物用代數(shù)表示的方法及其應用。在其啟迪之下,經(jīng)萊布尼茨、牛頓等的工作,發(fā)展成了現(xiàn)代形式的坐標制解析幾何學,使數(shù)與形的統(tǒng)一更臻完美,不僅改變了幾何證題過去遵循歐幾里得幾何的老方法,還引起了導數(shù)的產(chǎn)生,成為微積分學產(chǎn)生的根源。這是數(shù)學史上的一件大事。
在十七世紀中,由于科學與技術上的要求促使數(shù)學家們研究運動與變化,包括量的變化與形的變換(如投影),還產(chǎn)生了函數(shù)概念和無窮小分析即現(xiàn)在的微積分,使數(shù)學從此進入了一個研究變量的新時代。
十八世紀以來,以解析幾何與微積分這兩個有力工具的創(chuàng)立為契機,數(shù)學以空前的規(guī)模迅猛發(fā)展,出現(xiàn)了無數(shù)分支。由于自然界的客觀規(guī)律大多是以微分方程的形式表現(xiàn)的,所以微分方程的研究一開始就受到很大的重視。
微分幾何基本上與微積分同時誕生,高斯與黎曼的工作又產(chǎn)生了現(xiàn)代的微分幾何。19、20世紀之交,龐加萊創(chuàng)立了拓撲學,開辟了對連續(xù)現(xiàn)象進行定性與整體研究的途徑。對客觀世界中隨機現(xiàn)象的分析,產(chǎn)生了概率論。第二次世界大戰(zhàn)軍事上的需要,以及大工業(yè)與管理的復雜化產(chǎn)生了運籌學、系統(tǒng)論、控制論、數(shù)理統(tǒng)計學等學科。實際問題要求具體的數(shù)值解答,產(chǎn)生了計算數(shù)學。選擇最優(yōu)途徑的要求又產(chǎn)生了各種優(yōu)化的理論、方法。
力學、物理學同數(shù)學的發(fā)展始終是互相影響互相促進的,特別是相對論與量子力學推動了微分幾何與泛函分析的成長。此外在19世紀還只用到一次方程的化學和幾乎與數(shù)學無緣的生物學,都已要用到最前沿的一些數(shù)學知識。
十九世紀后期,出現(xiàn)了集合論,還進入了一個批判性的時代,由此推動了數(shù)理邏輯的形成與發(fā)展,也產(chǎn)生了把數(shù)學看作是一個整體的各種思潮和數(shù)學基礎學派。特別是1900年,德國數(shù)學家希爾伯特在第二屆國際數(shù)學家大會上的關于當代數(shù)學重要問題的演講,以及三十年代開拓的,以結構概念統(tǒng)觀數(shù)學的法國布爾巴基學派的興起,對二十世紀數(shù)學的發(fā)展產(chǎn)生了巨大、深遠的影響,科學的數(shù)學化一語也開始為人們所樂道。
數(shù)學的外圍向自然科學、工程技術甚至社會科學不斷滲透擴大并從中吸取營養(yǎng),出現(xiàn)了一些邊緣數(shù)學。數(shù)學本身的內(nèi)部需要也孽生了不少新的理論與分支。同時其核心部分也在不斷鞏固提高并有時作適當調(diào)整以適應外部需要?傊,數(shù)學這棵大樹茁壯成長,既枝葉繁茂又根深蒂固。
在數(shù)學的蓬勃發(fā)展過程中,數(shù)與形的概念不斷擴大且日趨抽象化,以至于不再有任何原始計數(shù)與簡單圖形的蹤影。雖然如此,在新的數(shù)學分支中仍有著一些對象和運算關系借助于幾何術語來表示。如把函數(shù)看成是某種空間的一個點之類。這種做法之所以行之有效,歸根結底還是因為數(shù)學家們已經(jīng)熟悉了那種簡易的數(shù)學運算與圖形關系,而后者又有著長期深厚的現(xiàn)實基礎。而且,即使是最原始的數(shù)字如1、2、3、4,以及幾何形象如點與直線,也已經(jīng)是經(jīng)過人們高度抽象化了的概念。因此如果把數(shù)與形作為廣義的抽象概念來理解,則前面提到的把數(shù)學作為研究數(shù)與形的科學這一定義,對于現(xiàn)階段的近代數(shù)學,也是適用的。
