人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
在平時(shí)的學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。那么,都有哪些知識(shí)點(diǎn)呢?下面是小編為大家收集的人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀,希望大家能夠喜歡。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1
一、變量與函數(shù)
[變量和常量]
在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量,我們稱之為變量,而數(shù)值始終保持不變的量,我們稱之為常量。
[函數(shù)]
一般地,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量 與 ,并且對(duì)于 的每一個(gè)確定的值, 都有唯一確定的值與其對(duì)應(yīng),那么我們就說(shuō) 是自變量, 是 的函數(shù)。如果當(dāng) 時(shí) ,那么 叫做當(dāng)自變量的值為 時(shí)的函數(shù)值。
[自變量取值范圍的確定方法]
1、 自變量的取值范圍必須使解析式有意義。
當(dāng)解析式為整式時(shí),自變量的取值范圍是全體實(shí)數(shù);當(dāng)解析式為分?jǐn)?shù)形式時(shí),自變量的取值范圍是使分母不為0的所有實(shí)數(shù);當(dāng)解析式中含有二次根式時(shí),自變量的取值范圍是使被開(kāi)方數(shù)大于等于0的所有實(shí)數(shù)。
2、自變量的取值范圍必須使實(shí)際問(wèn)題有意義。
[函數(shù)的圖像]
一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.
[描點(diǎn)法畫(huà)函數(shù)圖形的一般步驟]
第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);
第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));
第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。
[函數(shù)的表示方法]
列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。
[正比例函數(shù)]
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù).
[正比例函數(shù)圖象和性質(zhì)]
一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)和(1,k)的直線.我們稱它為直線y=kx.當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數(shù),k≠0)
(2) 必過(guò)點(diǎn):(0,0)、(1,k)
(3) 走向:k>0時(shí),圖像經(jīng)過(guò)一、三象限;k<0時(shí),圖像經(jīng)過(guò)二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
[正比例函數(shù)解析式的確定]——待定系數(shù)法
1. 設(shè)出含有待定系數(shù)的函數(shù)解析式y(tǒng)=kx(k≠0)
2. 把已知條件(一個(gè)點(diǎn)的坐標(biāo))代入解析式,得到關(guān)于k的一元一次方程
3. 解方程,求出系數(shù)k
4. 將k的值代回解析式
二、一次函數(shù)
[一次函數(shù)]
一般地,形如y=kx+b(k、b是常數(shù),k 0)函數(shù),叫做一次函數(shù). 當(dāng)b=0時(shí),y=kx+b即y=kx,所以正比例函數(shù)是一種特殊的一次函數(shù).
[一次函數(shù)的圖象及性質(zhì)]
一次函數(shù)y=kx+b的圖象是經(jīng)過(guò)(0,b)和(- ,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個(gè)單位長(zhǎng)度得到.(當(dāng)b>0時(shí),向上平移;當(dāng)b<0時(shí),向下平移)
(1)解析式:y=kx+b(k、b是常數(shù),k 0)
(2)必過(guò)點(diǎn):(0,b)和(- ,0)
(3)走向: k>0,圖象經(jīng)過(guò)第一、三象限;k<0,圖象經(jīng)過(guò)第二、四象限
b>0,圖象經(jīng)過(guò)第一、二象限;b<0,圖象經(jīng)過(guò)第三、四象限
直線經(jīng)過(guò)第一、二、三象限
直線經(jīng)過(guò)第一、三、四象限
直線經(jīng)過(guò)第一、二、四象限
直線經(jīng)過(guò)第二、三、四象限
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.
(6)圖像的平移: 當(dāng)b>0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;
當(dāng)b<0時(shí),將直線y=kx的圖象向下平移b個(gè)單位.
[直線y=k1x+b1與y=k2x+b2的位置關(guān)系]
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1 k2
(3)兩直線重合:k1=k2且b1=b2
[確定一次函數(shù)解析式的方法]
(1)根據(jù)已知條件寫(xiě)出含有待定系數(shù)的函數(shù)解析式;
(2)將x、y的幾對(duì)值或圖象上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)解析式中得到以待定系數(shù)為未知數(shù)的方程;
(3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)解析式中得出結(jié)果.
