亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

高二會考數(shù)學(xué)重要知識點(diǎn)整理分享

時間:2024-10-22 10:54:48 敏冰 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高二會考數(shù)學(xué)重要知識點(diǎn)整理分享

  在學(xué)習(xí)中,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)也不一定都是文字,數(shù)學(xué)的知識點(diǎn)除了定義,同樣重要的公式也可以理解為知識點(diǎn)。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?下面是小編為大家整理的高二會考數(shù)學(xué)重要知識點(diǎn)整理分享,希望對大家有所幫助。

高二會考數(shù)學(xué)重要知識點(diǎn)整理分享

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 1

  畫圓柱、圓錐、圓臺和球的直觀圖的方法——正等測

  (1)正等測畫直觀圖的要求:

  ①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

 、谠谕队皥D上取線段長度的方法是:在三軸上或平行于三軸的線段都取實(shí)長。

  這里與斜二測畫直觀圖的方法不同,要注意它們的區(qū)別。

  (2)正等測圓柱、圓錐、圓臺的直觀圖的區(qū)別主要是水平放置的.平面圖形。

  用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實(shí)長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實(shí)長。

  關(guān)于幾何體表面內(nèi)兩點(diǎn)間的最短距離問題

  柱、錐、臺的表面都可以平面展開,這些幾何體表面內(nèi)兩點(diǎn)間最短距離,就是其平面內(nèi)展開圖內(nèi)兩點(diǎn)間的線段長。

  由于球面不能平面展開,所以求球面內(nèi)兩點(diǎn)間的球面距離是一個全新的方法,這個最短距離是過這兩點(diǎn)大圓的劣弧長。

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 2

  空間角問題

  (1)直線與直線所成的角

  兩平行直線所成的角:規(guī)定為.

  兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

  兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

  平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

  平面的斜線與平面所成的.角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

  在解題時,注意挖掘題設(shè)中主要信息:

  (1)斜線上一點(diǎn)到面的垂線;

  (2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

  (3)二面角和二面角的平面角

  二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

  直二面角:平面角是直角的二面角叫直二面角.

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

  求二面角的方法

  定義法:在棱上選擇有關(guān)點(diǎn),過這個點(diǎn)分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點(diǎn)到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 3

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 、谶^兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (3)直線方程

 、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

  注意:當(dāng)直線的'斜率為0°時,k=0,直線的方程是y=y1。

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

  ③兩點(diǎn)式:

 、芙鼐厥剑

  其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

  ⑤一般式:(A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

  (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

  (為參數(shù)),其中直線不在直線系中。

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

  (7)兩條直線的交點(diǎn)相交,交點(diǎn)坐標(biāo)即方程組的一組解。

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點(diǎn)。

  (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 4

  拋物線的性質(zhì):

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的'開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點(diǎn)。

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn)。

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  焦半徑:

  焦半徑:拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fè???÷?

  p2,0的距離|PF|=x0+p2.

  求拋物線方程的方法:

  (1)定義法:根據(jù)條件確定動點(diǎn)滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程.

  (2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡單化角度出發(fā),焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),焦點(diǎn)在y軸的,設(shè)為x2=by(b≠0).

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 5

  等差數(shù)列

  對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

  那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上n—1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n—1個d,如此便得到上述通項公式。

  此外,數(shù)列前n項的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的`方法,也可以采取迭代的方法,在此,不再復(fù)述。

  值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。

  等比數(shù)列

  對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

  那么,通項公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的思想:

  a2=a1x,

  a3=a2x,

  a4=a3x,

  an=an—1x,

  將以上(n—1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n—1)個q的乘積,也即得到了所述通項公式。

  此外,當(dāng)q=1時該數(shù)列的前n項和Tn=a1x

  當(dāng)q≠1時該數(shù)列前n項的和Tn=a1x1—q^(n))/(1—q)

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 6

  高二數(shù)學(xué)重點(diǎn)知識點(diǎn)梳理

  簡單隨機(jī)抽樣的定義:

  一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

  簡單隨機(jī)抽樣的特點(diǎn):

  (1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為xxx;在整個抽樣過程中各個個體被抽到的概率為xxx。

  (2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個抽取,且各個個體被抽到的概率相等;

  (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

  (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽取;它是一種等概率抽樣

  簡單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.

