- 相關(guān)推薦
六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理
在我們上學(xué)期間,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。為了幫助大家更高效的學(xué)習(xí),以下是小編收集整理的六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理,希望能夠幫助到大家。
六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理 1
一、圓的相關(guān)概念
1、圓的定義
在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。
2、直線圓的與置位關(guān)系
1.線直與圓有唯公一共時(shí),點(diǎn)做直叫與圓線切
2.三角的外形圓接的圓叫做三心形角外心
3.弦切角于所等夾弧所對(duì)的的圓心角
4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心
5.垂于直徑半直線必為圓的的切線
6.過徑半外的點(diǎn)并且垂直端于半的徑直線是圓切線
7.垂于直徑半直線是圓的的切線
8.圓切線垂的直過切于點(diǎn)半徑
3、圓的幾何表示
以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”
二、垂徑定理及其推論
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。
推論1:
(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。
(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。
(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑平分弦知二推三
平分弦所對(duì)的優(yōu)弧
平分弦所對(duì)的劣弧
三、弦、弧等與圓有關(guān)的定義
1、弦
連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)
2、直徑
經(jīng)過圓心的弦叫做直徑。(如途中的CD)
直徑等于半徑的2倍。
3、半圓
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。
4、弧、優(yōu)弧、劣弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。
弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。
大于半圓的弧叫做優(yōu)弧(多用三個(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)
四、圓的對(duì)稱性
1、圓的軸對(duì)稱性
圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。
2、圓的中心對(duì)稱性
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
五、弧、弦、弦心距、圓心角之間的關(guān)系定理
1、圓心角
頂點(diǎn)在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關(guān)系定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦想等,所對(duì)的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
七、點(diǎn)和圓的位置關(guān)系
設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:
d
d=r點(diǎn)P在⊙O上;
d>r點(diǎn)P在⊙O外。
八、過三點(diǎn)的圓
1、過三點(diǎn)的圓
不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
2、三角形的外接圓
經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的'圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。
4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)
圓內(nèi)接四邊形對(duì)角互補(bǔ)。
九、反證法
先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關(guān)系
直線和圓有三種位置關(guān)系,具體如下:
(1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);
(2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,
(3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:
直線l與⊙O相交d
直線l與⊙O相切d=r;
直線l與⊙O相離d>r;
十一、切線的判定和性質(zhì)
1、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
2、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
十二、切線長定理
1、切線長
在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長叫做這點(diǎn)到圓的切線長。
2、切線長定理
從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
十三、圓和圓的位置關(guān)系
1、圓和圓的位置關(guān)系
如果兩個(gè)圓沒有公共點(diǎn),那么就說這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。
如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說這兩個(gè)圓相切,相切分為外切和內(nèi)切兩種。
如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說這兩個(gè)圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關(guān)系的性質(zhì)與判定
設(shè)兩圓的半徑分別為R和r,圓心距為d,那么
兩圓外離d>R+r
兩圓外切d=R+r
兩圓相交R-r
兩圓內(nèi)切d=R-r(R>r)
兩圓內(nèi)含dr)
4、兩圓相切、相交的重要性質(zhì)
如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對(duì)稱圖形,對(duì)稱軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦。
十四、三角形的內(nèi)切圓
1、三角形的內(nèi)切圓
與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。
2、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。
十五、與正多邊形有關(guān)的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個(gè)正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個(gè)正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對(duì)的外接圓的圓心角叫做這個(gè)正多邊形的中心角。
十六、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關(guān)系
只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。
十七、正多邊形的對(duì)稱性
1、正多邊形的軸對(duì)稱性
正多邊形都是軸對(duì)稱圖形。一個(gè)正n邊形共有n條對(duì)稱軸,每條對(duì)稱軸都通過正n邊形的中心。
2、正多邊形的中心對(duì)稱性
邊數(shù)為偶數(shù)的正多邊形是中心對(duì)稱圖形,它的對(duì)稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規(guī)等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對(duì)的弧長l的計(jì)算公式為
2、扇形面積公式
其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。
3、圓錐的側(cè)面積
其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑。
初中數(shù)學(xué)圓解題技巧
半徑與弦長計(jì)算,弦心距來中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
切線長度的計(jì)算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
弦切角邊切線弦,同弧對(duì)角等找完。
要想作個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。
如果遇到相交圓,不要忘作公共弦。
內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。
若是添上連心線,切點(diǎn)肯定在上面。
要作等角添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理 2
一、 認(rèn)識(shí)圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對(duì)折兩次,折痕相交于圓中心的一點(diǎn),這一點(diǎn)叫做圓心。
一般用字母O表示。它到圓上任意一點(diǎn)的距離都相等.
