亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

考研資訊 百文網(wǎng)手機站

考研數(shù)學(xué)解題速度和準確度如何提升

時間:2021-12-05 15:22:31 考研資訊 我要投稿

考研數(shù)學(xué)解題速度和準確度如何提升

  我們在進行考研數(shù)學(xué)的復(fù)習(xí)時,需要把解題速度和準確度提升,效率才會快。小編為大家精心準備了考研數(shù)學(xué)解題速度和準確度提升技巧,歡迎大家前來閱讀。

考研數(shù)學(xué)解題速度和準確度如何提升

  考研數(shù)學(xué)解題速度和準確度提升方法

  一、大量做題并不是關(guān)鍵

  在考研復(fù)習(xí)期間,每個人都會做大量的數(shù)學(xué)題,但題目的數(shù)量并不是決定勝負的關(guān)鍵,關(guān)鍵在于做題的質(zhì)量。所謂“質(zhì)量”,是指你從一道題中學(xué)到了多少知識和解題方法,發(fā)現(xiàn)了多少自身存在的問題,體會到了多少命題的思路和考點。提醒考生,考研數(shù)學(xué)復(fù)習(xí)必須做題,但是不能把做題和基礎(chǔ)知識的復(fù)習(xí)對立起來。有人認為數(shù)學(xué)基本題太簡單,不愿意做,都去做更多更難的題目。但是,如果對理論知識領(lǐng)會不深,基本概念都沒搞清楚,恐怕基本題也做不好,又怎么談得上做更多更難的題目呢?缺乏基本功,盲目追求題目的深度、難度和做題數(shù)量,結(jié)果只能是深的不會做,淺的也難免錯誤百出。

  二、解題思路“對癥下藥”

  解題的過程也是加深對數(shù)學(xué)定理、公式和基本概念的理解和認識的過程。如果在這個過程中出現(xiàn)很多錯誤或沒有解題思路,也就說明你對教材的理解和認識上有很多欠缺、片面甚至錯誤的地方,或是在運用知識的能力方面還很不夠。這時就要抓住他,刨根問底,找出原因:是對定理理解錯了,還是沒有看清題意;是應(yīng)用公式的能力不強,還是自己粗枝大葉,沒有仔細分析等等。找到原因,有針對性地加以改正,就能吃一塹長一智,不必埋怨自己“倒霉”,只要有針對性地加以改正即可。做題最重要的是講求質(zhì)量,所以我們一定要精選精解?佳袛(shù)學(xué)復(fù)習(xí)必須注意考點和題型,二者相輔相成,互相促進提高。如果學(xué)生做了某道題目后,便能處理同類的題目,能夠舉一反三,則這道題目就代表了一種題型,其解題方法就有一定的代表性,應(yīng)該精練。當(dāng)然,能否舉一反三與學(xué)生的基礎(chǔ)有關(guān),但學(xué)生做一道題后,能否得到很多收獲和提高,卻是題目的代表性和典型性問題。

  考研數(shù)學(xué)高數(shù)7大重點及考察形式

  1、函數(shù)、極限與連續(xù)。主要考查極限的計算或已知極限確定原式中的常數(shù)、討論函數(shù)連續(xù)性和判斷間斷點類型、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù)或確定方程在給定區(qū)間上有無實根。求分段函數(shù)的復(fù)合函數(shù);求極限或已知極限確定原式中的常數(shù);討論函數(shù)的連續(xù)性,判斷間斷點的類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù),或確定方程在給定區(qū)間上有無實根。這一部分更多的會以選擇題,填空題,或者作為構(gòu)成大題的一個部件來考核,關(guān)鍵是要對這些概念有本質(zhì)的理解,在此基礎(chǔ)上找習(xí)題強化。

  2、一元函數(shù)微分學(xué)。主要考查導(dǎo)數(shù)與微分的定義、各種函數(shù)導(dǎo)數(shù)與微分的計算、利用洛比達法則求不定式極限、函數(shù)極值、方程的的個數(shù)、證明函數(shù)不等式、與中值定理相關(guān)的證明、最大值、最小值在物理、經(jīng)濟等方面實際應(yīng)用、用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形、求曲線漸近線。求給定函數(shù)的導(dǎo)數(shù)與微分(包括高階導(dǎo)數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導(dǎo),特別是分段函數(shù)和帶有絕對值的函數(shù)可導(dǎo)性的討論;利用洛比達法則求不定式極限;討論函數(shù)極值,方程的根,證明函數(shù)不等式;利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關(guān)命題,此類問題證明經(jīng)常需要構(gòu)造輔助函數(shù);幾何、物理、經(jīng)濟等方面的最大值、最小值應(yīng)用問題,解這類問題,主要是確定目標(biāo)函數(shù)和約束條件,判定所討論區(qū)間;利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。

  3、一元函數(shù)積分學(xué)。主要考查不定積分、定積分及廣義積分的計算、變上限積分的求導(dǎo)、極限等、積分中值定理和積分性質(zhì)的證明、定積分的應(yīng)用,如計算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等計算題:計算不定積分、定積分及廣義積分;關(guān)于變上限積分的題:如求導(dǎo)、求極限等;有關(guān)積分中值定理和積分性質(zhì)的證明題;定積分應(yīng)用題:計算面積,旋轉(zhuǎn)體體積,平面曲線弧長,旋轉(zhuǎn)面面積,壓力,引力,變力作功等;綜合性試題。這一部分主要以計算應(yīng)用題出現(xiàn),只需多加練習(xí)即可。