  (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率.

  高二數(shù)學(xué)重點(diǎn)知識點(diǎn)

  函數(shù)的性質(zhì):

  函數(shù)的單調(diào)性、奇偶性、周期性

  單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。

  判定方法有:定義法(作差比較和作商比較)

  導(dǎo)數(shù)法(適用于多項式函數(shù))

  復(fù)合函數(shù)法和圖像法。

  應(yīng)用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

  f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

  判別方法:定義法,圖像法,復(fù)合函數(shù)法

  應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

  周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

  其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

  應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。

  人教版高二數(shù)學(xué)知識點(diǎn)總結(jié)

  在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

  1.任意角

  (1)角的分類:

  ①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角.

 、诎唇K邊位置不同分為象限角和軸線角.

  (2)終邊相同的角:

  終邊與角相同的角可寫成+k360(kZ).

  (3)弧度制:

 、1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.

 、谝(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零||=,l是以角作為圓心角時所對圓弧的長,r為半徑.

 、塾没《茸鰡挝粊矶攘拷堑闹贫冉凶龌《戎.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).

 、芑《扰c角度的換算:360弧度;180弧度.

 、莼¢L公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的`三角函數(shù)

  (1)任意角的三角函數(shù)定義:

  設(shè)是一個任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).

  (2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.

  3.三角函數(shù)線

  設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長線相交于點(diǎn)T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 7

  簡單隨機(jī)抽樣的定義:

  一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

  簡單隨機(jī)抽樣的特點(diǎn):

  (1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為

 。辉谡麄抽樣過程中各個個體被抽到的概率為

  (2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個抽取,且各個個體被抽到的概率相等;

  (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

  (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽取;它是一種等概率抽樣

  簡單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.

  (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率.

  高二數(shù)學(xué)重點(diǎn)知識點(diǎn)

  集合的分類:

  (1)按元素屬性分類,如點(diǎn)集,數(shù)集。

  (2)按元素的個數(shù)多少,分為有/無限集

  關(guān)于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N.;

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

  有理數(shù)全體構(gòu)成的.集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)。)

  1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

  無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

  2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

  它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 8

  1.向量的基本概念

  (1)向量

  既有大小又有方向的量叫做向量.物理學(xué)中又叫做矢量.如力、速度、加速度、位移就是向量。

  向量可以用一條有向線段(帶有方向的線段)來表示,用有向線段的長度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個小寫字母a,b,c表示,或用兩個大寫字母加表示(其中前面的字母為起點(diǎn),后面的字母為終點(diǎn))

  (2)平行向量

  方向相同或相反的非零向量,叫做平行向量,平行向量也叫做共線向量。

  若向量a、b平行,記作a∥b。

  規(guī)定:0與任一向量平行。

  (3)相等向量

  長度相等且方向相同的向量叫做相等向量。

 、傧蛄肯嗟扔袃蓚要素:一是長度相等,二是方向相同,二者缺一不可。

  ②向量a,b相等記作a=b。

 、哿阆蛄慷枷嗟。

 、苋魏蝺蓚相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點(diǎn)無關(guān)。

  2.對于向量概念需注意

  (1)向量是區(qū)別于數(shù)量的'一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的?梢员容^大小。

  (2)向量共線與表示它們的有向線段共線不同。向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。

  (3)由向量相等的定義可知,對于一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線上。

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 9

  高二數(shù)學(xué)重要知識點(diǎn)歸納

  1、科學(xué)記數(shù)法:將數(shù)字寫成形式的記數(shù)法。

  2、統(tǒng)計圖:生動地表示收集到的數(shù)據(jù)圖。

  3、扇形統(tǒng)計圖:用圓形和扇形表示整體和部分之間的關(guān)系。扇形大小反映了部分占整體百分比的大小;在扇形統(tǒng)計圖中,每個部分占整體百分比等于相應(yīng)的扇形圓心角和360°的比。

