亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

中考備考 百文網(wǎng)手機站

八年級下冊數(shù)學(xué)期中考知識點

時間:2022-04-19 17:29:23 中考備考 我要投稿

八年級下冊數(shù)學(xué)期中考知識點

  在我們平凡無奇的學(xué)生時代,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是掌握某個問題知識的學(xué)習(xí)要點。相信很多人都在為知識點發(fā)愁,下面是小編整理的八年級下冊數(shù)學(xué)期中考知識點,希望對大家有所幫助。

八年級下冊數(shù)學(xué)期中考知識點

  八年級下冊數(shù)學(xué)期中考知識點1

  1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

  2.分式進行約分的目的是要把這個分式化為最簡分式.

  3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

  4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

  6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

  八年級下冊數(shù)學(xué)期中考知識點2

  一. 不等關(guān)系

  ※1. 一般地,用符號(或), (或)連接的式子叫做不等式.

  ※2. 準(zhǔn)確翻譯不等式,正確理解非負(fù)數(shù)、不小于等數(shù)學(xué)術(shù)語.

  非負(fù)數(shù):大于等于0(0) 、0和正數(shù)、不小于0

  非正數(shù):小于等于0(0) 、0和負(fù)數(shù)、不大于0

  二. 不等式的基本性質(zhì)

  ※1. 掌握不等式的基本性質(zhì),并會靈活運用:

  (1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,

  即:如果ab,那么a+cb+c, a-cb-c.

  (2) 不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,

  即如果ab,并且c0,那么acbc, .

  (3) 不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變,

  即:如果ab,并且c0,那么ac

  ※2. 比較大。(a、b分別表示兩個實數(shù)或整式)

  一般地:

  如果ab,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a

  如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;

  如果a

  即:

  ab,則a-b0

  a=b,則a-b=0

  a

  (由此可見,要比較兩個實數(shù)的大小,只要考察它們的差就可以了.

  三. 不等式的解集:

  ※1. 能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.

  ※2. 不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù).

  ※3. 不等式的解集在數(shù)軸上的表示:

  用數(shù)軸表示不等式的解集時,要確定邊界和方向:

 、俣c:有等號的是實心圓點,無等號的是空心圓圈;

  ②方向:大向右,小向左

  四. 一元一次不等式:

  ※1. 只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1. 像這樣的不等式叫做一元一次不等式.

  ※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當(dāng)不等式兩邊都乘以一個負(fù)數(shù)時,不等號要改變方向.

  ※3. 解一元一次不等式的步驟:

 、偃シ帜;

 、谌ダㄌ;

 、垡祈;

 、芎喜⑼愴;

 、菹禂(shù)化為1(注意不等號方向改變的問題)

  ※4. 不等式應(yīng)用的探索(利用不等式解決實際問題)

  列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:

 、賹彛赫J(rèn)真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如大于、小于、不大于、不小于等含義;

  ②設(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);

 、哿校焊鶕(jù)題中的不等關(guān)系,列出不等式;

 、芙猓航獬鏊械牟坏仁降慕饧;

 、荽穑簩懗龃鸢,并檢驗答案是否符合題意.

  五. 一元一次不等式與一次函數(shù)

  六. 一元一次不等式組

  ※1. 定義:由含有一個相同未知數(shù)的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.

  ※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.

  如果這些不等式的解集無公共部分,就說這個不等式組無解.

  幾個不等式解集的公共部分,通常是利用數(shù)軸來確定.

  ※3. 解一元一次不等式組的步驟:

  (1)分別求出不等式組中各個不等式的解集;

  (2)利用數(shù)軸求出這些解集的公共部分,

  (3)寫出這個不等式組的解集.

  兩個一元一次不等式組的解集的四種情況(a、b為實數(shù),且a

  (同大取大;同小取小;大小小大中間找;大大小小無解)

  第二章 分解因式

  一. 分解因式

  ※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

  ※2. 因式分解與整式乘法是互逆關(guān)系.

  因式分解與整式乘法的區(qū)別和聯(lián)系:

  (1)整式乘法是把幾個整式相乘,化為一個多項式;

  (2)因式分解是把一個多項式化為幾個因式相乘.