由于數(shù)學研究對象的數(shù)量關系與空間形式都來自現(xiàn)實世界,因而數(shù)學盡管在形式上具有高度的抽象性,而實質上總是扎根于現(xiàn)實世界的。生活實踐與技術需要始終是數(shù)學的真正源泉,反過來,數(shù)學對改造世界的實踐又起著重要的、關鍵性的作用。理論上的豐富提高與應用的廣泛深入在數(shù)學史上始終是相伴相生,相互促進的。
但由于各民族各地區(qū)的客觀條件不同,數(shù)學的具體發(fā)展過程是有差異的。大體說來,古代中華民族以竹為籌,以籌運算,自然地導致十進位值制的產(chǎn)生。計算方法的優(yōu)越有助于對實際問題的具體解決。由此發(fā)展起來的數(shù)學形成了一個以構造性、計算性、程序化與機械化為其特色,以從問題出發(fā)進而解決問題為主要目標的獨特體系。而在古希臘則著重思維,追求對宇宙的了解。由此發(fā)展成以抽象了的數(shù)學概念與性質及其相互間的邏輯依存關系為研究對象的公理化演繹體系。
中國的數(shù)學體系在宋元時期達到高峰以后,陷于停頓且?guī)字料。而在歐洲,經(jīng)過文藝復興、宗教革命、資產(chǎn)階級革命等一系列的變革,導致了工業(yè)革命與技術革命。機器的使用,不論中外都由來已久。但在中國,則由于明初被帝王斥為奇技淫巧而受阻抑。
在歐洲,則由于工商業(yè)的發(fā)展與航海的刺激而得到發(fā)展,機器使人們從繁重的體力勞動中解放出來,并引導到理論力學和一般的運動和變化的科學研究。當時的數(shù)學家都積極參與了這些變革以及相應數(shù)學問題的解決,產(chǎn)生了積極的效果。解析幾何與微積分的誕生,成為數(shù)學發(fā)展的一個轉折點。17世紀以來數(shù)學的飛躍,大體上可以看成是這些成果的延續(xù)與發(fā)展。
20世紀出現(xiàn)各種嶄新的技術,產(chǎn)生了新的技術革命,特別是計算機的出現(xiàn),使數(shù)學又面臨一個新時代。這一時代的特點之一就是部分腦力勞動的逐步機械化。與17世紀以來數(shù)學之以圍繞連續(xù)、極限等概念為主導思想與方法不同,由于計算機研制與應用的需要,離散數(shù)學與組和數(shù)學開始受到重視。
計算機對數(shù)學的作用已不限于數(shù)值計算,符號運算的重要性日趨明顯(包括機器證明等數(shù)學研究)。計算機還廣泛應用于科學實驗。為了與計算機更好地配合,數(shù)學對于構造性、計算性、程序化與機械化的要求也顯得頗為突出。代數(shù)幾何是一門高度抽象化的數(shù)學,最近出現(xiàn)的計算性代數(shù)幾何與構造性代數(shù)幾何的提法,即其端倪之一?傊,數(shù)學正隨著新的技術革命而不斷發(fā)展。
【數(shù)學的由來】相關文章:
數(shù)學的由來03-28
數(shù)學的由來推薦05-04
數(shù)學符號的由來05-04
數(shù)學的由來介紹05-04
數(shù)學的由來詳解05-04
數(shù)學加減由來08-24
數(shù)學符號由來05-04
數(shù)學厘米的由來08-08
數(shù)學乘號的由來05-04
有關數(shù)學的由來05-04