亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

高一數(shù)學(xué)知識(shí)點(diǎn)最新

時(shí)間:2024-11-02 10:36:57 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新

  在日常過程學(xué)習(xí)中,相信大家一定都接觸過知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編幫大家整理的人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新,歡迎大家分享。

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新1

  1.函數(shù)的基本概念

  (1)函數(shù)的定義:設(shè)A、B是非空數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么稱f:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A.

  (2)函數(shù)的定義域、值域

  在函數(shù)y=f(x),x∈A中,x叫自變量,x的取值范圍A叫做定義域,與x的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.

  (3)函數(shù)的三要素:定義域、值域和對(duì)應(yīng)關(guān)系.

  (4)相等函數(shù):如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,則這兩個(gè)函數(shù)相等;這是判斷兩函數(shù)相等的依據(jù).

  2.函數(shù)的三種表示方法

  表示函數(shù)的常用方法有:解析法、列表法、圖象法.

  3.映射的概念

  一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的一個(gè)映射.

  注意:

  一個(gè)方法

  求復(fù)合函數(shù)y=f(t),t=q(x)的定義域的方法:

 、偃魕=f(t)的'定義域?yàn)?a,b),則解不等式得a

  兩個(gè)防范

  (1)解決函數(shù)問題,必須優(yōu)先考慮函數(shù)的定義域.

  (2)用換元法解題時(shí),應(yīng)注意換元前后的等價(jià)性.

  三個(gè)要素

  函數(shù)的三要素是:定義域、值域和對(duì)應(yīng)關(guān)系.值域是由函數(shù)的定義域和對(duì)應(yīng)關(guān)系所確定的兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致時(shí),則認(rèn)為兩個(gè)函數(shù)相等.函數(shù)是特殊的映射,映射f:A→B的三要素是兩個(gè)集合A、B和對(duì)應(yīng)關(guān)系f.

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新2

  多面體

  棱柱

  棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

  棱柱的性質(zhì)

  (1)側(cè)棱都相等,側(cè)面是平行四邊形

  (2)兩個(gè)底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的'高與遠(yuǎn)棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個(gè)特殊的直角三角形

  esp:

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新3

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

 、苋绻鸄?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個(gè)數(shù):

  有n個(gè)元素的.集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

  集合的運(yùn)算

  運(yùn)算類型交集并集補(bǔ)集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  記作,即

  CSA=

  性質(zhì)AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新4

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。

  例如:1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

  3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

  集合是把人們的直觀的或思維中的`某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

  元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

  集合與集合之間的關(guān)系

  某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號(hào)下加了一個(gè)≠符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。

人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新5

  圓的方程定義:

  圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關(guān)系:

  1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

  ①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

  方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較。

 、賒R,直線和圓相離。

  2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

  3、直線和圓相交,這類問題主要是求弦長(zhǎng)以及弦的中點(diǎn)問題。

  切線的性質(zhì)

  ⑴圓心到切線的距離等于圓的半徑;

  ⑵過切點(diǎn)的半徑垂直于切線;

 、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

  ⑷經(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

  當(dāng)一條直線滿足

 。1)過圓心;

  (2)過切點(diǎn);

 。3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足。

  切線的`判定定理

  經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。

  切線長(zhǎng)定理

  從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。

【高一數(shù)學(xué)知識(shí)點(diǎn)最新】相關(guān)文章:

高一數(shù)學(xué)集合知識(shí)點(diǎn)07-25

高一數(shù)學(xué)知識(shí)點(diǎn)03-28

最新證明數(shù)學(xué)知識(shí)點(diǎn)05-16

最新高一化學(xué)知識(shí)點(diǎn)03-04

高一數(shù)學(xué)知識(shí)點(diǎn)集合07-12

高一數(shù)學(xué)知識(shí)點(diǎn)公式07-03

高一數(shù)學(xué)集合知識(shí)點(diǎn)整理07-20

高一數(shù)學(xué)必修一知識(shí)點(diǎn)05-14

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-06

高一數(shù)學(xué)知識(shí)點(diǎn)框架12-23