3、半徑:連接圓心到圓上任意一點(diǎn)的線段叫做半徑。一般用字母r表示。
把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個(gè)圓內(nèi)最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的 。
用字母表示為:d=2r或r =
8、軸對(duì)稱圖形:
如果一個(gè)圖形沿著一條直線對(duì)折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形是軸對(duì)稱圖形。
折痕所在的這條直線叫做對(duì)稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對(duì)稱圖形,都有對(duì)稱軸。這些圖形都是軸對(duì)稱圖形。
10、只有1一條對(duì)稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對(duì)稱軸的圖形是: 長方形
只有3條對(duì)稱軸的圖形是: 等邊三角形
只有4條對(duì)稱軸的圖形是: 正方形;
有無數(shù)條對(duì)稱軸的圖形是: 圓、圓環(huán)。
二、圓的周長
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實(shí)驗(yàn):
在圓形紙片上做個(gè)記號(hào),與直尺0刻度對(duì)齊,在直尺上滾動(dòng)一周,求出圓的周長。
發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個(gè)固定數(shù)(π)。
3.圓周率:任意一個(gè)圓的周長與它的直徑的比值是一個(gè)固定的數(shù),我們把它叫做圓周率。
用字母π(pai) 表示。
(1)、一個(gè)圓的周長總是它直徑的3倍多一些,這個(gè)比值是一個(gè)固定的'數(shù)。
圓周率π是一個(gè)無限不循環(huán)小數(shù)。在計(jì)算時(shí),一般取π ≈ 3.14。
(2)、在判斷時(shí),圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)、世界上第一個(gè)把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。
4、圓的周長公式: C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一個(gè)正方形里畫一個(gè)最大的圓,圓的直徑等于正方形的邊長。
在一個(gè)長方形里畫一個(gè)最大的圓,圓的直徑等于長方形的寬。
6、區(qū)分周長的一半和半圓的周長:
(1) 周長的一半:等于圓的周長÷2 計(jì)算方法:2π r ÷ 2 即 π r
(2)半圓的周長:等于圓的周長的一半加直徑。 計(jì)算方法:πr+2r
三、圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。 用字母S表示。
2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
3、圓面積公式的推導(dǎo):
(1)、用逐漸逼近的轉(zhuǎn)化思想: 體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復(fù)雜為簡單,化抽象為具體。
(2)、把一個(gè)圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。
(3)、拼出的圖形與圓的周長和半徑的關(guān)系。
圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
因?yàn)椋?長方形面積 = 長 × 寬
所以: 圓的面積 = 圓周長的一半 × 圓的半徑
S圓 = πr × r
圓的面積公式: S圓 = πr2
4、環(huán)形的面積:
一個(gè)環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度.)
S環(huán) = πR2-πr2 或
環(huán)形的面積公式: S環(huán) = π(R2-r2)。
5、一個(gè)圓,半徑擴(kuò)大或縮小多少倍,直徑和周長也擴(kuò)大或縮小相同的倍數(shù)。
而面積擴(kuò)大或縮小的倍數(shù)是這倍數(shù)的平方倍。 例如:
在同一個(gè)圓里,半徑擴(kuò)大3倍,那么直徑和周長就都擴(kuò)大3倍,而面積擴(kuò)大9倍。
6、兩個(gè)圓: 半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。 例如:
兩個(gè)圓的半徑比是2∶3,那么這兩個(gè)圓的直徑比和周長比都是2∶3,而面積比是4∶9
7、任意一個(gè)正方形與它內(nèi)切圓的面積之比都是一個(gè)固定值,即:4∶π
8、當(dāng)長方形,正方形,圓的周長相等時(shí),圓面積最大,正方形居中,長方形面積最小。反之,面積相同時(shí),長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
(1)、每條跑道的長度 = 兩個(gè)半圓形跑道合成的圓的周長 + 兩個(gè)直道的長度。
(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)
(3)、每相鄰兩個(gè)跑道相隔的距離是: 2×π×跑道的寬度
(4)、當(dāng)一個(gè)圓的半徑增加a厘米時(shí),它的周長就增加2πa厘米;當(dāng)一個(gè)圓的直徑增加a厘米時(shí),它的周長就增加πa厘米。
11、常用各π值結(jié)果:
π = 3.14
2π = 6.28
3π = 9.42
5π = 15.7
6π = 18.84
7π = 21.98
9π = 28.26
10π = 31.4
16π = 50.24
36π = 113.04
64π = 200.96
96π = 301.44
4π = 12.56 8π = 25.12 25π = 78.5
12、常用平方數(shù)結(jié)果
= 121 = 144 = 169 = 196 = 225
= 256 = 289 = 324 = 361
六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理 3
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動(dòng)。
