考研數(shù)學(xué)沖刺考前需要回顧的考點(diǎn)
隨著考研數(shù)學(xué)沖刺階段的到來(lái),我們需要在考前好好回顧一些重要的考點(diǎn)。小編為大家精心準(zhǔn)備了研數(shù)學(xué)沖刺考前的知識(shí)點(diǎn),歡迎大家前來(lái)閱讀。
考研數(shù)學(xué)沖刺考前的重點(diǎn)
1.幾個(gè)易混概念:連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系式怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
2.羅爾定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開(kāi)區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國(guó)數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個(gè)已知條件的意義,①f(x)在[a,b]上連續(xù)表明曲線連同端點(diǎn)在內(nèi)是無(wú)縫隙的曲線;②f(x)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(x)在每一點(diǎn)處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f’(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線AB,與x軸平行。
3.泰勒公式展開(kāi)的應(yīng)用專題:我以前,以及我所有的同學(xué),看到泰勒公式就哆嗦,因?yàn)檎σ豢春荛L(zhǎng)很恐怖,瞬間大腦空白,身體失重的感覺(jué)。其實(shí)在我搞明白一下幾點(diǎn)后,原來(lái)的癥狀就沒(méi)有了。第一:什么情況下要進(jìn)行泰勒展開(kāi);第二:以哪一點(diǎn)為中心進(jìn)行展開(kāi);第三:把誰(shuí)展開(kāi);第四:展開(kāi)到幾階?
4.應(yīng)用多次中值定理的專題:大部分的考研題,一般要考察你應(yīng)用多次中值定理,最重要的就是要培養(yǎng)自己對(duì)這種題目的敏感度,要很快反映老師出這題考哪幾個(gè)中值定理,我的敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來(lái)的。我會(huì)經(jīng)常會(huì)去復(fù)習(xí),那樣我對(duì)中值定理的題目早已沒(méi)有那種剛學(xué)高數(shù)時(shí)的害怕之極。要想對(duì)微分中值定理這塊的題目有條理的掌握,看我這個(gè)總結(jié)定會(huì)事半功倍的。
5.對(duì)稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識(shí),但是往往不是那么容易就靠做3,4個(gè)題目就能了解這知識(shí)點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二搞定,這方面的感覺(jué)相信大家有過(guò),可是或許僅僅是曇花一現(xiàn),因?yàn)槟阕龀鰜?lái)了以為以后就一定會(huì)在相似的題目中用,其實(shí)不然,因?yàn)閮H僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時(shí)候或許就是考場(chǎng)上了,你可能頓時(shí)苦思冥想,最終還是選擇了最傻的辦法,浪費(fèi)了寶貴時(shí)間。說(shuō)這些其實(shí)就是說(shuō)明,考場(chǎng)上的正常或超常發(fā)揮是建立在平時(shí)踏實(shí)做,見(jiàn)識(shí)廣,嚴(yán)要求的基礎(chǔ)上。
考研高數(shù)考點(diǎn)預(yù)測(cè):極限的計(jì)算
1、等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記(x趨近無(wú)窮的時(shí)候還原成無(wú)窮小)。
2、洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)。首先他的使用有嚴(yán)格的使用前提!必須是X趨近而不是N趨近!(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的`極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件(還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的,不可能是負(fù)無(wú)窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒(méi)告訴你是否可導(dǎo),直接用,無(wú)疑于找死!!)必須是0比0無(wú)窮大比無(wú)窮大!當(dāng)然還要注意分母不能為0。洛必達(dá)法則分為3種情況:0比0無(wú)窮比無(wú)窮時(shí)候直接用;0乘以無(wú)窮,無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成第一種的形式了;0的0次方,1的無(wú)窮次方,無(wú)窮的0次方。對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái)了,就是寫(xiě)成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0,當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候,LNX趨近于0)。
3、泰勒公式(含有e的x次方的時(shí)候,尤其是含有正余弦的加減的時(shí)候要特變注意!)E的x展開(kāi)sina,展開(kāi)cosa,展開(kāi)ln1+x,對(duì)題目簡(jiǎn)化有很好幫助。
4、面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法,取大頭原則最大項(xiàng)除分子分母!!!看上去復(fù)雜,處理很簡(jiǎn)單!