[一次函數(shù)建模]
函數(shù)建模的關(guān)鍵是將實(shí)際問(wèn)題數(shù)學(xué)化,從而解決最佳方案、最佳策略等問(wèn)題. 建立一次函數(shù)模型解決實(shí)際問(wèn)題,就是要從實(shí)際問(wèn)題中抽象出兩個(gè)變量,再尋求出兩個(gè)變量之間的關(guān)系,構(gòu)建函數(shù)模型,從而利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題.
正比例函數(shù)的圖象和一次函數(shù)的圖象在賦予實(shí)際意義時(shí),其圖象大多為線段或射線. 這是因?yàn)樵趯?shí)際問(wèn)題中,自變量的取值范圍是有一定的限制條件的,即自變量必須使實(shí)際問(wèn)題有意義.
從圖象中獲取的信息一般是:(1)從函數(shù)圖象的形狀判定函數(shù)的類型;
(2)從橫、縱軸的實(shí)際意義理解圖象上點(diǎn)的坐標(biāo)的實(shí)際意義.
解決含有多個(gè)變量的問(wèn)題時(shí),可以分析這些變量的關(guān)系,選取其中某個(gè)變量作為自變量,再根據(jù)問(wèn)題的條件尋求可以反映實(shí)際問(wèn)題的函數(shù).
三、用函數(shù)觀點(diǎn)看方程(組)與不等式
[一元一次方程與一次函數(shù)的關(guān)系]
任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值. 從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.
[一次函數(shù)與一元一次不等式的關(guān)系]
任何一個(gè)一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量的取值范圍.
[一次函數(shù)與二元一次方程組]
(1)以二元一次方程ax+by=c的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y= 的圖象相同.
(2)二元一次方程組 的解可以看作是兩個(gè)一次函數(shù)y= 和y= 的圖象交點(diǎn).
三個(gè)重要的數(shù)學(xué)思想
1.方程的思想。數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中數(shù)學(xué)最重要的就是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是方程。
2.數(shù)形結(jié)合的思想。任何一道題,只要與形沾邊,就應(yīng)該根據(jù)題意中的草圖分析一番。這樣做,不但直觀,而且全面,整體性強(qiáng)。
3.對(duì)應(yīng)的思想。
初中生數(shù)學(xué)成績(jī)的提高,需要靠自己勤加練習(xí)和腳踏實(shí)地的去接受數(shù)學(xué)。
合數(shù)的概念
合數(shù)指自然數(shù)中除了能被1和本身整除外,還能被其他數(shù)(0除外)整除的數(shù)。與之相對(duì)的是質(zhì)數(shù),而1既不屬于質(zhì)dao數(shù)也不屬于合數(shù)。最小的合數(shù)是4。其中,完全數(shù)與相親數(shù)是以它為基礎(chǔ)的。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)2
全等三角形知識(shí)點(diǎn)
1、全等圖形:能夠完全重合的兩個(gè)圖形就是全等圖形。
2、全等圖形的性質(zhì):全等多邊形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等。
3、全等三角形:三角形是特殊的多邊形,因此,全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等。同樣,如果兩個(gè)三角形的邊、角分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。
說(shuō)明:
全等三角形對(duì)應(yīng)邊上的高,中線相等,對(duì)應(yīng)角的平分線相等;全等三角形的周長(zhǎng),面積也都相等。
這里要注意:
。1)周長(zhǎng)相等的兩個(gè)三角形,不一定全等;
。2)面積相等的兩個(gè)三角形,也不一定全等。
小練習(xí)
1、下列說(shuō)法中正確的說(shuō)法為()
、偃葓D形的形狀相同、大小相等;②全等三角形的對(duì)應(yīng)邊相等;③全等三角形的對(duì)應(yīng)角相等;④全等三角形的周長(zhǎng)、面積分別相等,
A、①②③④B、①③④C、①②④D、②③④
2、一個(gè)正方形的側(cè)面展開(kāi)圖有()個(gè)全等的正方形
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)
3、對(duì)于兩個(gè)圖形,給出下列結(jié)論,其中能獲得這兩個(gè)圖形全等的結(jié)論共有()
、賰蓚(gè)圖形的周長(zhǎng)相等;②兩個(gè)圖形的面積相等;③兩個(gè)圖形的周長(zhǎng)和面積都相等;④兩個(gè)圖形的形狀相同,大小也相等、
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
三角形全等的判定知識(shí)點(diǎn)
1、三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(“邊角邊”或“SAS”)。
。2)“角邊角”簡(jiǎn)稱“ASA”,兩個(gè)角和它們的夾邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等(“角邊角”或“ASA”)。
。3)“邊邊邊”簡(jiǎn)稱“SSS”,三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(“邊邊邊”或“SSS”)。
(4)“角角邊”簡(jiǎn)稱“AAS”,有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等、
斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(“斜邊、直角邊”或“HL”)、
注意:兩邊一對(duì)角(SSA)和三角(AAA)對(duì)應(yīng)相等的兩個(gè)三角形不一定全等。
小練習(xí)
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可補(bǔ)充的條件是______
核心考點(diǎn):全等三角形的判定
2、王師傅在做完門(mén)框后,常常在門(mén)框上斜釘兩根木條,這樣做的數(shù)學(xué)原理是______
核心考點(diǎn):三角形的穩(wěn)定性
3、將兩根鋼條AA’、BB’的中點(diǎn)O連在一起,使AA’、BB’可以繞著點(diǎn)O自由旋轉(zhuǎn),就做成了一個(gè)測(cè)量工件,則A’B’的長(zhǎng)等于內(nèi)槽寬AB,那么判定△OAB≌△OA’B’的理由是______
核心考點(diǎn):全等三角形的判定
角的平分線的性質(zhì)知識(shí)點(diǎn)
1、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
2、判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上。
3、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),
、、回顧三角形判定,搞清我們還需要什么,
③、正確地書(shū)寫(xiě)證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題)
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)3
