亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

函數(shù)知識點

時間:2025-03-21 22:28:47 好文 我要投稿

函數(shù)知識點精華(15篇)

  上學(xué)期間,說起知識點,應(yīng)該沒有人不熟悉吧?知識點是指某個模塊知識的重點、核心內(nèi)容、關(guān)鍵部分。哪些知識點能夠真正幫助到我們呢?以下是小編整理的函數(shù)知識點,希望對大家有所幫助。

函數(shù)知識點精華(15篇)

函數(shù)知識點1

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大,則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點A(x ,0)和 B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的'圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

函數(shù)知識點2

  一、一次函數(shù)定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1、y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  2、當(dāng)x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1、作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

 。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2、性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點。

  3、k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點

  當(dāng)b<0時,直線必通過三、四象限。

  特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

  (1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

 。3)解這個二元一次方程,得到k,b的值。

 。4)最后得到一次函數(shù)的表達式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1、當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2、當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

  六、常用公式:

  1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線段的中點:|x1—x2|/2

  3、求與y軸平行線段的中點:|y1—y2|/2

  4、求任意線段的長:√(x1—x2)’2+(y1—y2)’2(注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數(shù)

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax’2+bx+c

 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II、二次函數(shù)的三種表達式

  一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x—h)’2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b’2)/4ax?,x?=(—b±√b’2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對稱圖形。對稱軸為直線

  x=—b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標(biāo)為

  P(—b/2a,(4ac—b’2)/4a)

  當(dāng)—b/2a=0時,P在y軸上;當(dāng)Δ=b’2—4ac=0時,P在x軸上。

  3、二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5、常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數(shù)

  Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

  Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

  Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

  當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax’2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。

  函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。

  數(shù)學(xué)必修一學(xué)習(xí)方法

  嚴(yán)防題海戰(zhàn)術(shù),克服盲目做題而不注重歸納的'現(xiàn)象。

  做習(xí)題是為了鞏固知識、提高應(yīng)變能力、思維能力、計算能力。學(xué)數(shù)學(xué)要做一定量的習(xí)題,但學(xué)數(shù)學(xué)并不等于做題,在各種考試題中,有相當(dāng)?shù)牧?xí)題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習(xí)題是要通過做一定量的習(xí)題達到對解題方法的展移而實現(xiàn)的,但,隨著高考的改革,高考已把考查的重點放在創(chuàng)造型、能力型的考查上。因此要精做習(xí)題,注意知識的理解和靈活應(yīng)用,當(dāng)你做完一道習(xí)題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?實現(xiàn)問題的完全解決我應(yīng)用了怎樣的解題策略?只有這樣才會培養(yǎng)自己的悟性與創(chuàng)造性,開發(fā)其創(chuàng)造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學(xué)的方法解決它。

  數(shù)學(xué)必修一學(xué)習(xí)技巧

  1、做好準(zhǔn)備,提出問題,多次閱讀課本,查閱相關(guān)材料,回答自己提出的問題,并在老師談?wù)撔抡n之前努力掌握盡可能多的知識。如果你不能回答問題,你可以在老師的講座中解答。

  2、學(xué)會聽課。在初中教學(xué)中,教師經(jīng)常反復(fù)講解一個知識點,讓學(xué)生通過大量的練習(xí)掌握它。但是高中畢業(yè)后,老師不會讓學(xué)生通過大量的練習(xí)掌握知識點,而是通過一些相關(guān)的知識來引導(dǎo)學(xué)生去理解。這些知識是如何產(chǎn)生的,以及如何利用這些知識來解決一些相關(guān)的疑問?如果學(xué)生能夠理解,他們可以通過課外練習(xí)鞏固自己的知識。同時,學(xué)生可以根據(jù)教師的指導(dǎo)擴大知識。

  為自己在聽課的過程中,當(dāng)然,不能理解的知識,可以用來分析舉手讓老師解釋,也使相關(guān)記錄,課后進一步理解;在預(yù)覽他們的問題,如果老師不解決,可以利用業(yè)余時間去問老師來解決,這樣的學(xué)習(xí)可以學(xué)習(xí)更多的知識。