  二. 提公共因式法

  ※1. 如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

  ※2. 概念內(nèi)涵:

  (1)因式分解的最后結(jié)果應(yīng)當(dāng)是積

  (2)公因式可能是單項式,也可能是多項式;

  (3)提公因式法的理論依據(jù)是乘法對加法的分配律,ab +ac=a(b+c)

  (1)注意項的符號與冪指數(shù)是否搞錯;

  (2)公因式是否提徹底;

  (3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.

  三. 運用公式法

  ※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

  ※2. 主要公式:

  (1)平方差公式:

  ①應(yīng)是二項式或視作二項式的多項式;

 、诙検降拿宽(不含符號)都是一個單項式(或多項式)的平方;

  ③二項是異號.

  (2)完全平方公式:

 、賾(yīng)是三項式;

 、谄渲袃身椡枺腋鳛橐徽降钠椒;

 、圻有一項可正負(fù),且它是前兩項冪的底數(shù)乘積的2倍.

  ※5. 因式分解的思路與解題步驟:

  (1)先看各項有沒有公因式,若有,則先提取公因式;

  (2)再看能否使用公式法;

  (3)因式分解的最后結(jié)果必須是幾個整式的乘積;

  (4)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

  第三章 分式

  一. 分式

  ※1. 兩個整數(shù)不能整除時,出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個整式不能整除時,就出現(xiàn)了分式.

  整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱 為分式,對于任意一個分式,分母都不能為零.

  ※2. 進行分?jǐn)?shù)的化簡與運算時,常要進行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):

  分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變.

  ※3. 一個分式的分子、分母有公因式時,可以運用分式的基本性質(zhì),把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.

  ※4. 分子與分母沒有公因式的分式,叫做最簡分式.

  二. 分式的乘除法法則

  兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘(簡記為:除以一個數(shù)等于乘以這個數(shù)的倒數(shù))

  三. 分式的加減法

  ※1. 分式與分?jǐn)?shù)類似,也可以通分.

  根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  ※2. 分式的加減法:

  分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.

  (1)同分母的分式相加減,分母不變,把分子相加減;

  (2)異號分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減;

  ※3. 概念內(nèi)涵:

  通分的關(guān)鍵是確定最簡分母,其方法如下:

  (1)最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);

  (2)最簡公分母的字母,取各分母所有字母的最高次冪的積,

  (3)如果分母是多項式,則首先對多項式進行因式分解.

  四. 分式方程

  ※1. 解分式方程的一般步驟:

  ①在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程;

 、诮膺@個整式方程;

  ③把整式方程的根代入原方程檢驗.

  ※2. 列分式方程解應(yīng)用題的一般步驟:

 、賹徢孱}意;

 、谠O(shè)未知數(shù);

 、鄹鶕(jù)題意找相等關(guān)系,列出(分式)方程;

 、芙夥匠蹋Ⅱ灨;

 、輰懗龃鸢.

  八年級下冊數(shù)學(xué)期中考知識點3

  二次根式

  1.一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開方數(shù)。當(dāng)a≥0時,√a表示a的算術(shù)平方根;當(dāng)a小于0時,√a的值為純虛數(shù)。

  2.二次根式的加減法

  (1)同類二次根式:一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。

  (2)合并同類二次根式:把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。

  (3)二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并。

  3.二次根式的乘除法

  二次根式相乘除,把被開方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡二次根式。

  2022中考八年級數(shù)學(xué)學(xué)習(xí)方法

  養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯誤的。學(xué)生們不得不預(yù)習(xí)課本。我準(zhǔn)備的數(shù)學(xué)教科書不是簡單的閱讀,而是一個例子,至少十分鐘的思考。在使用前不能通過學(xué)習(xí)知識解決問題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時,在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內(nèi)容的查詢。

  2022中考八年級數(shù)學(xué)學(xué)習(xí)技巧

  1.先看筆記后做作業(yè)。

  有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達到教師要求的水平。

  因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時,老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個實施,在很長一段時間內(nèi),會造成很大的損失。