一般地,形如y=kx+b(k、b是常數(shù),k≠0)函數(shù),叫做一次函數(shù)。當(dāng)b=0時(shí),y=kx+b即y=kx,所以正比例函數(shù)是一種特殊的一次函數(shù)。
一次函數(shù)的圖象及性質(zhì)
一次函數(shù)y=kx+b的圖象是經(jīng)過(guò)(0,b)和(—b/k,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個(gè)單位長(zhǎng)度得到。(當(dāng)b>0時(shí),向上平移;當(dāng)b<0時(shí),向下平移)
。1)解析式:y=kx+b(k、b是常數(shù),k≠0)
。2)必過(guò)點(diǎn):(0,b)和(—b/k,0)
。3)走向:k>0,圖象經(jīng)過(guò)第一、三象限;
k<0,圖象經(jīng)過(guò)第二、四象限
b>0,圖象經(jīng)過(guò)第一、二象限;
b<0,圖象經(jīng)過(guò)第三、四象限
k>0,b>0;<=>直線經(jīng)過(guò)第一、二、三象限
K<0,b>0;<=>直線經(jīng)過(guò)第一、二、四象限
K<0,b<0;<=>直線經(jīng)過(guò)第二、三、四象限
6、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7、會(huì)從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
第十五章整式的乘除與因式分解
1、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
、谥笖(shù)是1時(shí),不要誤以為沒(méi)有指數(shù);
③不要將同底數(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
、墚(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來(lái)的,但兩者不能混淆。
※2、底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(—a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
※3、底數(shù)有時(shí)形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運(yùn)用。
3、整式的乘法
※(1)單項(xiàng)式乘法法則:?jiǎn)雾?xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
、俜e的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運(yùn)用同底數(shù)的乘法法則;
、壑辉谝粋(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
、軉雾(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;
、輪雾(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
※(2)單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、賳雾(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
、谶\(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
、墼诨旌线\(yùn)算時(shí),要注意運(yùn)算順序。
※(3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、俣囗(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒(méi)有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
②多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
、蹖(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得
4、平方差公式
¤1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即。
¤其結(jié)構(gòu)特征是:
、俟阶筮吺莾蓚(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
②公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
5、完全平方公式
¤1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。
¤即;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2、結(jié)構(gòu)特征:
、俟阶筮吺嵌(xiàng)式的完全平方;
、诠接疫吂灿腥(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
¤3、在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。
添括號(hào)法則:添正不變號(hào),添負(fù)各項(xiàng)變號(hào),去括號(hào)法則同樣
6、同底數(shù)冪的除法
※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
※2、在應(yīng)用時(shí)需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無(wú)意義。
③任何不等于0的數(shù)的—p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無(wú)意義的;當(dāng)a>0時(shí),a—p的值一定是正的;當(dāng)a<0時(shí),a—p的值可能是正也可能是負(fù)的,如,
、苓\(yùn)算要注意運(yùn)算順序。
7、整式的除法
¤1、單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
¤2、多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。
8、分解因式
※1、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
※2、因式分解與整式乘法是互逆關(guān)系。
因式分解與整式乘法的區(qū)別和聯(lián)系:
。1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
。2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)7
全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
3角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
4推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
5邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
7定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
8定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
9角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