  聽每一分鐘,特別是老師講課的開頭和結(jié)尾

  在老師講課開始時,他通常會總結(jié)上一節(jié)課的要點,并指出這節(jié)課的內(nèi)容。它是把舊知識和新知識聯(lián)系起來的一個環(huán)節(jié),它的結(jié)尾往往是對一門課所提供的知識的總結(jié),這是非常普遍的。是基于對這部分知識的理解而提出的提綱的方法。

函數(shù)知識點3

  集合的含義與表示

  1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

  把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

  2、集合的中元素的三個特性:

 。1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

 。2)元素的互異性:一個給定集合中的元素是的.,不可重復(fù)的。

 。3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

  3、集合的表示:{…}

 。1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

  b、描述法:

 、賲^(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

  {x?R|x—3>2},{x|x—3>2}

 、谡Z言描述法:例:{不是直角三角形的三角形}

 、踁enn圖:畫出一條封閉的曲線,曲線里面表示集合。

  4、集合的分類:

  (1)有限集:含有有限個元素的集合

 。2)無限集:含有無限個元素的集合

 。3)空集:不含任何元素的集合

  5、元素與集合的關(guān)系:

 。1)元素在集合里,則元素屬于集合,即:a?A

 。2)元素不在集合里,則元素不屬于集合,即:a¢A

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N—或N+

  整數(shù)集Z

  有理數(shù)集Q

  實數(shù)集R

  6、集合間的基本關(guān)系

 。1)“包含”關(guān)系(1)—子集

  定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集。

函數(shù)知識點4

  它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x這些函數(shù)的統(tǒng)稱,各自表示其正弦、余弦、正切、余切為x的角。

  三角函數(shù)的反函數(shù)不是單值函數(shù),因為它并不滿足一個自變量對應(yīng)一個函數(shù)值的要求,其圖像與其原函數(shù)關(guān)于函數(shù)y=x對稱。歐拉提出反三角函數(shù)的概念,并且首先使用了“arc+函數(shù)名”的形式表示反三角函數(shù),而不是。

  為限制反三角函數(shù)為單值函數(shù),將反正弦函數(shù)的值y限在-π/2≤y≤π/2,將y作為反正弦函數(shù)的主值,記為y=arcsin x;相應(yīng)地,反余弦函數(shù)y=arccos x的主值限在0≤y≤π;反正切函數(shù)y=arctan x的'主值限在-π/2

  反正弦函數(shù)

  y=sin x在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1] ,值域[-π/2,π/2]。

  反余弦函數(shù)y=cos x在[0,π]上的反函數(shù),叫做反余弦函數(shù)。記作arccosx,表示一個余弦值為x的角,該角的范圍在[0,π]區(qū)間內(nèi)。定義域[-1,1] , 值域[0,π]。

  反正切函數(shù)

  y=tan x在(-π/2,π/2)上的反函數(shù),叫做反正切函數(shù)。記作arctanx,表示一個正切值為x的角,該角的范圍在(-π/2,π/2)區(qū)間內(nèi)。定義域R,值域(-π/2,π/2)。

  反余切函數(shù)

  y=cot x在(0,π)上的反函數(shù),叫做反余切函數(shù)。記作arccotx,表示一個余切值為x的角,該角的范圍在(0,π)區(qū)間內(nèi)。定義域R,值域(0,π)。

函數(shù)知識點5

  一定要做好預(yù)習(xí)

  初二學(xué)生想要學(xué)好數(shù)學(xué),一定要學(xué)會提前預(yù)習(xí)。將老師要將的內(nèi)容提前預(yù)習(xí)一下,對于自己在預(yù)習(xí)中會出現(xiàn)的不理解的概念或者不懂的知識點,要做好標(biāo)記和記錄,這樣初二學(xué)生在數(shù)學(xué)課堂上才會注意力集中,這樣在聽課的過程中才能夠跟上老師的講課思路,自己的思維才能夠集中。帶著問題去聽老師講課,這樣會將被動的學(xué)習(xí)變?yōu)橹鲃,可以有效的提高初二新生在?shù)學(xué)課堂上的學(xué)習(xí)效率。

