亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

初三數(shù)學知識點總結(jié)

時間:2024-07-12 11:56:34 初三 我要投稿

初三數(shù)學知識點總結(jié)15篇[精品]

  總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓等方面情況進行評價與描述的一種書面材料,它能使我們及時找出錯誤并改正,是時候?qū)懸环菘偨Y(jié)了。那么我們該怎么去寫總結(jié)呢?以下是小編為大家整理的初三數(shù)學知識點總結(jié),僅供參考,大家一起來看看吧。

初三數(shù)學知識點總結(jié)15篇[精品]

初三數(shù)學知識點總結(jié)1

  1、配方法:所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角函數(shù)等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法:換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判別式△=b2—4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至解析幾何、三角函數(shù)運算中都有非常廣泛的應用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應用。

  5、待定系數(shù)法:在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的'某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的重要方法之一。

  6、構(gòu)造法:在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

  7、反證法:反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。

  用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結(jié)論。

  反設是反證法的基礎(chǔ),為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(。┯;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

  歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

  8、等(面或體)積法:平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關(guān)的性質(zhì)定理,不僅可用于計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用面積(體積)關(guān)系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。

  用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用等(面或體)積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法:在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。

  幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

  10、客觀性題的解題方法:選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。

初三數(shù)學知識點總結(jié)2

  1、弧長公式

  n°的圓心角所對的弧長l的計算公式為L=nπr/180

  2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.

  S=﹙n/360﹚πR2=1/2×lR

  3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角.

  弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.

  一、選擇題

  1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考點:圓柱的計算.

  分析:圓柱的`側(cè)面積=底面周長×高,把相應數(shù)值代入即可求解.

  解答:解:圓柱的側(cè)面積=2π×3×4=24π.

  故選A.

  點評:本題考查了圓柱的計算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計算方法.

  2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE=,CE=1.則弧BD的長是()

  A.B.C.D.

  考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.

  分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結(jié)論.

  解答:解:連接OC,

  ∵△ACE中,AC=2,AE=,CE=1,

  ∴AE2+CE2=AC2,

  ∴△ACE是直角三角形,即AE⊥CD,

  ∵sinA==,

  ∴∠A=30°,

  ∴∠COE=60°,

  ∴=sin∠COE,即=,解得OC=,

  ∵AE⊥CD,

  ∴=,

  ∴===.

  故選B.

初三數(shù)學知識點總結(jié)3

  (三角形中位線的定理)

  三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。

 。ㄆ叫兴倪呅蔚男再|(zhì))

  ①平行四邊形的對邊相等;

 、谄叫兴倪呅蔚膶窍嗟;

  ③平行四邊形的對角線互相平分。

 。ň匦蔚男再|(zhì))

 、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);

 、诰匦蔚乃膫角都是直角;

  ③矩形的對角線相等。

  正方形的判定與性質(zhì)

  1、判定方法:

  1鄰邊相等的矩形;

  2鄰邊垂直的菱形;

  3對角線垂直的矩形;

  4對角線相等的菱形;

  2、性質(zhì):

  1邊:四邊相等,對邊平行;

  2角:四個角都相等都是直角,鄰角互補;

  3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。

  等腰三角形的判定定理

 。ǖ妊切蔚腵判定方法)

  1、有兩條邊相等的三角形是等腰三角形。

  2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  標準差與方差

  極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。

  計算器——求標準差與方差的一般步驟:

  1、打開計算器,按“ON”鍵,按“MODE”“2”進入統(tǒng)計SD狀態(tài)。

  2、在開始數(shù)據(jù)輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。

  3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。

  4、當所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;

  5、標準差的平方就是方差。

初三數(shù)學知識點總結(jié)4

  字母表示數(shù)

  01、本節(jié)核心

  字母可以表示任何數(shù)!

  02、用什么樣的字母表示數(shù)?

  26個字母任何一個其實都是可以的,因為用來表示任何一個數(shù)時,它只是需要一個符號而已。但是一般情況下,我們xxxx表示。

  03、字母表示數(shù)有何意義?