10等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
24等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
25推論1三個(gè)角都相等的三角形是等邊三角形
26推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
27在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
28直角三角形斜邊上的中線等于斜邊上的一半
29定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
30逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
31線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
32定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
33定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
34定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
35逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
36勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
37勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
38定理四邊形的內(nèi)角和等于360°
39四邊形的外角和等于360°
40多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
41推論任意多邊的外角和等于360°
42平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
43平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
44推論夾在兩條平行線間的平行線段相等
45平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
46平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
47平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
48平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
49平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
50矩形性質(zhì)定理1矩形的四個(gè)角都是直角
51矩形性質(zhì)定理2矩形的對(duì)角線相等
52矩形判定定理1有三個(gè)角是直角的四邊形是矩形
53矩形判定定理2對(duì)角線相等的平行四邊形是矩形
54菱形性質(zhì)定理1菱形的四條邊都相等
55菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
56菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
57菱形判定定理1四邊都相等的四邊形是菱形
58菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
59正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
60正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
61定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
62定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
63逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
64等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
65等腰梯形的兩條對(duì)角線相等
66等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
67對(duì)角線相等的梯形是等腰梯形
68平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
69推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
70推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
71三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
72梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h
73 (1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d
74 (2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
75 (3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
76平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
77推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
78定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
79平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
80定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
81相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
82直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
83判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
84判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
85定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
86性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
87性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
88性質(zhì)定理3相似三角形面積的比等于相似比的平方
89任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
90任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)8
一、平面直角坐標(biāo)系:
在平面內(nèi)有公共原點(diǎn)而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。
二、知識(shí)點(diǎn)與題型總結(jié):
1、由點(diǎn)找坐標(biāo):
A點(diǎn)的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。
2、由坐標(biāo)找點(diǎn):例找點(diǎn)B( 3,-2 ) ?
