亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

數(shù)學(xué) 百文網(wǎng)手機站

數(shù)學(xué)向量的知識點

時間:2022-01-24 14:25:34 數(shù)學(xué) 我要投稿

數(shù)學(xué)向量的知識點

  在日復(fù)一日的學(xué)習(xí)中,是不是經(jīng)常追著老師要知識點?知識點就是學(xué)習(xí)的重點。哪些知識點能夠真正幫助到我們呢?下面是小編幫大家整理的數(shù)學(xué)向量知識點,歡迎閱讀,希望大家能夠喜歡。

數(shù)學(xué)向量的知識點

  數(shù)學(xué)向量的知識點1

  1.向量的基本概念

  (1)向量

  既有大小又有方向的量叫做向量.物理學(xué)中又叫做矢量.如力、速度、加速度、位移就是向量.

  向量可以用一條有向線段(帶有方向的線段)來表示,用有向線段的長度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個小寫字母a,b,c表示,或用兩個大寫字母加表示(其中前面的字母為起點,后面的字母為終點)

  (5)平行向量

  方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共線向量.

  若向量a、b平行,記作a∥b.

  規(guī)定:0與任一向量平行.

  (6)相等向量

  長度相等且方向相同的向量叫做相等向量.

 、傧蛄肯嗟扔袃蓚要素:一是長度相等,二是方向相同,二者缺一不可.

 、谙蛄縜,b相等記作a=b.

  ③零向量都相等.

 、苋魏蝺蓚相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點無關(guān).

  2.對于向量概念需注意

  (1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小.

  (2)向量共線與表示它們的有向線段共線不同.向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上.

  (3)由向量相等的定義可知,對于一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上.

  3.向量的運算律

  (1)交換律:α+β=β+α

  (2)結(jié)合律:(α+β)+γ=α+(β+γ)

  (3)數(shù)量加法的分配律:(λ+μ)α=λα+μα

  (4)向量加法的分配律:γ(α+β)=γα+γβ

  數(shù)學(xué)向量的知識點2

  1.平面向量的數(shù)量積

  平面向量數(shù)量積的定義

  已知兩個非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos 叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos ,規(guī)定0a=0.

  2.向量數(shù)量積的運算律

  (1)ab=ba

  (2)(a)b=(ab)=a(b)

  (3)(a+b)c=ac+bc

  [探究] 根據(jù)數(shù)量積的運算律,判斷下列結(jié)論是否成立.

  (1)ab=ac,則b=c嗎?

  (2)(ab)c=a(bc)嗎?

  提示:(1)不一定,a=0時不成立,

  另外a0時,ab=ac.由數(shù)量積概念可知b與c不能確定;

  (2)(ab)c=a(bc)不一定相等.

  (ab)c是c方向上的向量,而a(bc)是a方向上的向量,當(dāng)a與c不共線時它們必不相等.

  數(shù)學(xué)向量的知識點3

  1、平面向量基本概念

  有向線段:具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作或AB;

  向量的模:有向線段AB的長度叫做向量的模,記作|AB|;

  零向量:長度等于0的向量叫做零向量,記作或0。(注意粗體格式,實數(shù)“0”和向量“0”是有區(qū)別的,書寫時要在實數(shù)“0”上加箭頭,以免混淆);

  相等向量:長度相等且方向相同的向量叫做相等向量;

  平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;

  單位向量:模等于1個單位長度的向量叫做單位向量,通常用e表示,平行于坐標(biāo)軸的單位向量習(xí)慣上分別用i、j表示。

  相反向量:與a長度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

  2、平面向量運算

  加法與減法的代數(shù)運算:

 。1)若a=(x1,y1),b=(x2,y2)則a b=(x1+x2,y1+y2)。

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  向量加法有如下規(guī)律:+ = +(交換律);+(+c)=(+)+c(結(jié)合律);

  實數(shù)與向量的積:實數(shù)與向量的'積是一個向量。

 。1)| |=| |·| |;

 。2)當(dāng)a>0時,與a的方向相同;當(dāng)a<0時,與a的方向相反;當(dāng)a=0時,a=0。

  兩個向量共線的充要條件:

  (1)向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b= 。

 。2)若=(),b=()則‖b 。

  3、平面向量基本定理

  若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù),,使得= e1+ e2。

  4、平面向量有關(guān)推論

  三角形ABC內(nèi)一點O,OA·OB=OB·OC=OC·OA,則點O是三角形的垂心。

  若O是三角形ABC的外心,點M滿足OA+OB+OC=OM,則M是三角形ABC的垂心。

  若O和三角形ABC共面,且滿足OA+OB+OC=0,則O是三角形ABC的重心。

  三點共線:三點A,B,C共線推出OA=μOB+aOC(μ+a=1)

  數(shù)學(xué)向量的知識點4

  平面向量

  戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運算:

  (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結(jié)合律);

  兩個向量共線的充要條件:

  (1) 向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b= .