5、無(wú)窮小于有界函數(shù)的處理辦法,面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù),可能只需要知道它的范圍結(jié)果就出來(lái)了!
6、夾逼定理(主要對(duì)付的是數(shù)列極限!)這個(gè)主要是看見(jiàn)極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)。
8、各項(xiàng)的拆分相加(來(lái)消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)。
9、求左右極限的方式(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時(shí)一樣的,因?yàn)闃O限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用。這兩個(gè)很重要!對(duì)第一個(gè)而言是X趨近0時(shí)候的sinx與x比值。第2個(gè)就如果x趨近無(wú)窮大,無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式(第2個(gè)實(shí)際上是用于函數(shù)是1的無(wú)窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用地兩個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法,就是當(dāng)趨近于無(wú)窮大時(shí)候,不同函數(shù)趨近于無(wú)窮的速度是不一樣的!x的x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫(huà)圖也能看出速率的快慢)!!當(dāng)x趨近無(wú)窮的時(shí)候,他們的比值的極限一眼就能看出來(lái)了。
12、換元法是一種技巧,不會(huì)對(duì)單一道題目而言就只需要換元,而是換元會(huì)夾雜其中。
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒(méi)有辦法,走投無(wú)路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì),對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性!
16、直接使用求導(dǎo)數(shù)的定義來(lái)求極限,(一般都是x趨近于0時(shí)候,在分子上f(x加減某個(gè)值)加減f(x)的形式,看見(jiàn)了要特別注意)(當(dāng)題目中告訴你F(0)=0時(shí)候f(0)導(dǎo)數(shù)=0的時(shí)候,就是暗示你一定要用導(dǎo)數(shù)定義!
函數(shù)是表皮,函數(shù)的性質(zhì)也體現(xiàn)在積分微分中。例如他的奇偶性質(zhì)他的周期性。還有復(fù)合函數(shù)的性質(zhì):
1、奇偶性,奇函數(shù)關(guān)于原點(diǎn)對(duì)稱偶函數(shù)關(guān)于軸對(duì)稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);
2、周期性也可用在導(dǎo)數(shù)中在定積分中也有應(yīng)用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;
3、復(fù)合函數(shù)之間是自變量與應(yīng)變量互換的關(guān)系;
4、還有個(gè)單調(diào)性。(再求0點(diǎn)的時(shí)候可能用到這個(gè)性質(zhì)!(可以導(dǎo)的函數(shù)的單調(diào)性和他的導(dǎo)數(shù)正負(fù)相關(guān)):o再就是總結(jié)一下間斷點(diǎn)的問(wèn)題(應(yīng)為一般函數(shù)都是連續(xù)的所以間斷點(diǎn)是對(duì)于間斷函數(shù)而言的)間斷點(diǎn)分為第一類和第二類剪斷點(diǎn)。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點(diǎn)或者左右極限存在相等但是不等于函數(shù)在這點(diǎn)的值可取的間斷點(diǎn);第二類間斷點(diǎn)是震蕩間斷點(diǎn)或者是無(wú)窮極端點(diǎn)(這也說(shuō)明極限即使不存在也有可能是有界的)。