由坐標(biāo)找點(diǎn)的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點(diǎn),然后過(guò)這兩點(diǎn)分別作x軸與y軸的垂線,垂線的交點(diǎn)就是該坐標(biāo)對(duì)應(yīng)的點(diǎn)。
各象限點(diǎn)坐標(biāo)的符號(hào):
①若點(diǎn)P(x,y)在第一象限,則x > 0,y > 0 ;
、谌酎c(diǎn)P(x,y)在第二象限,則x < 0,y > 0 ;
、廴酎c(diǎn)P(x,y)在第三象限,則x < 0,y < 0 ;
④若點(diǎn)P(x,y)在第四象限,則x > 0,y < 0 。
典型例題:
例1、點(diǎn)P的坐標(biāo)是(2,-3),則點(diǎn)P在第四象限。
例2、若點(diǎn)P(x,y)的坐標(biāo)滿足xy>0,則點(diǎn)P在第一或三象限。
例3、若點(diǎn)A的坐標(biāo)為(a^2+1, -2–b^2) ,則點(diǎn)A在第四象限。
4、坐標(biāo)軸上點(diǎn)的坐標(biāo)符號(hào):
坐標(biāo)軸上的點(diǎn)不屬于任何象限。
、 x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0),
、 y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y),
、墼c(diǎn)(0,0)既在x軸上,又在y軸上。
例4、點(diǎn)P(x,y )滿足xy = 0,則點(diǎn)P在x軸上或y軸上。 .
5、與坐標(biāo)軸平行的兩點(diǎn)連線:
、偃鬉B‖ x軸,則A、B的縱坐標(biāo)相同;
②若AB‖ y軸,則A、B的橫坐標(biāo)相同。
例5、已知點(diǎn)A(10,5),B(50,5),則直線AB的位置特點(diǎn)是(A )
A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直
6、象限角平分線上的點(diǎn):
①若點(diǎn)P在第一、三象限角的平分線上,則P( m, m );
②若點(diǎn)P在第二、四象限角的平分線上,則P( m, -m )。
例6、已知點(diǎn)A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。
解:由條件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知點(diǎn)M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。
解:當(dāng)在一、三象限角平分線上時(shí),a+1=3a-5,
解得:a=3 ∴ M(4,4)
當(dāng)在二、四象限角平分線上時(shí),a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐標(biāo)為(4,4)或(2,-2)
7、關(guān)于坐標(biāo)軸、原點(diǎn)的對(duì)稱點(diǎn):
、冱c(diǎn)(a, b )關(guān)于X軸的對(duì)稱點(diǎn)是(a , -b );
、邳c(diǎn)(a, b )關(guān)于Y軸的對(duì)稱點(diǎn)是( -a , b );
、埸c(diǎn)(a, b )關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是( -a , -b )。
例8、已知點(diǎn)A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)。
解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為(-2,-2)。
8、點(diǎn)到坐標(biāo)軸的距離:
、冱c(diǎn)( x, y )到x軸的距離是∣y∣;
、邳c(diǎn)( x, y )到x軸的距離是∣x∣。
例9、點(diǎn)P到x軸、y軸的距離分別是2,1,則點(diǎn)P的坐標(biāo)可能為?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知識(shí)拓展與提高:
例10、在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,1),B(8,5),點(diǎn)P在x軸上,則PA + PB的最小值是多少?
解:作點(diǎn)A(0,1)關(guān)于x軸的對(duì)稱點(diǎn)A'(0,-1),連接A'B與x軸交于點(diǎn)P,
則A'B路徑最短,即PA + PB最小。
根據(jù)勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
如何學(xué)好初中數(shù)學(xué)的方法
多做練習(xí)題
要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說(shuō)的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過(guò)的知識(shí)攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說(shuō)的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識(shí),是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣等等。
課后總結(jié)和反思
在進(jìn)行單元小結(jié)或?qū)W期總結(jié)時(shí),要做到以下幾點(diǎn):一看:看書(shū)、看筆記、看習(xí)題,通過(guò)看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識(shí)點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識(shí)點(diǎn)之間的關(guān)系,這相當(dāng)于寫(xiě)出總結(jié)要點(diǎn);三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過(guò)解題再反饋,發(fā)現(xiàn)問(wèn)題、解決問(wèn)題。
初中數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)
1、有理數(shù)的加法運(yùn)算
同號(hào)兩數(shù)來(lái)相加,絕對(duì)值加不變號(hào)。
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
“大”減“小”是指絕對(duì)值的大小。
2、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號(hào)法則。