  (2) 若=(),b=()則‖b .

  平面向量基本定理:

  若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對實數(shù),,使得= e1+ e2

  數(shù)學(xué)向量的知識點5

  向量的的數(shù)量積

  定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π

  定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作ab。若a、b不共線,則ab=abcos〈a,b〉;若a、b共線,則ab=+-?a??b?。

  向量的數(shù)量積的坐標(biāo)表示:ab=xx+yy。

  向量的數(shù)量積的運算律

  ab=ba(交換律);

  (λa)b=λ(ab)(關(guān)于數(shù)乘法的結(jié)合律);

  (a+b)c=ac+bc(分配律);

  向量的數(shù)量積的性質(zhì)

  aa=a的平方。

  a⊥b 〈=〉ab=0。

  ab≤ab。

  向量的數(shù)量積與實數(shù)運算的主要不同點

  1、向量的數(shù)量積不滿足結(jié)合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

  2、向量的數(shù)量積不滿足消去律,即:由 ab=ac (a≠0),推不出 b=c。

  3、ab≠ab

  4、由 a=b ,推不出 a=b或a=-b。

  數(shù)學(xué)向量的知識點6

  1.有向線段的定義

  線段的端點A為始點,端點B為終點,這時線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

  2.有向線段的三要素:有向線段包含三個要素:始點、方向和長度.

  3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.

  (2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時,也稱其為向量.書寫時,則用帶箭頭的小寫字母,,,來表示.

  4.向量的長度(模):如果向量=,那么有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.

  5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.

  6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.

  7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.

  8.零向量:長度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問題時,一定要看清題目中是零向量還是非零向量.

  9.單位向量:長度等于1的向量叫做單位向量.

  10.向量的加法運算:

  (1)向量加法的三角形法則

  11.向量的減法運算

  12、兩向量的和差的模與兩向量模的和差之間的關(guān)系

  對于任意兩個向量,,都有|||-|||||+||.

  13.?dāng)?shù)乘向量的定義:

  實數(shù)和向量的乘積是一個向量,這種運算叫做數(shù)乘向量,記作.

  向量的長度與方向規(guī)定為:(1)||=|

  (2)當(dāng)0時,與方向相同;當(dāng)0時,與方向相反.

  (3)當(dāng)=0時,當(dāng)=時,=.

  14.?dāng)?shù)乘向量的運算律:(1))= (結(jié)合律)

  (2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

  15.平行向量基本定理

  如果向量,則//的充分必要條件是,存在唯一的實數(shù),使得=.

  如果與不共線,若m=n,則m=n=0.

  16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

  =||,即==(,)

  17.線段中點的向量表達(dá)式

  點M是線段AB的中點,O是平面內(nèi)任意一點,則=(+).

  18.平面向量的直角坐標(biāo)運算:如果=(a1,a2),=(b1,b2),則

  +=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

  19.利用兩點表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

  20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

  =a1=b1且a2=b2.

  //a1b2-a2b1=0.特別地,如果b10,b20,則// =.

  21.向量的長度公式:若=(a1,a2),則||=.

  22.平面上兩點間的距離公式:若A(x1,y1),B(x2,y2),則||=.

  23.中點公式

  若點A(x1,y1),點B(x2,y2),點M(x,y)是線段AB的中點,則x=,y= .

  24.重心公式

  在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

  x=,y=

  25.(1)兩個向量夾角的取值范圍是[0,p],即0,p.

  當(dāng)=0時,與同向;當(dāng)=p時,與反向

  當(dāng)= 時,與垂直,記作.

  (3)向量的內(nèi)積定義:=||||cos.

  其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.

  (4)內(nèi)積的幾何意義

  與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積

  當(dāng)0,90時,0;=90時,

  90時,0.