  4、條形統(tǒng)計圖:明確表示每個項目的具體數(shù)量。

  5、折線統(tǒng)計圖:清楚地反映事物的變化。

  6、確定事件包括:必然事件和不可能事件。

  7、不確定事件:可能發(fā)生或不可能發(fā)生的事件;不確定事件發(fā)生的可能性不同;不確定。

  8、事件概率:可以將事件結(jié)果除以,因此可能的結(jié)果得到理論概率。

  9、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字到精確到的數(shù)字。

  10、游戲雙方公平:雙方獲勝的可能性相同。

  11、算數(shù)平均值:簡稱“平均值”,最常用,受極端值影響較大;加權(quán)平均值。

  12、中位數(shù):數(shù)據(jù)按大小排列,中間位置數(shù),計算簡單,受極端值影響較小。

  13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)受極端值影響較小,與其他數(shù)據(jù)關(guān)系不大。

  14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,描繪了一組數(shù)據(jù)的“平均水平”。

  15、普查:為一定目的對調(diào)查對象進(jìn)行全面調(diào)查;所有的調(diào)查對象都叫整體,每個調(diào)查對象都叫個體。

  16、抽樣調(diào)查:從整體中提取部分個體進(jìn)行調(diào)查;從整體中提取的部分個體稱為樣本(具有代表性)。

  17、隨機(jī)調(diào)查:按機(jī)會平等的原則進(jìn)行調(diào)查,一般每個人被調(diào)查的概率相同。

  18、頻率:每個對象出現(xiàn)的次數(shù)。

  19、頻率:每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值。

  20、等級差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的`差異,描述數(shù)據(jù)的離散程度。

  21、方差:每個數(shù)據(jù)與平均數(shù)之差的平均數(shù),描述數(shù)據(jù)的離散程度。

  21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根描述了數(shù)據(jù)的離散程度。

  23、一組數(shù)據(jù)的等級差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。

  24、利用樹形圖或表格方便地找出事件發(fā)生的概率。

  25、在兩個對比圖像中,坐標(biāo)軸上同一單位的長度具有相同的含義,縱坐標(biāo)從0開始繪制。

  高二數(shù)學(xué)必修五知識點(diǎn)

  1.排列和計算公式

  從n個不同的元素中,任取m(m≤n)一個元素按一定順序排列,稱為從n個不同元素中取出m個元素的排列;從n個不同元素中取出m(m≤n)所有一個元素的排列數(shù)稱為從n個不同元素中取出m個元素的排列數(shù),并使用符號p(n,m)表示。

  p(n,m)=n(n-1)(n-2)……(n-m 1)=n!/(n-m)!(規(guī)定0!=1)。

  2.組合及計算公式

  從n個不同的元素中,任取m(m≤n)一組元素被稱為從n個不同元素中取出m個元素的組合;從n個不同元素中取出m(m≤n)所有組合的個元素數(shù)稱為從n個不同元素中取出m個元素的組合數(shù)。

  用符號c(n,m)表示。

  3.其他排列和組合公式

  從n個元素中提取r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!。

  n每個元素分為k類,每個類的數(shù)量分別為k類n1,n2...nk這n個元素的全排列數(shù)為

  k類元素,每個類的數(shù)量是無限的,從中取出m個元素的組合數(shù)為c(m k-1,m)。

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)...(n-m 1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo))=1;Cn1(n下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  高二數(shù)學(xué)必修四知識點(diǎn)

  1.任意角

  (1)角分類:

 、俑鶕(jù)旋轉(zhuǎn)方向的不同,可分為正角、負(fù)角、零角。

 、诟鶕(jù)最終位置的不同,分為象限角和軸線角。

  (2)終端相同的角度:

  最終邊緣和角度相同的角度可以寫成 k360(kz)。

  (3)弧度制:

 、1弧度角:將長度等于半徑長的弧所對的圓心角稱為1弧度角。

 、谝(guī)定:正角弧度數(shù)為正數(shù),負(fù)角弧度數(shù)為負(fù)數(shù),零角弧度數(shù)為零||=,l是以角作為圓心角時的圓弧長度,r為半徑。

 、塾没《茸鳛閱挝粊砗饬拷嵌鹊闹贫确Q為弧度制度.比值與r的大小無關(guān),只與角的大小有關(guān)。

 、芑《扰c角度的轉(zhuǎn)換:360弧度;180弧度。

  高二會考數(shù)學(xué)重要知識點(diǎn)整理分享 10

  一、不等式的性質(zhì)

  1.兩個實(shí)數(shù)a與b之間的大小關(guān)系

  2.不等式的性質(zhì)

  4乘法單調(diào)性

  3.絕對值不等式的性質(zhì)

  2如果a>0,那么

  3|a?b|=|a|?|b|.

  5|a|-|b|≤|a±b|≤|a|+|b|.

  6|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的證明

  1.不等式證明的依據(jù)

  2不等式的性質(zhì)略

  3重要不等式:①|(zhì)a|≥0;a2≥0;a-b2≥0a、b∈R

  ②a2+b2≥2aba、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號

  2.不等式的證明方法

  1比較法:要證明a>ba0a-bgx①與fx>gx或fxagx與fx>gx同解,當(dāng)0agx與fx

  平方關(guān)系:

  sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α

  積的關(guān)系:

  sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα

  倒數(shù)關(guān)系:

  tanα ·cotα=1sinα ·cscα=1cosα ·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα

  直角三角形ABC中,角A的正弦值就等于角A的對邊比斜邊,余弦等于角A的鄰邊比斜邊

  正切等于對邊比鄰邊,·[1]三角函數(shù)恒等變形公式

  ·兩角和與差的三角函數(shù):

  cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ

  ·三角和的三角函數(shù):

  sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα

  ·輔助角公式:

  Asinα+Bcosα=A2+B2^1/2sinα+t,其中sint=B/A2+B2^1/2cost=A/A2+B2^1/2tant=B/AAsinα-Bcosα=A2+B2^1/2cosα-t,tant=A/B

  ·倍角公式:

  sin2α=2sinα·cosα=2/tanα+cotαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=2tanα/[1-tan2α]

  ·三倍角公式:

  sin3α=3sinα-4sin3α=4sinα·sin60+αsin60-αcos3α=4cos3α-3cosα=4cosα·cos60+αcos60-αtan3α=tan a · tanπ/3+a· tanπ/3-a

  ·半角公式:

  sinα/2=±√1-cosα/2cosα/2=±√1+cosα/2tanα/2=±√1-cosα/1+cosα=sinα/1+cosα=1-cosα/sinα

  ·降冪公式

  sin2α=1-cos2α/2=versin2α/2cos2α=1+cos2α/2=covers2α/2tan2α=1-cos2α/1+cos2α

  ·萬能公式:

  sinα=2tanα/2/[1+tan2α/2]cosα=[1-tan2α/2]/[1+tan2α/2]tanα=2tanα/2/[1-tan2α/2]

  ·積化和差公式:

  sinα·cosβ=1/2[sinα+β+sinα-β]

  cosα·sinβ=1/2[sinα+β-sinα-β]

  cosα·cosβ=1/2[cosα+β+cosα-β]

  sinα·sinβ=-1/2[cosα+β-cosα-β]

  ·和差化積公式:

  sinα+sinβ=2sin[α+β/2]cos[α-β/2]sinα-sinβ=2cos[α+β/2]sin[α-β/2]cosα+cosβ=2cos[α+β/2]cos[α-β/2]cosα-cosβ=-2sin[α+β/2]sin[α-β/2]