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
3、有理數(shù)混合運(yùn)算的四種運(yùn)算技巧
轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。
湊整法:在加減混合運(yùn)算中,通常將和為零的兩個(gè)數(shù),分母相同的兩個(gè)數(shù),和為整數(shù)的兩個(gè)數(shù),乘積為整數(shù)的兩個(gè)數(shù)分別結(jié)合為一組求解。
分拆法:先將帶分?jǐn)?shù)分拆成一個(gè)整數(shù)與一個(gè)真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。
巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡(jiǎn)便。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)9
1、分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
2、通分:利用分式的基本性質(zhì),使分子和分母都乘以適當(dāng)?shù)恼,不改變分式的值,把幾個(gè)異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是:確定幾個(gè)分式的最簡(jiǎn)公分母。確定最簡(jiǎn)公分母的一般方法是:(1)如果各分母都是單項(xiàng)式,那么最簡(jiǎn)公分母就是各系數(shù)的最小公倍數(shù)、相同字母的次冪、所有不同字母及指數(shù)的積。
(2)如果各分母中有多項(xiàng)式,就先把分母是多項(xiàng)式的分解因式,再參照單項(xiàng)式求最簡(jiǎn)公分母的方法,從系數(shù)、相同因式、不同因式三個(gè)方面去確定。
3、約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時(shí)要注意:(1)如果分子、分母都是單項(xiàng)式,那么可直接約去分子、分母的公因式,即約去分子、分母系數(shù)的公約數(shù),相同字母的最低次冪;(2)如果分子、分母中至少有一個(gè)多項(xiàng)式就應(yīng)先分解因式,然后找出它們的公因式再約分;(3)約分一定要把公因式約完。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)10
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;
2、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
1、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)11
一、函數(shù):
一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開(kāi)方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫(huà)其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過(guò)原點(diǎn)(0,0)的直線。
第七章知識(shí)點(diǎn)
1、二元一次方程
含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
2、二元一次方程的`解
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
3、二元一次方程組
含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
第八章知識(shí)點(diǎn)
1、刻畫(huà)數(shù)據(jù)的集中趨勢(shì)(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(2)加權(quán)平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)12
一、分式
※1、兩個(gè)整數(shù)不能整除時(shí),出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個(gè)整式不能整除時(shí),就出現(xiàn)了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱 為分式,對(duì)于任意一個(gè)分式,分母都不能為零.
※2、整式和分式統(tǒng)稱為有理式,即有:
※3、進(jìn)行分?jǐn)?shù)的化簡(jiǎn)與運(yùn)算時(shí),常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):
分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變.
※4、一個(gè)分式的分子、分母有公因式時(shí),可以運(yùn)用分式的基本性質(zhì),把這個(gè)分式的分子、分母同時(shí)除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二、分式的乘除法
※1、分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置后,與被除式相乘.
※2、分式乘方,把分子、分母分別乘方.
逆向運(yùn)用 ,當(dāng)n為整數(shù)時(shí),仍然有 成立.
※3、分子與分母沒(méi)有公因式的分式,叫做最簡(jiǎn)分式.
三、分式的加減法
※1、分式與分?jǐn)?shù)類似,也可以通分.根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
※2、分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號(hào)分母的分式相加減,先通分,變?yōu)橥帜傅姆质?然后再加減;
上述法則用式子表示是:
※3、概念內(nèi)涵:
通分的關(guān)鍵是確定最簡(jiǎn)分母,其方法如下:最簡(jiǎn)公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡(jiǎn)公分母的字母,取各分母所有字母的次冪的積,如果分母是多項(xiàng)式,則首先對(duì)多項(xiàng)式進(jìn)行因式分解.
四、分式方程
※1、解分式方程的一般步驟:
、僭诜匠痰膬蛇叾汲俗詈(jiǎn)公分母,約去分母,化成整式方程;
②解這個(gè)整式方程;
、郯颜椒匠痰母胱詈(jiǎn)公分母,看結(jié)果是不是零,使最簡(jiǎn)公母為零的根是原方程的增根,必須舍去.