  4、向量代數(shù)和空間解析幾何。計算題:求向量的數(shù)量積,向量積及混合積;求直線方程,平面方程;判定平面與直線間平行、垂直的關(guān)系,求夾角;建立旋轉(zhuǎn)面的方程;與多元函數(shù)微分學(xué)在幾何上的應(yīng)用或與線性代數(shù)相關(guān)聯(lián)的題目。這一部分的難度在考研數(shù)學(xué)中應(yīng)該是相對簡單的,找輔導(dǎo)書上的習(xí)題練習(xí),需要做到快速正確的求解。

  5、多元函數(shù)的微分學(xué)。主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的.判斷、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)、多元函數(shù)極值或條件極值在與經(jīng)濟上的應(yīng)用、二元連續(xù)函數(shù)在有界平面區(qū)域上的最大值和最小值。此外,數(shù)學(xué)一還要求會計算方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線判定一個二元函數(shù)在一點是否連續(xù),偏導(dǎo)數(shù)是否存在、是否可微,偏導(dǎo)數(shù)是否連續(xù);求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導(dǎo)數(shù),求隱函數(shù)的一階、二階偏導(dǎo)數(shù);求二元、三元函數(shù)的方向?qū)?shù)和梯度;求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學(xué)與前面向量代數(shù)與空間解析幾何的綜合題,應(yīng)結(jié)合起來復(fù)習(xí);多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟上的應(yīng)用題;求一個二元連續(xù)函數(shù)在一個有界平面區(qū)域上的最大值和最小值。這部分應(yīng)用題多要用到其他領(lǐng)域的知識,在復(fù)習(xí)時要引起注意,可以找一些題目做做,找找這類題目的感覺。

  6、多元函數(shù)的積分學(xué)。包括二重積分在各種坐標(biāo)下的計算,累次積分交換次序。數(shù)一還要求掌握三重積分,曲線積分和曲面積分以及相關(guān)的重要公式。二重、三重積分在各種坐標(biāo)下的計算,累次積分交換次序;第一型曲線積分、曲面積分計算;第二型(對坐標(biāo))曲線積分的計算,格林公式,斯托克斯公式及其應(yīng)用;第二型(對坐標(biāo))曲面積分的計算,高斯公式及其應(yīng)用;梯度、散度、旋度的綜合計算;重積分,線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力作功等。

  7、微分方程。主要考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。差分方程的基本概念與一介常系數(shù)線形方程求解方法。求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,求線性常系數(shù)齊次和非齊次方程的特解或通解;根據(jù)實際問題或給定的條件建立微分方程并求解;綜合題,常見的是以下內(nèi)容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關(guān),全微分的充要條件,偏導(dǎo)數(shù)等。

  考研數(shù)學(xué)高分需具備的4種能力

  習(xí)慣思考的能力

  看歷年考研真題,總結(jié)考試題目的規(guī)律,思考命題特點及與考試大綱之間的聯(lián)系。閱讀一個知識點,宏觀上思考其在整個數(shù)學(xué)科目中作用及與其他科目之間的聯(lián)系,微觀上思考其本身概念的深度,其具有的特點及滿足的性質(zhì)等等。拿到一個題目,研究其條件與結(jié)論的聯(lián)系,思考題目所在的知識點及可能使用的方法,能否用更多的方法來求解,能否找到最為簡單的方法。

  高效解決問題的能力

  題型的歸納都比較全面,考試時不僅要正確解答題目,更重要的是要快速的達到目的,F(xiàn)在很多輔導(dǎo)資料對知識點的總結(jié),如果能利用其對知識的歸納再加上自己的邊看邊思考,對知識點達到融會貫通不成問題。

  快速判斷所考知識點的能力

  考研數(shù)學(xué)大綱所規(guī)定的知識點是有限的,重要的知識點就更少一些,但考研數(shù)學(xué)已經(jīng)進行了二十幾年,重點之處年年考,但這些知識點每年都會換上新的外衣,喬裝打扮,使不少考生被蒙蔽,之后悔之不及。

  持之以恒的能力

  一定要堅持到底!數(shù)學(xué)因其高于日常生活而常受到學(xué)生的冷落,這樣就會產(chǎn)生馬太效應(yīng),愈不關(guān)心她,它就離你愈遠,考研復(fù)習(xí)需要保持對數(shù)學(xué)熱情。


【考研數(shù)學(xué)解題速度和準確度如何提升】相關(guān)文章:

考研數(shù)學(xué)如何提升解題能力12-08

初中數(shù)學(xué)提升解題速度的方法06-29

如何提高數(shù)學(xué)解題速度07-02

初中數(shù)學(xué)如何提高解題速度07-13

高三數(shù)學(xué)提高解題準確度與速度知識點07-21

如何提升初級會計職稱解題速度11-15

考研數(shù)學(xué)如何開展解題思路12-21

考研數(shù)學(xué)的解題思路如何打開11-07

考研數(shù)學(xué)如何提高解題速率和正確率12-07