  ·推導(dǎo)公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos2α

  1-cos2α=2sin2α

  1+sinα=sinα/2+cosα/22

  ·其他:

  sinα+sinα+2π/n+sinα+2π*2/n+sinα+2π*3/n+……+sin[α+2π*n-1/n]=0

  cosα+cosα+2π/n+cosα+2π*2/n+cosα+2π*3/n+……+cos[α+2π*n-1/n]=0以及

  sin2α+sin2α-2π/3+sin2α+2π/3=3/2

  tanAtanBtanA+B+tanA+tanB-tanA+B=0

  cosx+cos2x+...+cosnx= [sinn+1x+sinnx-sinx]/2sinx

  證明:

  左邊=2sinxcosx+cos2x+...+cosnx/2sinx

  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sinn-2x+sinn+1x-sinn-1x]/2sinx積化和差

  =[sinn+1x+sinnx-sinx]/2sinx=右邊

  等式得證

  sinx+sin2x+...+sinnx= - [cosn+1x+cosnx-cosx-1]/2sinx

  證明:

  左邊=-2sinx[sinx+sin2x+...+sinnx]/-2sinx

  =[cos2x-cos0+cos3x-cosx+...+cosnx-cosn-2x+cosn+1x-cosn-1x]/-2sinx

  =- [cosn+1x+cosnx-cosx-1]/2sinx=右邊

  等式得證

  三角函數(shù)的誘導(dǎo)公式

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin2kπ+α=sinα

  cos2kπ+α=cosα

  tan2kπ+α=tanα

  cot2kπ+α=cotα

  公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sinπ+α=-sinα

  cosπ+α=-cosα

  tanπ+α=tanα

  cotπ+α=cotα

  公式三:

  任意角α與-α的三角函數(shù)值之間的關(guān)系:

  sin-α=-sinα

  cos-α=cosα

  tan-α=-tanα

  cot-α=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sinπ-α=sinα

  cosπ-α=-cosα

  tanπ-α=-tanα

  cotπ-α=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin2π-α=-sinα

  cos2π-α=cosα

  tan2π-α=-tanα

  cot2π-α=-cotα

  公式六:

  π/2±α及3π/2±α與α的.三角函數(shù)值之間的關(guān)系:

  sinπ/2+α=cosα

  cosπ/2+α=-sinα

  tanπ/2+α=-cotα

  cotπ/2+α=-tanα

  sinπ/2-α=cosα

  cosπ/2-α=sinα

  tanπ/2-α=cotα

  cotπ/2-α=tanα

  sin3π/2+α=-cosα

  cos3π/2+α=sinα

  tan3π/2+α=-cotα

  cot3π/2+α=-tanα

  sin3π/2-α=-cosα

  cos3π/2-α=-sinα

  tan3π/2-α=cotα

  cot3π/2-α=tanα

  以上k∈Z

  對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

  證明:

  已知A+B=π-C

  所以tanA+B=tanπ-C

  則tanA+tanB/1-tanAtanB=tanπ-tanC/1+tanπtanC

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπn∈Z時,總有tanα+tanβ+tanγ=tanαtanβtanγ

  設(shè)a=x,y,b=x",y"。

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=x+x",y+y"。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:a+b+c=a+b+c。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB.即“共同起點(diǎn),指向被減”

  a=x,y b=x",y"則a-b=x-x",y-y".

  4、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當(dāng)λ>0時,λa與a同方向;

  當(dāng)λ1時,表示向量a的有向線段在原方向λ>0或反方向λ

【高二會考數(shù)學(xué)重要知識點(diǎn)整理分享】相關(guān)文章:

語文會考知識點(diǎn)歸納整理03-17

高二地理會考精選知識點(diǎn)整理5篇03-04

高中政治會考重要的知識點(diǎn)06-06

《光和眼睛》重要知識點(diǎn)整理07-02

高二歷史會考知識點(diǎn)歸納02-24

初中生物會考重要的知識點(diǎn)06-06

重慶小升初奧數(shù)重要知識點(diǎn)的整理04-18

四年級上冊數(shù)學(xué)重要知識點(diǎn)整理10-19

數(shù)學(xué)重要知識點(diǎn):位置10-15

高二物理復(fù)習(xí)知識點(diǎn)資料整理07-03