※2、列分式方程解應(yīng)用題的一般步驟:
、賹徢孱}意;
、谠O(shè)未知數(shù);
、鄹鶕(jù)題意找相等關(guān)系,列出(分式)方程;
、芙夥匠,并驗(yàn)根;
、輰(xiě)出答案.
數(shù)學(xué)解題方法與技巧
填空題答題技巧
要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無(wú)誤、清晰回憶。
對(duì)那些起關(guān)鍵作用的,或最容易混淆記錯(cuò)的概念、符號(hào)或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開(kāi)還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫(xiě)成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
解答題答題技巧
(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡(jiǎn)約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問(wèn)題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書(shū)寫(xiě)試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。
初中數(shù)學(xué)有理數(shù)的運(yùn)算知識(shí)點(diǎn)
加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)13
1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2、平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3、正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒(méi)有平方根。
4、正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5、數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
實(shí)數(shù)部分主要要求學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無(wú)理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
數(shù)學(xué)的學(xué)習(xí)思維方法
1、比較法
通過(guò)對(duì)比數(shù)學(xué)條件及問(wèn)題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問(wèn)題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說(shuō),比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
2、公式法
運(yùn)用定律、公式、規(guī)則、法則來(lái)解決問(wèn)題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是孩子學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓孩子對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)14
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形.約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái).
2.通分和約分都是依據(jù)分式的基本×質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.
4.通分的依據(jù):分式的基本×質(zhì).
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母.
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào).
10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化.
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式.
數(shù)學(xué)解題方法技巧和思路有哪些
選擇題的解法
1、直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,最后得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);
仔細(xì)審題
考試時(shí)精力要集中,審題一定要細(xì)心。要放慢速度,逐字逐句搞清題意(似曾相識(shí)的題目更要注意異同),從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系,為快速解答提供可靠的信息和依據(jù)。否則,一味求快,丟三落四,不是思維受阻,就是前功盡棄。
三層遞進(jìn)模式解題技巧
第一要保證不考砸。
第二要正常發(fā)揮。正常發(fā)揮就是將自己的水平發(fā)揮出80%,發(fā)揮出80%已經(jīng)很不簡(jiǎn)單了,發(fā)揮出80%無(wú)疑是沒(méi)考砸。
第三要向更高標(biāo)準(zhǔn)邁進(jìn),就是在保證已發(fā)揮出 80%以后,再向發(fā)揮100%努力,再向超常發(fā)揮進(jìn)發(fā)。
初中數(shù)學(xué)函數(shù)的概念知識(shí)點(diǎn)
1.常量與變量:在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量;在某一變化過(guò)程中保持?jǐn)?shù)值不變的量叫做常量.
2.函數(shù):在某一變化過(guò)程中的兩個(gè)變量x和y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一確定的值和它對(duì)應(yīng),那么y就叫做x的函數(shù),其中x做自變量,y是因變量.
(1)自變量取值范圍的確定
、僬胶瘮(shù)自變量的取值范圍是全體實(shí)數(shù).
、诜质胶瘮(shù)自變量的取值范圍是使分母不為0的實(shí)數(shù).
③二次根式函數(shù)自變量的取值范嗣是使被開(kāi)方數(shù)是非負(fù)數(shù)的實(shí)數(shù),若涉及實(shí)際問(wèn)題的函數(shù),除滿足上述要求外還要使實(shí)際問(wèn)題有意義.