  課下要學(xué)會及時復(fù)習(xí)

  當(dāng)初二學(xué)生在課上認(rèn)真聽講后,那么對于初二數(shù)學(xué)的學(xué)習(xí)課后也是需要及時復(fù)習(xí)的。當(dāng)老師講完初二數(shù)學(xué)一節(jié)課的內(nèi)容之后,初中生一定要聽明白,不要留下任何的疑點,有不懂的地方要及時的問同學(xué)或者老師。這樣在課后復(fù)習(xí)的`時候才能夠自己獨立的去完成作業(yè)。每一次的初二數(shù)學(xué)課后,初中生都應(yīng)該將這節(jié)課學(xué)習(xí)的知識點進行歸納和整理。

  初中數(shù)學(xué)有理數(shù)知識點

 。ㄒ唬┒x

  有理數(shù)為整數(shù)(正整數(shù)、0、負整數(shù))和分?jǐn)?shù)的統(tǒng)稱,正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負整數(shù)和負分?jǐn)?shù)合稱為負有理數(shù)。因而有理數(shù)集的數(shù)可分為正有理數(shù)、負有理數(shù)和零。

 。ǘ┯欣頂(shù)的性質(zhì)

 。1)順序性

  (2)封閉性

 。3)稠密性

 。ㄈ┯欣頂(shù)的加法運算法則

  1、同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。

  2、異號兩數(shù)相加,若絕對值相等則互為相反數(shù)的兩數(shù)和為0;若絕對值不相等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  3、互為相反數(shù)的兩數(shù)相加得0。

  4、一個數(shù)同0相加仍得這個數(shù)。

  5、互為相反數(shù)的兩個數(shù),可以先相加。

  6、符號相同的數(shù)可以先相加。

  7、分母相同的數(shù)可以先相加。

  8、幾個數(shù)相加能得整數(shù)的可以先相加。

  9、減去一個數(shù),等于加上這個數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進行運算。

函數(shù)知識點6

  1、函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(—x);

 。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復(fù)合函數(shù)的有關(guān)問題

 。1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的`原則。

 。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對稱性)

 。1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

 。2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

 。5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

 。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對稱;

  4、函數(shù)的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

 。2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

 。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

 。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);

 。3)l og a b的符號由口訣“同正異負”記憶;(4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應(yīng)是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

函數(shù)知識點7

  一個函數(shù)總是占用一段連續(xù)的內(nèi)存區(qū)域,函數(shù)名在表達式中有時也會被轉(zhuǎn)換為該函數(shù)所在內(nèi)存區(qū)域的首地址,這和數(shù)組名非常類似。我們可以把函數(shù)的這個首地址(或稱入口地址)賦予一個指針變量,使指針變量指向函數(shù)所在的內(nèi)存區(qū)域,然后通過指針變量就可以找到并調(diào)用該函數(shù)。這種指針就是函數(shù)指針。

  函數(shù)指針的定義形式為:

  returnType (*pointerName)(param list);

  returnType 為函數(shù)返回值類型,pointerNmae 為指針名稱,param list 為函數(shù)參數(shù)列表。參數(shù)列表中可以同時給出參數(shù)的類型和名稱,也可以只給出參數(shù)的類型,省略參數(shù)的名稱,這一點和函數(shù)原型非常類似。

  注意( )的優(yōu)先級高于*,第一個括號不能省略,如果寫作returnType *pointerName(param list);就成了函數(shù)原型,它表明函數(shù)的返回值類型為returnType *。

  【實例】用指針來實現(xiàn)對函數(shù)的'調(diào)用。

  #include//返回兩個數(shù)中較大的一個int max(int a, int b){ return a>b ? a : b;}int main(){ int x, y, maxval; //定義函數(shù)指針 int (*pmax)(int, int) = max; //也可以寫作int (*pmax)(int a, int b) printf("Input two numbers:"); scanf("%d %d", &x, &y); maxval = (*pmax)(x, y); printf("Max value: %dn", maxval); return 0;}