  2.做題之后加強反思。

  學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個問題,并總結(jié)我們自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說: 有錢難買回頭看 。做完作業(yè),回頭細看,價值極大。這一回顧,是學(xué)習(xí)過程中一個非常重要的環(huán)節(jié)。

  八年級下冊數(shù)學(xué)期中考知識點4

  1.旋轉(zhuǎn)和平移

  平移和旋轉(zhuǎn)是幾何中全等變換的一種重要的方式,其中旋轉(zhuǎn)是對大家?guī)缀巫兓芰M行考察的常用手段。

  旋轉(zhuǎn)問題之所以難,就是因為他通過旋轉(zhuǎn)使得圖形中出現(xiàn)很多相等的邊和相等的角,但是這不是圖中直接告訴的,是需要大家自己發(fā)現(xiàn)的,而旋轉(zhuǎn)與后面的二次函數(shù)、反比例函數(shù)、四邊形等知識結(jié)合在一起,會使的題目靈活性非常強,所以這一塊在學(xué)基礎(chǔ)知識的時候一定要牢固把握。

  2.平行四邊形

  平行四邊形,是學(xué)習(xí)矩形、菱形、正方形的'基礎(chǔ),他的判定方式有五種,在實際應(yīng)用的時候,同學(xué)們往往難以決定到底要采取哪種方式,這就需要同學(xué)們根據(jù)圖形靈活的選擇,不同的辦法進行解決。

  3.特殊平行四邊形行

  特殊平行四邊形是初三的內(nèi)容,但是很多地方都把它提到初二來講。這部分知識靈活性強,變化大,綜合難度高,往往是同學(xué)們覺得幾何難學(xué)的開端。解決的辦法就是把他們的性質(zhì)和判定列表寫出來,由于表述非常的類似和接近,記憶起來比較困難。這就需要同學(xué)們運用對比分析的方法,搞清楚這三種圖形各自的性質(zhì)和判定,這樣才能在應(yīng)用的時候不至于混淆。

  八年級下冊數(shù)學(xué)期中考知識點5

  分式

  1.一般地,如果A、B(B不等于零)表示兩個整式,且B中含有字母,那么式子A/B就叫做分式,其中A稱為分子,B稱為分母。

  2.分式條件

  (1)分式有意義條件:分母不為0。

  (2)分式值為0條件:分子為0且分母不為0。

  (3)分式值為正(負(fù))數(shù)條件:分子分母同號得正,異號得負(fù)。

  (4)分式值為1的條件:分子=分母≠0。

  (5)分式值為-1的條件:分子分母互為相反數(shù),且都不為0。

  八年級下冊數(shù)學(xué)期中考知識點6

  一元一次不等式和一元一次不等式組

  一、一般地,用符號(或),(或)連接的式子叫做不等式.

  能使不等式成立的未知數(shù)的值,叫做不等式的解. 不等式的解不,把所有滿足不等式的解集合在一起,構(gòu)成不等式的解集. 求不等式解集的過程叫解不等式.

  由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

  不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分.

  等式基本性質(zhì)1:在等式的兩邊都加上(或減去)同一個數(shù)或整式,所得的結(jié)果仍是等式. 基本性質(zhì)2:在等式的兩邊都乘以或除以同一個數(shù)(除數(shù)不為0),所得的結(jié)果仍是等式.

  二、不等式的基本性質(zhì)1:

  不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (注:移項要變號,但不等號不變.)性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變.不等式的基本性質(zhì)1、 若ab, 則a+cb+c;2、若ab, c0 則acbc若c0, 則ac不等式的其他性質(zhì):反射性:若ab,則bb,且bc,則ac

  三、解不等式的步驟:

  1、去分母;

  2、去括號;

  3、移項合并同類項;

  4、系數(shù)化為;

  四、解不等式組的步驟:

  1、解出不等式的解集

  2、在同一數(shù)軸表示不等式的解集. 五、列一元一次不等式組解實際問題的一般步驟:

  (1) 審題;

  (2)設(shè)未知數(shù),找(不等量)關(guān)系式;

  (3)設(shè)元,(根據(jù)不等量)關(guān)系式列不等式(組)

  (4)解不等式組;檢驗并作答.