人教版八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)15
一、勾股定理
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”。結(jié)論為:“勾三股四弦五”。
a2+b2=c2
2221、如果三角形的三邊長(zhǎng)a、b、c滿足a+b=c,那么這個(gè)三角形是直角三角形。
2222、滿足a+b=c的3個(gè)正整數(shù)a、b、c稱為勾股數(shù)。(例如,3、4、5是一組勾股
數(shù))。利用勾股數(shù)可以構(gòu)造直角三角形。
二、平方根
1、定義——一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根,也稱為二次方根。也就是說(shuō),如果x2=a,那么x就叫做a的平方根。
2、一個(gè)正數(shù)有2個(gè)平方根,它們互為相反數(shù);0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根。
3、求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方。
4、正數(shù)a有兩個(gè)平方根,其中正的平方根,也叫做a的算術(shù)平方根。
例如:4的平方根是±2,其中2叫做4的算術(shù)平方根,記作=2;2的平方根是±其中2的算術(shù)平方根。
0只有一個(gè)平方根,0的平方根也叫做0的算術(shù)平方根,即
三、立方根
1、定義——一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根,也稱為三次方根。也就是說(shuō),如果x=a,那么x就叫做a的立方根,數(shù)a的立方根記作“,讀作“三次根號(hào)a”。
2、求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開(kāi)立方。
3、正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0。
四、實(shí)數(shù)
1、無(wú)限不循環(huán)小數(shù)稱為無(wú)理數(shù)。
2、有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
3、每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示,反之,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。
五、近似數(shù)與有效數(shù)字
1、例如,本冊(cè)數(shù)學(xué)課本約有100千字,這里100是一個(gè)近似似數(shù)。
2、對(duì)一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都稱為這個(gè)近似數(shù)的有效數(shù)字。
怎么樣才能打好初二數(shù)學(xué)基礎(chǔ)
第一,重視初二數(shù)學(xué)公式。有很多同學(xué)數(shù)學(xué)學(xué)不好就是因?yàn)閷?duì)概念和公式不夠重視,具體的表現(xiàn)為對(duì)初二數(shù)學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對(duì)數(shù)學(xué)概念的特殊情況不明白。還有對(duì)數(shù)學(xué)概念和公式有的學(xué)生只是死記硬背,初二學(xué)生缺乏對(duì)概念的理解。
還有一部分初二同學(xué)不重視對(duì)數(shù)學(xué)公式的記憶。其實(shí)記憶是理解的基礎(chǔ)。我們?cè)O(shè)想如果你不能將數(shù)學(xué)公式爛熟于心,那么又怎么能夠在數(shù)學(xué)題目中熟練的應(yīng)用呢?
第二,就是總結(jié)那些相似的數(shù)學(xué)題目。當(dāng)我們養(yǎng)成了總結(jié)歸納的習(xí)慣,那么初二的學(xué)生就會(huì)知道自己在解決數(shù)學(xué)題目的時(shí)候哪些是自己比較擅長(zhǎng)的,哪些是自己還不足的。
同時(shí)善于總結(jié)也會(huì)明白自己掌握哪些數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了初二數(shù)學(xué)的解題技巧。其實(shí),做到總結(jié)和歸納是學(xué)會(huì)數(shù)學(xué)的關(guān)鍵,如果初二學(xué)生不會(huì)做到這一點(diǎn)那么久而久之,不會(huì)的數(shù)學(xué)題目還是不會(huì)。
集合的定義
集合是指具有某種特定性質(zhì)的具體的或抽象的對(duì)象匯總而成的集體。其中,構(gòu)成集合的這些對(duì)象則稱為該集合的元素。
例如,全中國(guó)人的集合,它的元素就是每一個(gè)中國(guó)人。通常用大寫(xiě)字母如A,B,S,T……表示集合,而用小寫(xiě)字母如a,b,x,y……表示集合的元素。若x是集合S的元素,則稱x屬于S,記為x∈S。若y不是集合S的元素,則稱y不屬于S,記為y?S。
【八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)12-07
數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-02
八年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)01-14
數(shù)學(xué)八年級(jí)上冊(cè)“近似數(shù)”知識(shí)點(diǎn)03-04
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)04-08
八年級(jí)上冊(cè)重要的數(shù)學(xué)知識(shí)點(diǎn)11-02
數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)15篇01-23
數(shù)學(xué)八年級(jí)上冊(cè)十三章知識(shí)點(diǎn)11-17