  可以簡明地表達問題中的數(shù)量關(guān)系

  舉個栗子~

  第一個,圓的半徑可以表示為r,那么該圓的面積是Πr2,周長就是2Πr

  第二個,我們在第一章學的,棱柱,還記得嗎?

  n棱柱,有n+2個面,2n個頂點,3n條

  04、用字母表示數(shù)要注意四點

  1、在同一個問題中,不同的量用不同的字母表示。比如說,在長方形中,如果長用a表示,寬就不能用a表示了,可以用b表示,不然就會引起混亂。

  2、在特定的情況下,有些字母表示的內(nèi)容有它特定的意義。比如說,在計算面積和周長時,習慣用s表示面積,c表示周長,h表示高。

  3、用字母表示數(shù)時,數(shù)字和字母,字母和字母之間的乘號可以記作_·_或者省略不寫。

  4、用字母表示數(shù)需要寫單位名稱時,如果是乘法和分數(shù)的形式,可以直接在后面寫上單位名稱,如果出現(xiàn)了+、—,請加上小括號再寫單位。比如說,(a+5)米和5/a米的區(qū)別。

  代數(shù)式

  01、代數(shù)式的概念

  用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的'一個數(shù)或一個字母也是代數(shù)式。

  注意:

  ①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

  ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。

  01、代數(shù)式的書寫格式

 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

 、跀(shù)字與字母相乘時,數(shù)字應寫在字母前面,如4a;

 、蹘Х謹(shù)與字母相乘時,應先把帶分數(shù)化成假分數(shù);

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式;注意:分數(shù)線具有“÷”號和括號的雙重作用。

 、拊诒硎竞停ɑ颍┎畹拇鷶(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  定義:單項式和多項式統(tǒng)稱為整式。

 、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  注意:

  1、單獨的一個數(shù)或一個字母也是單項式;

  2、單獨一個非零數(shù)的次數(shù)是0;

  3、當單項式的系數(shù)為1或—1時,這個“1”應省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

 、诙囗検剑簬讉單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

  整式的加減

  01、什么是同類項

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  2、注意:

 、偻愴椨袃蓚條件:a、所含字母相同;b、相同字母的指數(shù)也相同。

  ②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);

 、蹘讉常數(shù)項也是同類項。

  02合并同類項法則

  把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  03去括號法則

 、俑鶕(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

 、诟鶕(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“-”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。

  04添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

  05整式的運算:

  整式的加減法:(1)去括號;(2)合并同類項。

初三數(shù)學知識點總結(jié)5

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。

  三角形的`外心的性質(zhì):

  1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;

  2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;

  3、銳角三角形的外心在三角形內(nèi);

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

初三數(shù)學知識點總結(jié)6

  直角三角形的判定方法:

  判定1:定義,有一個角為90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

  判定4:兩個銳角互為余角(兩角相加等于90°)的.三角形是直角三角形。

  判定5:若兩直線相交且它們的斜率之積互為負倒數(shù),則兩直線互相垂直。那么

  判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。

  判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

初三數(shù)學知識點總結(jié)7

  第一:高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二:平面向量和三角函數(shù)。

  重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四:空間向量和立體幾何。

  在里面重點考察兩個方面:一個是證明;一個是計算。

  第五:概率和統(tǒng)計。

  這一板塊主要是屬于數(shù)學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳撜莆账耐ǚǎ诙愇覀兯v的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

  第一輪數(shù)學復習主要知識點總結(jié)2:參數(shù)方程定義

  一般的,在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數(shù)t的函數(shù)x=f(t)、y=g(t)

  并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡稱參數(shù),相對于參數(shù)方程而言,直接給出點的坐標間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的橋梁,可以是一個有物理意義和幾何意義的變數(shù),也可以是沒有實際意義的變數(shù)。

  第一輪數(shù)學復習主要知識點總結(jié)3:參數(shù)方程

  圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標r為圓半徑θ為參數(shù)

  橢圓的'參數(shù)方程x=acosθy=bsinθa為長半軸長b為短半軸長θ為參數(shù)

  雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實半軸長b為虛半軸長θ為參數(shù)

  拋物線的參數(shù)方程x=2pt?y=2ptp表示焦點到準線的距離t為參數(shù)

  直線的參數(shù)方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù)

  第一輪數(shù)學復習主要知識點總結(jié)4:幾何

  (1)題型穩(wěn)定:近幾年來高考解析幾何試題一直穩(wěn)定在三(或二)個選擇題,一個填空題,一個解答題上,分值約為30分左右, 占總分值的20%左右。

  (2)整體平衡,重點突出:對直線、圓、圓錐曲線知識的考查幾乎沒有遺漏,通過對知識的重新組合,考查時既注意全面,更注意突出重點, 對支撐數(shù)學科知識體系的主干知識, 考查時保證較高的比例并保持必要深度。近四年新教材高考對解析幾何內(nèi)容的考查主要集中在如下幾個類型:

 、 求曲線方程( 類型確定、類型未定);

  ②直線與圓錐曲線的交點問題(含切線問題);

 、叟c曲線有關(guān)的最(極)值問題;