  運行結(jié)果:

  Input two numbers:10 50↙

  Max value: 50

  第 14 行代碼對函數(shù)進行了調(diào)用。pmax 是一個函數(shù)指針,在前面加 * 就表示對它指向的函數(shù)進行調(diào)用。注意( )的優(yōu)先級高于*,第一個括號不能省略

函數(shù)知識點8

  高一數(shù)學(xué)上學(xué)期知識點:冪函數(shù)

  定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

  性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0 x="">0的`所有實數(shù),q不能是偶數(shù);

  可簡單記憶為左同右異,即當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對二次函數(shù)求導(dǎo)得到。

  決定拋物線與y軸交點的因素

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  拋物線與乘軸交點個數(shù)

  6.拋物線與乘軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與乘軸有2個交點。

  Δ=b^2-4ac=0時,拋物線與乘軸有1個交點。

  Δ=b^2-4ac<0時,拋物線與乘軸沒有交點。乘的取值是虛數(shù)(乘=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  當(dāng)a>0時,函數(shù)在乘=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{乘|乘<-b/2a}上是減函數(shù),在

  {乘|乘>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

  當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=a乘^2c(a≠0)

  特殊值的形式

  7.特殊值的形式

  ①當(dāng)乘=1時y=abc

 、诋(dāng)乘=-1時y=a-bc

  ③當(dāng)乘=2時y=4a2bc

 、墚(dāng)乘=-2時y=4a-2bc

  學(xué)好初中數(shù)學(xué)的方法和技巧總結(jié)

  主動預(yù)習(xí)

  預(yù)習(xí)的目的.是主動獲取新知識的過程,有助于調(diào)動學(xué)習(xí)積極主動性,新知識在未講解之前,認(rèn)真閱讀教材,養(yǎng)成主動預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識的重要手段。

  因此,要注意培養(yǎng)自學(xué)能力,學(xué)會看書。如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學(xué)會運用已有的知識去獨立探究新的知識。

  讓數(shù)學(xué)課學(xué)與練結(jié)合

  在數(shù)學(xué)課上,光聽是沒用的。自己也要在草稿紙上練。當(dāng)遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題。應(yīng)抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結(jié)束以后應(yīng)深思一下進行歸納,做到一課一得。

  初中數(shù)學(xué)正數(shù)和負數(shù)知識點

  ⒈、正數(shù)和負數(shù)的概念

  負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,—a是負數(shù);當(dāng)a表示負數(shù)時,—a是正數(shù);當(dāng)a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

 、谡龜(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。

  2、具有相反意義的量

  若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  3、0表示的意義

  (1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

  (2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:

  (3)0表示一個確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。

函數(shù)知識點10

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集:N_或N+

  整數(shù)集:Z

  有理數(shù)集:Q

  實數(shù)集:R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的.集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能

  (1)A是B的一部分,;

  (2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實

  例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:

 、偃魏我粋集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數(shù):

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  如何養(yǎng)成良好的解題習(xí)慣

  要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

  在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平 dW 時養(yǎng)成良好的解題習(xí)慣是非常重要的。

  數(shù)學(xué)性質(zhì)

  數(shù)學(xué)性質(zhì)是數(shù)學(xué)表觀和內(nèi)在所具有的特征,一種事物區(qū)別于其他事物的屬性。如:平行四邊形的性質(zhì):對邊平行,對邊相等,對角線互相平分,中心對稱圖形。

  高等數(shù)學(xué)知識點

函數(shù)知識點11

  反比例函數(shù)y=k/x的圖象是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限或第二、四象限。

  它們關(guān)于原點對稱、反比例函數(shù)的圖象與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠不與坐標(biāo)軸相交。

  畫反比例函數(shù)的圖象時要注意的問題:

 。1)畫反比例函數(shù)圖象的方法是描點法;