  六、常考題型:

  1、 求4x-6 7x-12的非負(fù)數(shù)解.

  2、已知3(x-a)=x-a+1r的解適合2(x-5) 8a,求a 的范圍.

  3、當(dāng)m取何值時,3x+m-2(m+2)=3m+x的解在-5和5之間.

  一、 定義 表示兩個比相等的式子叫比例。

  如果a與b的比值和c與d的比值相等,那么 或a∶b=c∶d,這時組成比例的四個數(shù)a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內(nèi)項.即a、d為外項,c、b為內(nèi)項. 如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那么就說這兩條線段的比(ratio)AB∶CD=m∶n,或?qū)懗?= ,其中,線段AB、CD分別叫做這兩個線段比的前項和后項.如果把 表示成比值k,則 =k或AB=kCD. 四條線段a,b,c,d中,如果a與b的比等于c與d的比,即 ,那么這四條線段a,b,c,d叫做成比例線段,簡稱比例線段. 黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果 ,那么稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中 0.618. 引理:平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例. 相似多邊形: 對應(yīng)角相等,對應(yīng)邊成比例的兩個多邊形叫做相似多邊形. 相似多邊形:各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形叫做相似多邊形. 相似比:相似多邊形對應(yīng)邊的比叫做相似比.

  二、比例的基本性質(zhì):

  1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不為0),那么ad=bc.2、合比性質(zhì):如果 ,那么 .3、等比性質(zhì):如果 == (b+d++n0),那么 .4、更比性質(zhì):若 那么 .5、反比性質(zhì):若 那么

  三、求兩條線段的比時要注意的問題:

  (1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應(yīng)先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所采用的長度單位無關(guān);(3)兩條線段的長度都是正數(shù),所以兩條線段的比值總是正數(shù).

  四、相似三角形(多邊形)的性質(zhì):

  相似三角形對應(yīng)角相等,對應(yīng)邊成比例,相似三角形對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比.相似多邊形的周長比等于相似比,面積比等于相似比的平方.

  五、全等三角形的判定方法有:

  ASA,AAS,SAS,SSS,直角三角形除此之外再加HL

  六、相似三角形的判定方法,判斷方法有:

  三邊對應(yīng)成比例的兩個三角形相似;

  兩角對應(yīng)相等的兩個三角形相似;

  兩邊對應(yīng)成比例且夾角相等;

  定義法: 對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似.

  定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似. 在特殊的三角形中,有的相似,有的不相似.

  1、兩個全等三角形一定相似。

  2、兩個等腰直角三角形一定相似。

  3、兩個等邊三角形一定相似。

  4、兩個直角三角形和兩個等腰三角形不一定相似。

  七、位似圖形上任意一對對應(yīng)點到位似中心的距離之比等于位似比.

  如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在的直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比.

  八、常考知識點:

  1、比例的基本性質(zhì),黃金分割比,位似圖形的性質(zhì).

  2、相似三角形的性質(zhì)及判定.相似多邊形的性質(zhì).

  【直角三角形】

  ◆備考兵法

  1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).

  2.在解決直角三角形的有關(guān)問題時,應(yīng)注意以勾股定理為橋梁建立方程(組)來解決問題,實現(xiàn)幾何問題代數(shù)化.

  3.在解決直角三角形的相關(guān)問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應(yīng)運用一些相關(guān)的特殊性質(zhì)解題.

  4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉(zhuǎn)化為直角三角形來解決.

  5.折疊問題是新中考熱點之一,在處理折疊問題時,動手操作,認(rèn)真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.