考研數(shù)學(xué)備考的建議
一、重視基礎(chǔ)
考研數(shù)學(xué)主要考察的就是考生對(duì)基本概念、基本理論和基本方法的掌握程度,所以復(fù)習(xí)的時(shí)候仍然是以基礎(chǔ)為主,熟練地掌握一些基本的解題方法、概念、性質(zhì)。
二、正確解讀大綱
《全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱》是每位考生在復(fù)習(xí)數(shù)學(xué)時(shí)必須了解的一份十分重要的資料。只有準(zhǔn)確把握大綱的內(nèi)容,才能更清楚地明確復(fù)習(xí)方向、復(fù)習(xí)重點(diǎn),從而制訂合理的復(fù)習(xí)規(guī)劃,獲得更好的考試成績(jī)。大綱中的考試要求版塊,對(duì)考試內(nèi)容作了進(jìn)一步細(xì)化,列出不同的概念、性質(zhì)、理論和計(jì)算方法在考試中的不同要求。
對(duì)于概念和理論(包括部分性質(zhì)),有兩種不同的要求:一種是理解,另一種是了解。如果是要求“理解”的知識(shí)點(diǎn),說(shuō)明考試對(duì)這部分的概念和理論要求往往是比較高的,不僅要求考生對(duì)基本概念理解透徹,而且還要前后融會(huì)貫通,靈活運(yùn)用;如果是要求“了解”的知識(shí)點(diǎn),則要求相對(duì)來(lái)說(shuō)就低一些,但是這并不意味著不考,只是要求的比較低,僅僅需要大家簡(jiǎn)單地記住公式或者結(jié)論性質(zhì)即可。
同樣,對(duì)于計(jì)算方法(包括部分性質(zhì)的使用),也有兩個(gè)層面的要求:一種是掌握,另一種是會(huì)用。
對(duì)于要求“掌握”的知識(shí)點(diǎn),要求考生達(dá)到的程度是:首先,正確使用該種計(jì)算方法,其次,還得做到靈活運(yùn)用該方法,包括掌握某些方法中的技巧點(diǎn);如使用的是“會(huì)用,會(huì)求”這些字眼,則對(duì)此類計(jì)算要求相對(duì)低一些,掌握一些基本的算法即可。
三、研究歷年真題
仔細(xì)研究歷年真題有一個(gè)很大的特點(diǎn),比如你做十年真題,做完后你會(huì)有一個(gè)感覺(jué),至少考研題目出題的規(guī)律和特點(diǎn)能夠基本把握住了,在做真題的過(guò)程中,通過(guò)真題能夠把握住考研的高頻考點(diǎn)和低頻考點(diǎn),不管是橫向還是縱向做比較,對(duì)于考研題目的特點(diǎn)、出題方式,宏觀上至少有一個(gè)把握。
四、勤動(dòng)筆
考研數(shù)學(xué)這門(mén)課程,是靠筆桿子才能打下來(lái)的一片江山。強(qiáng)調(diào)勤練習(xí),多動(dòng)筆,這樣才能把別人的思路、方法徹底轉(zhuǎn)化為自己的方法,從而考場(chǎng)上才能得心應(yīng)手答好題目。另外,自己親自動(dòng)筆去做一些題目,也可以有效地避免某些考生眼高手低的做題態(tài)度,而且還可以提高自己的計(jì)算能力?佳袛(shù)學(xué)試題計(jì)算量還是偏大的,有的考生考試時(shí)想到了解題方法,但由于平時(shí)不注重練習(xí),速度跟不上,時(shí)間不夠用,終失分,豈不是很可惜?
【考研數(shù)學(xué)沖刺考前需要回顧的考點(diǎn)】相關(guān)文章:
考研數(shù)學(xué)沖刺考前需要復(fù)習(xí)的考點(diǎn)12-18
考研數(shù)學(xué)概率統(tǒng)計(jì)沖刺的考點(diǎn)12-11
考研數(shù)學(xué)沖刺階段的重要考點(diǎn)12-05
考研數(shù)學(xué)考前沖刺的注意事項(xiàng)12-20
考研數(shù)學(xué)沖刺需要重視的問(wèn)題12-15
考研數(shù)學(xué)最后沖刺各科的重要考點(diǎn)12-18
考研數(shù)學(xué)線代沖刺的歷年考點(diǎn)12-12