  (2)畫反比例函數(shù)圖象要注意自變量的取值范圍是k≠0,因此不能把兩個分支連接起來。

  k≠0

 。3)由于在反比例函數(shù)中,x和y的值都不能為0,所以畫出的'雙曲線的兩個分支要分別體現(xiàn)出無限的接近坐標(biāo)軸,但永遠不能達到x軸和y軸的變化趨勢。

  反比例函數(shù)的性質(zhì):

  y=k/x(k≠0)的變形形式為xy=k(常數(shù))所以:

  (1)其圖象的位置是:

  當(dāng)k﹥0時,x、y同號,圖象在第一、三象限;

  當(dāng)k﹤0時,x、y異號,圖象在第二、四象限。

  (2)若點(m,n)在反比例函數(shù)y=k/x(k≠0)的圖象上,則點(—m,—n)也在此圖象上,故反比例函數(shù)的圖象關(guān)于原點對稱。

  (3)當(dāng)k﹥0時,在每個象限內(nèi),y隨x的增大而減小;

  當(dāng)k﹤0時,在每個象限內(nèi),y隨x的增大而增大;

函數(shù)知識點12

  定義域

  (高中函數(shù)定義)設(shè)A,B是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

  值域

  名稱定義

  函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合

  常用的求值域的方法

  (1)化歸法;(2)圖象法(數(shù)形結(jié)合),

  (3)函數(shù)單調(diào)性法,

  (4)配方法,(5)換元法,(6)反函數(shù)法(逆求法),(7)判別式法,(8)復(fù)合函數(shù)法,(9)三角代換法,(10)基本不等式法等

  關(guān)于函數(shù)值域誤區(qū)

  定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本元件。平時數(shù)學(xué)中,實行定義域優(yōu)先的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手硬一手軟,使學(xué)生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的'位置是相當(dāng)?shù),絕不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。

  范圍與值域相同嗎?

  范圍與值域是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實際上這是兩個不同的概念。值域是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而范圍則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:值域是一個范圍,而范圍卻不一定是值域。

函數(shù)知識點13

  一、函數(shù)自身的對稱性探究

  定理1.函數(shù) y = f (x)的圖像關(guān)于點A (a ,b)對稱的充要條件是

  f (x) + f (2a-x) = 2b

  證明:(必要性)設(shè)點P(x ,y)是y = f (x)圖像上任一點,∵點P( x ,y)關(guān)于點A (a ,b)的對稱點P'(2a-x,2b-y)也在y = f (x)圖像上,∴ 2b-y = f (2a-x)

  即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得證。

 。ǔ浞中裕┰O(shè)點P(x0,y0)是y = f (x)圖像上任一點,則y0 = f (x0)

  ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

  故點P'(2a-x0,2b-y0)也在y = f (x) 圖像上,而點P與點P'關(guān)于點A (a ,b)對稱,充分性得征。

  推論:函數(shù) y = f (x)的圖像關(guān)于原點O對稱的充要條件是f (x) + f (-x) = 0

  定理2. 函數(shù) y = f (x)的圖像關(guān)于直線x = a對稱的充要條件是

  f (a +x) = f (a-x) 即f (x) = f (2a-x) (證明留給讀者)

  推論:函數(shù) y = f (x)的圖像關(guān)于y軸對稱的充要條件是f (x) = f (-x)

  定理3. ①若函數(shù)y = f (x) 圖像同時關(guān)于點A (a ,c)和點B (b ,c)成中心對稱(a≠b),則y = f (x)是周期函數(shù),且2 a-b是其一個周期。

 、谌艉瘮(shù)y = f (x) 圖像同時關(guān)于直線x = a 和直線x = b成軸對稱 (a≠b),則y = f (x)是周期函數(shù),且2 a-b是其一個周期。

  ③若函數(shù)y = f (x)圖像既關(guān)于點A (a ,c) 成中心對稱又關(guān)于直線x =b成軸對稱(a≠b),則y = f (x)是周期函數(shù),且4 a-b是其一個周期。

  ①②的證明留給讀者,以下給出③的證明:

  ∵函數(shù)y = f (x)圖像既關(guān)于點A (a ,c) 成中心對稱,

  ∴f (x) + f (2a-x) =2c,用2b-x代x得:

  f (2b-x) + f [2a-(2b-x) ] =2c………………(*)

  又∵函數(shù)y = f (x)圖像直線x =b成軸對稱,

  ∴ f (2b-x) = f (x)代入(*)得:

  f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得

  f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:

  f (x) = f [4(a-b) + x],故y = f (x)是周期函數(shù),且4 a-b是其一個周期。

  二、不同函數(shù)對稱性的探究

  定理4. 函數(shù)y = f (x)與y = 2b-f (2a-x)的圖像關(guān)于點A (a ,b)成中心對稱。

  定理5. ①函數(shù)y = f (x)與y = f (2a-x)的圖像關(guān)于直線x = a成軸對稱。

 、诤瘮(shù)y = f (x)與a-x = f (a-y)的圖像關(guān)于直線x +y = a成軸對稱。

 、酆瘮(shù)y = f (x)與x-a = f (y + a)的圖像關(guān)于直線x-y = a成軸對稱。

  定理4與定理5中的①②證明留給讀者,現(xiàn)證定理5中的③

  設(shè)點P(x0 ,y0)是y = f (x)圖像上任一點,則y0 = f (x0)。記點P( x ,y)關(guān)于直線x-y = a的軸對稱點為P'(x1, y1),則x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴點P'(x1, y1)在函數(shù)x-a = f (y + a)的圖像上。

  同理可證:函數(shù)x-a = f (y + a)的圖像上任一點關(guān)于直線x-y = a的軸對稱點也在函數(shù)y = f (x)的圖像上。故定理5中的③成立。

  推論:函數(shù)y = f (x)的圖像與x = f (y)的圖像關(guān)于直線x = y 成軸對稱。

  三、三角函數(shù)圖像的對稱性列表

  注:①上表中k∈Z

 、趛 = tan x的所有對稱中心坐標(biāo)應(yīng)該是(kπ/2 ,0 ),而在岑申、王而冶主編的浙江教育出版社出版的21世紀(jì)高中數(shù)學(xué)精編第一冊(下)及陳兆鎮(zhèn)主編的廣西師大出版社出版的高一數(shù)學(xué)新教案(修訂版)中都認(rèn)為y = tan x的所有對稱中心坐標(biāo)是( kπ, 0 ),這明顯是錯的。

  四、函數(shù)對稱性應(yīng)用舉例

  例1:定義在R上的'非常數(shù)函數(shù)滿足:f (10+x)為偶函數(shù),且f (5-x) = f (5+x),則f (x)一定是( )(第十二屆希望杯高二 第二試題)

  (A)是偶函數(shù),也是周期函數(shù)(B)是偶函數(shù),但不是周期函數(shù)

  (C)是奇函數(shù),也是周期函數(shù)(D)是奇函數(shù),但不是周期函數(shù)

  解:∵f (10+x)為偶函數(shù),∴f (10+x) = f (10-x).

  ∴f (x)有兩條對稱軸 x = 5與x =10 ,因此f (x)是以10為其一個周期的周期函數(shù), ∴x =0即y軸也是f (x)的對稱軸,因此f (x)還是一個偶函數(shù)。

  故選(A)

  例2:設(shè)定義域為R的函數(shù)y = f (x)、y = g(x)都有反函數(shù),并且f(x-1)和g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對稱,若g(5) = 1999,那么f(4)=( )。

 。ˋ)1999; (B)20xx; (C)20xx; (D)20xx。

  解:∵y = f(x-1)和y = g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對稱,

  ∴y = g-1(x-2) 反函數(shù)是y = f(x-1),而y = g-1(x-2)的反函數(shù)是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=20xx

  故f(4) = 20xx,應(yīng)選(C)

  例3.設(shè)f(x)是定義在R上的偶函數(shù),且f(1+x)= f(1-x),當(dāng)-1≤x≤0時,

  f (x) = - x,則f (8.6 ) = _________ (第八屆希望杯高二 第一試題)