  【三角形的重心】

  已知:△ABC中,D為BC中點,E為AC中點,AD與BE交于O,CO延長線交AB于F。求證:F為AB中點。

  證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。

  重心的幾條性質(zhì):

  1.重心和三角形3個頂點組成的3個三角形面積相等。

  2.重心到三角形3個頂點距離的平方和最小。

  3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3縱坐標(biāo):(Y1+Y2+Y3)/3豎坐標(biāo):(Z1+Z2+Z3)/3

  4重心到頂點的距離與重心到對邊中點的距離之比為2:1。

  5.重心是三角形內(nèi)到三邊距離之積的點。

  如果用塞瓦定理證,則極易證三條中線交于一點。

  八年級下冊數(shù)學(xué)期中考知識點7

  1、兩組對邊平行的四邊形是平行四邊形、

  2、性質(zhì):

 。1)平行四邊形的對邊相等且平行;

  (2)平行四邊形的對角相等,鄰角互補;

 。3)平行四邊形的對角線互相平分、

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形:

 。2)兩組對邊分別相等的四邊形是平行四邊形;

 。3)一組對邊平行且相等的四邊形是平行四邊形;

  (4)兩組對角分別相等的四邊形是平行四邊形:

 。5)對角線互相平分的四邊形是平行四邊形、

  4、對稱性:平行四邊形是中心對稱圖形、

  5、平行四邊形中常用輔助線的添法

 。1)連對角線或平移對角線

  (2)過頂點作對邊的垂線構(gòu)造直角三角形

 。3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構(gòu)造線段平行或中位線

 。4)連接頂點與對邊上一點的線段或延長這條線段,構(gòu)造三角形相似或等積三角形。

 。5)過頂點作對角線的垂線,構(gòu)成線段平行或三角形全等。

  八年級下冊數(shù)學(xué)期中考知識點8

  第一章 分式

  1 分式及其基本性質(zhì)

  分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變 2 分式的運算

  (1)分式的乘除

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母 除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  (2) 分式的加減

  加減法法則:同分母分式相加減,分母不變,把分子相加減;

  異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p 3 整數(shù)指數(shù)冪的加減乘除法

  4 分式方程及其解法

  第二章 反比例函數(shù)

  1 反比例函數(shù)的表達式、圖像、性質(zhì)

  圖像:雙曲線

  表達式:y=k/x(k不為0)

  性質(zhì):兩支的增減性相同;

  2 反比例函數(shù)在實際問題中的應(yīng)用

  第三章 勾股定理

  1 勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

  2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。

  第四章 四邊形

  1 平行四邊形

  性質(zhì):對邊相等;對角相等;對角線互相平分。

  判定:兩組對邊分別相等的四邊形是平行四邊形;

  兩組對角分別相等的四邊形是平行四邊形;

  對角線互相平分的四邊形是平行四邊形;

  一組對邊平行而且相等的四邊形是平行四邊形。

  推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

  2 特殊的平行四邊形:矩形、菱形、正方形

  (1) 矩形

  性質(zhì):矩形的四個角都是直角;

  矩形的對角線相等;

  矩形具有平行四邊形的所有性質(zhì)

  判定: 有一個角是直角的平行四邊形是矩形;

  對角線相等的平行四邊形是矩形;

  推論: 直角三角形斜邊的中線等于斜邊的一半。

  (2) 菱形

  性質(zhì):菱形的四條邊都相等;

  菱形的對角線互相垂直,并且每一條對角線平分一組對角;

  菱形具有平行四邊形的一切性質(zhì)

  判定:有一組鄰邊相等的平行四邊形是菱形;

  對角線互相垂直的平行四邊形是菱形;

  四邊相等的四邊形是菱形。

  (3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底邊上的兩個角相等;

  等腰梯形的兩條對角線相等;

  同一個底上的兩個角相等的梯形是等腰梯形。

  第五章 數(shù)據(jù)的分析

  加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

  1.定義:形如y=k1(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k y?kx?1y?k xx

  2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點

  3.性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小;

  當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。

  4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。

【八年級下冊數(shù)學(xué)期中考知識點】相關(guān)文章:

中考數(shù)學(xué)人教版八年級下冊知識點12-07

高等數(shù)學(xué)下冊知識點07-30

八年級下冊數(shù)學(xué)知識點15篇03-12

八年級下冊數(shù)學(xué)二單元知識點11-28

八年級下冊數(shù)學(xué)勾股定理的知識點03-09

初三數(shù)學(xué)下冊知識點復(fù)習(xí)10-23

高一數(shù)學(xué)下冊知識點01-27

初三數(shù)學(xué)下冊期末知識點歸納10-22

初三數(shù)學(xué)下冊知識點復(fù)習(xí)期中10-17