 、芘c曲線有關(guān)的幾何證明(對稱性或求對稱曲線、平行、垂直);

 、萏角笄方程中幾何量及參數(shù)間的數(shù)量特征;

  (3)能力立意,滲透數(shù)學思想:一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準確的得到答案。

  (4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計算量減少,思考量增大。加大與相關(guān)知識的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學習的能力要求。加大探索性題型的分量。

初三數(shù)學知識點總結(jié)8

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若這個條件不成立,則不是二次根式;

 。2)是一個重要的非負數(shù),即; ≥0。

  2、重要公式:

  3、積的算術(shù)平方根:

  積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

  4、二次根式的乘法法則:。

  5、二次根式比較大小的方法:

  (1)利用近似值比大。

 。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大。

 。3)分別平方,然后比大小。

  6、商的算術(shù)平方根:,

  商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  7、二次根式的除法法則:

  分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

  8、最簡二次根式:

 。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,

 、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,

  ②被開方數(shù)中不含能開的盡的因數(shù)或因式;

  (2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;

  (3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

  (4)二次根式計算的最后結(jié)果必須化為最簡二次根式。

  9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

  10、二次根式的混合運算:

 。1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的`,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;

 。2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

  2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。

  3。一元二次方程根的判別式:當ax2+bx+c=0

  (a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

  Δ>0 <=>有兩個不等的實根;

  Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;

  4.初三數(shù)學二次函數(shù)圖像

  對于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對稱。

 、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對稱。

  ③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點對稱。

 、躽=ax2+bx+c與y=-ax2+bx-c關(guān)于原點中心對稱。(即繞原點旋轉(zhuǎn)180度后得到的圖形)

  對于頂點式:

 、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對稱,即頂點(h,k)和(-h,k)關(guān)于y軸對稱,橫坐標相反、縱坐標相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對稱,即頂點(h,k)和(h,-k)關(guān)于x軸對稱,橫坐標相同、縱坐標相反。

 、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。

 、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點對稱,即頂點(h,k)和(-h,-k)關(guān)于原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)

初三數(shù)學知識點總結(jié)14

  一、重要概念

  1.數(shù)的分類及概念數(shù)系表:

  說明:分類的原則:1)相稱(不重、不漏) 2)有標準

  2.非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x0)

  性質(zhì):若干個非負數(shù)的和為0,則每個非負數(shù)均為0。

  3.倒數(shù):

 、俣x及表示法

 、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時,1/aD.積為1。

  4.相反數(shù):

  ①定義及表示法

 、谛再|(zhì):A.a0時,aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

  5.數(shù)軸:

 、俣x(三要素)

 、谧饔茫篈.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關(guān)系。

  6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7.絕對值:

 、俣x(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

  ②│a│0,符號││是非負數(shù)的標志;

 、蹟(shù)a的絕對值只有一個;

 、芴幚砣魏晤愋偷念}目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號。

  二、實數(shù)的'運算

  1.運算法則(加、減、乘、除、乘方、開方)

  2.運算定律(五個-加法[乘法]交換律、結(jié)合律;[乘法對加法的]

  分配律)

  3.運算順序:A.高級運算到低級運算;B.(同級運算)從左

  到右(如5 C.(有括號時)由小到中到大。

  三、應用舉例(略)

  附:典型例題

  1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.

  2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。

初三數(shù)學知識點總結(jié)15

  不等式的概念

  1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。

  2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。

  3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

  4、求不等式的解集的過程,叫做解不等式。

  5、用數(shù)軸表示不等式的方法。

  不等式基本性質(zhì)

  1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。

  2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。

  3、不等式兩邊都乘以或除以同一個負數(shù),不等號的方向改變。

  4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。

  一元一次不等式組

  1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

  2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  3、求不等式組的解集的過程,叫做解不等式組。

  4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

  5、一元一次不等式組的解法

  1分別求出不等式組中各個不等式的解集。

  2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

  6、不等式與不等式組

  不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的`方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

  7、不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

  ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

【初三數(shù)學知識點總結(jié)】相關(guān)文章:

初三數(shù)學圓知識點總結(jié)10-25

初三數(shù)學知識點總結(jié)07-10

初三數(shù)學圓的知識點總結(jié)11-22

初三數(shù)學知識點總結(jié)06-18

初三數(shù)學上冊知識點總結(jié)11-18

初三數(shù)學上冊知識點總結(jié)06-19

關(guān)于初三數(shù)學知識點總結(jié)06-18

初三數(shù)學知識點歸納總結(jié)06-16

初三數(shù)學圓知識點總結(jié)歸納06-18

初三數(shù)學的知識點歸納04-20