  26.向量內(nèi)積的運算律:

  (1)交換率

  (2)數(shù)乘結(jié)合律

  (3)分配律

  (4)不滿足組合律

  27.向量內(nèi)積滿足乘法公式

  29.向量內(nèi)積的應(yīng)用:

  數(shù)學(xué)向量的知識點7

  向量的概念、向量的基本定理

  【內(nèi)容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的?杀容^大小。

  考點二:向量的運算

  【內(nèi)容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。

  【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運算,有時也會與其它內(nèi)容相結(jié)合。

  考點三:定比分點

  【內(nèi)容解讀】掌握線段的定比分點和中點坐標(biāo)公式,并能熟練應(yīng)用,求點分有向線段所成比時,可借助圖形來幫助理解。

  【命題規(guī)律】重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點四:向量與三角函數(shù)的綜合問題

  【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。

  【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

  考點五:平面向量與函數(shù)問題的交匯

  【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

  【命題規(guī)律】命題多以解答題為主,屬中檔題。

  考點六:平面向量在平面幾何中的應(yīng)用

  【內(nèi)容解讀】向量的坐標(biāo)表示實際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決.

  【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

  數(shù)學(xué)向量的知識點8

  【考綱解讀】

  1.理解平面向量的概念與幾何表示、兩個向量相等的含義;掌握向量加減與數(shù)乘運算及其意義;理解兩個向量共線的含義,了解向量線性運算的性質(zhì)及其幾何意義.

  2.了解平面向量的基本定理及其意義;掌握平面向量的正交分解及其坐標(biāo)表示;會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運算;理解用坐標(biāo)表示的平面向量共線的條件.

  3.理解平面向量數(shù)量積的含義及其物理意義;了解平面向量數(shù)量積與向量投影的關(guān)系;掌握數(shù)量積的坐標(biāo)表達(dá)式,會進行平面向量數(shù)量積的運算;能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系.

  【考點預(yù)測】

  高考對平面向量的考點分為以下兩類:

  (1)考查平面向量的概念、性質(zhì)和運算,向量概念所含內(nèi)容較多,如單位向量、共線向量、方向向量等基本概念和向量的加、減、數(shù)乘、數(shù)量積等運算,高考中或直接考查或用以解決有關(guān)長度,垂直,夾角,判斷多邊形的形狀等,此類題一般以選擇題形式出現(xiàn),難度不大.

  (2)考查平面向量的綜合應(yīng)用.平面向量常與平面幾何、解析幾何、三角等內(nèi)容交叉滲透,使數(shù)學(xué)問題的情境新穎別致,自然流暢,此類題一般以解答題形式出現(xiàn),綜合性較強.

  【要點梳理】

  1.向量的加法與減法:掌握平行四邊形法則、三角形法則、多邊形法則,加法的運算律;

  2.實數(shù)與向量的乘積及是一個向量,熟練其含義;

  3.兩個向量共線的條件:平面向量基本定理、向量共線的坐標(biāo)表示;

  4.兩個向量夾角的范圍是:[0,π]

  5.向量的數(shù)量積:熟練定義、性質(zhì)及運算律,向量的模,兩個向量垂直的充要條件.

  數(shù)學(xué)向量的知識點9

  數(shù)乘向量

  實數(shù)和向量a的乘積是一個向量,記作a,且∣a∣=∣∣∣a∣。

  當(dāng)0時,a與a同方向;

  當(dāng)0時,a與a反方向;

  當(dāng)=0時,a=0,方向任意。

  當(dāng)a=0時,對于任意實數(shù),都有a=0。

  注:按定義知,如果a=0,那么=0或a=0。

  實數(shù)叫做向量a的系數(shù),乘數(shù)向量a的幾何意義就是將表示向量a的有向線段伸長或壓縮。

  當(dāng)∣∣1時,表示向量a的有向線段在原方向(0)或反方向(0)上伸長為原來的∣∣倍;

  當(dāng)∣∣1時,表示向量a的有向線段在原方向(0)或反方向(0)上縮短為原來的∣∣倍。

  數(shù)與向量的乘法滿足下面的運算律

  結(jié)合律:(a)b=(ab)=(ab)。

  向量對于數(shù)的分配律(第一分配律):(+)a=a+a.

  數(shù)對于向量的分配律(第二分配律):(a+b)=a+b.

  數(shù)乘向量的消去律:① 如果實數(shù)0且a=b,那么a=b。② 如果a0且a=a,那么=。

【數(shù)學(xué)向量的知識點】相關(guān)文章:

數(shù)學(xué)向量知識點11-17

數(shù)學(xué)必背向量知識點07-30

高考數(shù)學(xué)復(fù)習(xí)平面向量的知識點09-12

高考數(shù)學(xué)必修四向量知識點07-30

平面向量數(shù)學(xué)高考一輪復(fù)習(xí)知識點09-17

數(shù)學(xué)必修四第二章平面向量知識點10-21

考研向量的數(shù)學(xué)定義的考點預(yù)測12-15

高二數(shù)學(xué)下冊第二單元平面向量的實際背景及基本概念知識點05-30

高二數(shù)學(xué)平面向量復(fù)習(xí)重點整理06-14