九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)旋轉(zhuǎn)
在我們平凡無奇的學(xué)生時(shí)代,說起知識(shí)點(diǎn),應(yīng)該沒有人不熟悉吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?下面是小編精心整理的九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)旋轉(zhuǎn),歡迎閱讀與收藏。
1.旋轉(zhuǎn)的定義:把一個(gè)圖形繞著某一O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn)。點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。如果圖形上的點(diǎn)A經(jīng)過旋轉(zhuǎn)變?yōu)辄c(diǎn)A′,那么,這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn)。重點(diǎn)突出旋轉(zhuǎn)的三個(gè)要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和旋轉(zhuǎn)角度。
2.旋轉(zhuǎn)的性質(zhì):
(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前后的圖形全等
3.作圖:
在畫旋轉(zhuǎn)圖形時(shí),要把握旋轉(zhuǎn)中心與旋轉(zhuǎn)角這兩個(gè)元素。確定旋轉(zhuǎn)中心的關(guān)鍵是看圖形在旋轉(zhuǎn)過程中某一點(diǎn)是“動(dòng)”還是“不動(dòng)”,不動(dòng)的點(diǎn)則是旋轉(zhuǎn)中心;確定旋轉(zhuǎn)角度的方法是根據(jù)已知條件確定一組對(duì)應(yīng)邊,看其始邊與終邊的夾角即為旋轉(zhuǎn)角。
作圖的步驟:
(1)連接圖形中的每一個(gè)關(guān)鍵點(diǎn)與旋轉(zhuǎn)中心;
(2)把連線按要求繞旋轉(zhuǎn)中心旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角);
(3)在角的一邊上截取關(guān)鍵點(diǎn)到旋轉(zhuǎn)中心的距離,得到各點(diǎn)的對(duì)應(yīng)點(diǎn);
(4)連接所得到的各對(duì)應(yīng)點(diǎn).
中心對(duì)稱與中心對(duì)稱圖形
1.中心對(duì)稱:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).
2.中心對(duì)稱的兩條基本性質(zhì):
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分.
(2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.
3.中心對(duì)稱圖形
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.
4.關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征:關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)的橫、縱坐標(biāo)均互為相反數(shù).即P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為Q(-x,-y),反之也成立。
數(shù)學(xué)一元一次方程知識(shí)點(diǎn)
1.方程:先設(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫做方程。
2.一元一次方程
一元一次方程指只含有一個(gè)未知數(shù)、未知數(shù)的最高次數(shù)為1且兩邊都為整式的'等式,叫做一元一次方程。求出方程中未知數(shù)的值叫做方程式的解。
(3)等式的性質(zhì)
①等式兩邊同時(shí)加上(或減去)同一個(gè)整式,等式仍然成立。
若a=b
那么a+c=b+c
、诘仁絻蛇呁瑫r(shí)乘或除以同一個(gè)不為0的整式,等式仍然成立。
若a=b
那么有a·c=b·c或a÷c=b÷c(c≠0)
、鄣仁骄哂袀鬟f性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
3.解方程式的步驟
解一元一次方程的步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、未知數(shù)系數(shù)化為1。
、偃シ帜福喊严禂(shù)化成整數(shù)。
、谌ダㄌ(hào)
③移項(xiàng):把等式一邊的某項(xiàng)變號(hào)后移到另一邊。
④合并同類項(xiàng)
、菹禂(shù)化為1。
數(shù)學(xué)一元二次方程常見考法
1.考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理):這類題目有著解題規(guī)律性強(qiáng)的特點(diǎn),題目設(shè)置會(huì)很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導(dǎo),有關(guān)規(guī)律的探究②已知兩根或一根構(gòu)造一元二次方程,這類題目一般比較開放;
2.在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關(guān)系隱藏在圖形中,用圖形表示出來,這樣的圖形主要有三角形、四邊形、圓等涉及到三角形三邊關(guān)系、三角形全等、面積計(jì)算、體積計(jì)算、勾股定理等);
3.列一元二次方程解決實(shí)際問題,以實(shí)際生活為背景,命題廣泛。(常見的題型是增長(zhǎng)率問題,注:平均增長(zhǎng)率公式。
拓展內(nèi)容:初三數(shù)學(xué)知識(shí)點(diǎn)
一、相似三角形(7個(gè)考點(diǎn))
考點(diǎn)1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點(diǎn)2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計(jì)算.