3、圓心O:圓中心的點(diǎn)叫做圓心.圓心一般用字母O表示。
圓多次對(duì)折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點(diǎn)的線段叫做半徑。在同一個(gè)圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個(gè)圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個(gè)圓叫做同心圓。
5、圓是軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形是軸對(duì)稱圖形。折痕所在的直線叫做對(duì)稱軸。
有一條對(duì)稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對(duì)稱軸的圖形:長方形
有三條對(duì)稱軸的圖形:等邊三角形
有四條對(duì)稱軸的圖形:正方形
有無條對(duì)稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。
二、圓的周長:
圍成圓的曲線的.長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個(gè)固定值,叫做圓周率,用字母π表示。
即:圓周率π =周長÷直徑≈3.14。
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd, c=2πr。
圓周率π是一個(gè)無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴(kuò)大多少倍直徑也擴(kuò)大多少倍,周長擴(kuò)大的倍數(shù)與半徑、直徑擴(kuò)大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑= πr+d
三、圓的面積s
1、圓面積公式的推導(dǎo)
如圖把一個(gè)圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以,圓的面積=圓的周長的一半(πr)×圓的半徑(r)。
S圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時(shí),圓面積最大,利用這一特點(diǎn),籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴(kuò)大多少倍,直徑、周長也同時(shí)擴(kuò)大多少倍,圓面積擴(kuò)大的倍數(shù)是半徑、直徑擴(kuò)大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因?yàn)閮蓷l直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個(gè)圓的半徑增加a厘米,周長就增加2πa厘米。
一個(gè)圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個(gè)正方形的內(nèi)切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小學(xué)數(shù)學(xué)比和比例知識(shí)點(diǎn)
1、比的基本性質(zhì):比的前項(xiàng)和后項(xiàng)都乘以或除以一個(gè)不為零的數(shù)。比值不變。
比的性質(zhì)用于化簡比。
比表示兩個(gè)數(shù)相除;只有兩個(gè)項(xiàng):比的前項(xiàng)和后項(xiàng)。
2、比和比例的區(qū)別
(1)意義、項(xiàng)數(shù)、各部分名稱不同。比表示兩個(gè)數(shù)相除;只有兩個(gè)項(xiàng):比的前項(xiàng)和后項(xiàng)。如:a:b這是比。比例是一個(gè)等式,表示兩個(gè)比相等;有四個(gè)項(xiàng):兩個(gè)外項(xiàng)和兩個(gè)內(nèi)項(xiàng)。a:b=3:4這是比例。
(2)比的基本性質(zhì)和比例的基本性質(zhì)意義不同、應(yīng)用不同。
比的性質(zhì):比的前項(xiàng)和后項(xiàng)都乘或除以一個(gè)不為零的數(shù)。比值不變。
比例的性質(zhì):在比例里,兩個(gè)外項(xiàng)的乘積等于兩個(gè)內(nèi)項(xiàng)的乘積相等。比例的性質(zhì)用于解比例。聯(lián)系:比例是由兩個(gè)相等的比組成。
數(shù)學(xué)分?jǐn)?shù)的基本性質(zhì)
分?jǐn)?shù)的分子和分母都乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
聯(lián)系分?jǐn)?shù)與除法的關(guān)系以及“商不變”的規(guī)律,來理解分?jǐn)?shù)的基本性質(zhì)。
分子相當(dāng)于被除數(shù),分母相當(dāng)于除數(shù),被除數(shù)和除數(shù)同時(shí)乘或除以相同的數(shù)(0除外),商不變。因此分?jǐn)?shù)的分子和分母都乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小也是不變的。
運(yùn)用分?jǐn)?shù)的基本性質(zhì),把一個(gè)分?jǐn)?shù)化成指定分母(或分子)而大小不變的分?jǐn)?shù)。
【六年級(jí)上冊(cè)數(shù)學(xué)圓的知識(shí)點(diǎn)整理】相關(guān)文章:
初一上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理05-09
初中數(shù)學(xué)圓知識(shí)點(diǎn)06-12
六年級(jí)數(shù)學(xué)上冊(cè)規(guī)則運(yùn)算知識(shí)點(diǎn)整理03-27
7年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)整理11-22
小升初數(shù)學(xué)知識(shí)點(diǎn)整理07-22
小升初數(shù)學(xué)重要知識(shí)點(diǎn)整理10-08
中考數(shù)學(xué)知識(shí)點(diǎn):圓12-18
中考數(shù)學(xué)知識(shí)點(diǎn)【圓】08-09