  解:∵f(x)是定義在R上的偶函數(shù)∴x = 0是y = f(x)對稱軸;

  又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 對稱軸。故y = f(x)是以2為周期的周期函數(shù),∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3

  例4.函數(shù) y = sin (2x + )的圖像的一條對稱軸的方程是( )(92全國高考理) (A) x = - (B) x = - (C) x = (D) x =

  解:函數(shù) y = sin (2x + )的圖像的所有對稱軸的方程是2x + = k +

  ∴x = - ,顯然取k = 1時的對稱軸方程是x = - 故選(A)

  例5. 設(shè)f(x)是定義在R上的奇函數(shù),且f(x+2)= -f(x),當(dāng)0≤x≤1時,

  f (x) = x,則f (7.5 ) = ( )

  (A) 0.5(B)-0.5(C) 1.5(D) -1.5

  解:∵y = f (x)是定義在R上的奇函數(shù),∴點(0,0)是其對稱中心;

  又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直線x = 1是y = f (x) 對稱軸,故y = f (x)是周期為2的周期函數(shù)。

  ∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故選(B)

函數(shù)知識點14

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點

  當(dāng)b<0時,直線必通過三、四象限。

  特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限

  四、確定一次函數(shù)的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

 。1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b.

 。2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

 。3)解這個二元一次方程,得到k,b的'值。

 。4)最后得到一次函數(shù)的表達式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt.

  2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人補充)

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

函數(shù)知識點15

  1、二次函數(shù)的概念

  1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零。二次函數(shù)的定義域是全體實數(shù)。

  2.二次函數(shù)的結(jié)構(gòu)特征:

  ⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2。

 、剖浅(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項。

  2、初三數(shù)學(xué)二次函數(shù)的.三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]。

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]。

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。

  3、二次函數(shù)的性質(zhì)

  1.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  2.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點;

  當(dāng)b<0時,直線必通過三、四象限。

  特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

  4、初三數(shù)學(xué)二次函數(shù)圖像

  對于一般式:

  ①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對稱。

 、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對稱。

  ③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點對稱。

  ④y=ax2+bx+c與y=-ax2+bx-c關(guān)于原點中心對稱。(即繞原點旋轉(zhuǎn)180度后得到的圖形)

  對于頂點式:

  ①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對稱,即頂點(h,k)和(-h,k)關(guān)于y軸對稱,橫坐標(biāo)相反、縱坐標(biāo)相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對稱,即頂點(h,k)和(h,-k)關(guān)于x軸對稱,橫坐標(biāo)相同、縱坐標(biāo)相反。

  ③y=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。

 、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點對稱,即頂點(h,k)和(-h,-k)關(guān)于原點對稱,橫坐標(biāo)、縱坐標(biāo)都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)

  數(shù)學(xué)的學(xué)習(xí)方法和技巧總結(jié)

  多做

  主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。

  必須要有錯題本

  說到錯題本不少同學(xué)都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學(xué)習(xí)內(nèi)容加深,這時就會發(fā)現(xiàn)自己力不從心了。

  錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因為積極使用了錯題本,而考取了高分。

  數(shù)學(xué)有理數(shù)的概念

  (1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

  (2)正分?jǐn)?shù)和負分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

  (3)正整數(shù),0,負整數(shù),正分?jǐn)?shù),負分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。

  ①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。

 、谟邢扌(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。

 、壅麛(shù)也能化成分?jǐn)?shù),也是有理數(shù)

  注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。

【函數(shù)知識點】相關(guān)文章:

函數(shù)知識點03-01

函數(shù)知識點(必備)03-04

常用函數(shù)圖像03-11

[優(yōu)選]常用函數(shù)圖像03-12

一次函數(shù)與正比例函數(shù)導(dǎo)學(xué)案03-03

正弦函數(shù)的性質(zhì)說課03-03

函數(shù)單調(diào)性說課10-11

常用函數(shù)圖像實用(15篇)03-12

常用函數(shù)圖像15篇[實用]03-12