注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線段成比例使用.
考點(diǎn)3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義.
考點(diǎn)4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用.
考點(diǎn)5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用.
考點(diǎn)6:向量的有關(guān)概念
考點(diǎn)7:向量的加法、減法、實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
考核要求:掌握實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
二、銳角三角比(2個(gè)考點(diǎn))
考點(diǎn)8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考點(diǎn)9:解直角三角形及其應(yīng)用
考核要求:(1)理解解直角三角形的意義;(2)會(huì)用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡(jiǎn)單的實(shí)際問題,尤其應(yīng)當(dāng)熟練運(yùn)用特殊銳角的三角比的值解直角三角形.
三、二次函數(shù)(4個(gè)考點(diǎn))
考點(diǎn)10:函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:(1)通過實(shí)例認(rèn)識(shí)變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;(2)知道常值函數(shù);(3)知道函數(shù)的表示方法,知道符號(hào)的意義.
考點(diǎn)11:用待定系數(shù)法求二次函數(shù)的解析式
考核要求:(1)掌握求函數(shù)解析式的方法;(2)在求函數(shù)解析式中熟練運(yùn)用待定系數(shù)法.
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原.
考點(diǎn)12:畫二次函數(shù)的圖像
考核要求:(1)知道函數(shù)圖像的意義,會(huì)在平面直角坐標(biāo)系中用描點(diǎn)法畫函數(shù)圖像;(2)理解二次函數(shù)的圖像,體會(huì)數(shù)形結(jié)合思想;(3)會(huì)畫二次函數(shù)的大致圖像.
考點(diǎn)13:二次函數(shù)的圖像及其基本性質(zhì)
考核要求:(1)借助圖像的直觀、認(rèn)識(shí)和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;(2)會(huì)用配方法求二次函數(shù)的頂點(diǎn)坐標(biāo),并說出二次函數(shù)的有關(guān)性質(zhì).
注意:(1)解題時(shí)要數(shù)形結(jié)合;(2)二次函數(shù)的平移要化成頂點(diǎn)式.
四、圓的相關(guān)概念(6個(gè)考點(diǎn))
考點(diǎn)14:圓心角、弦、弦心距的概念
考核要求:清楚地認(rèn)識(shí)圓心角、弦、弦心距的概念,并會(huì)用這些概念作出正確的判斷.
考點(diǎn)15:圓心角、弧、弦、弦心距之間的關(guān)系
考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運(yùn)用定理進(jìn)行初步的幾何計(jì)算和幾何證明.
考點(diǎn)16:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識(shí)點(diǎn)之一.
考點(diǎn)17:直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系
直線與圓的位置關(guān)系可從與之間的關(guān)系和交點(diǎn)的個(gè)數(shù)這兩個(gè)側(cè)面來反映.在圓與圓的位置關(guān)系中,常需要分類討論求解.
考點(diǎn)18:正多邊形的有關(guān)概念和基本性質(zhì)
考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運(yùn)用正多邊形的基本性質(zhì)進(jìn)行推理和計(jì)算,在正多邊形的計(jì)算中,常常利用正多邊形的半徑、邊心距和邊長(zhǎng)的一半構(gòu)成的直角三角形,將正多邊形的計(jì)算問題轉(zhuǎn)化為直角三角形的計(jì)算問題.
考點(diǎn)19:畫正三、四、六邊形.
考核要求:能用基本作圖工具,正確作出正三、四、六邊形.
【九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)旋轉(zhuǎn)】相關(guān)文章:
數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)提綱08-27
初三數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)歸納10-04
旋轉(zhuǎn)初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)10-16
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平移與旋轉(zhuǎn)10-25
九年級(jí)上冊(cè)旋轉(zhuǎn)數(shù)學(xué)知識(shí)點(diǎn)11-30
初三數(shù)學(xué)圖形的平移與旋轉(zhuǎn)的知識(shí)點(diǎn)09-13
初三重要知識(shí)點(diǎn):旋轉(zhuǎn)11-02