考研數(shù)學(xué)歷年真題線(xiàn)性代數(shù)的考點(diǎn)總結(jié)
線(xiàn)代部分對(duì)很多備考的學(xué)子來(lái)說(shuō),最深刻感覺(jué)就是,抽象、概念多、定理多、性質(zhì)多、關(guān)系多。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)歷年真題線(xiàn)性代數(shù)的要點(diǎn),歡迎大家前來(lái)閱讀。
考研數(shù)學(xué)歷年真題線(xiàn)性代數(shù)的重點(diǎn)
►線(xiàn)性代數(shù)章節(jié)總結(jié)
第一章行列式
本章的考試重點(diǎn)是行列式的計(jì)算,考查形式有兩種:一是數(shù)值型行列式的計(jì)算,二是抽象型行列式的計(jì)算.另外數(shù)值型行列式的計(jì)算不會(huì)單獨(dú)的考大題,考選擇填空題較多,有時(shí)出現(xiàn)在大題當(dāng)中的一問(wèn)或者是在大題的處理其他問(wèn)題需要計(jì)算行列式,題目難度不是很大。
主要方法是利用行列式的性質(zhì)或者展開(kāi)定理即可。而抽象型行列式的計(jì)算主要:利用行列式的性質(zhì)、利用矩陣乘法、利用特征值、直接利用公式、利用單位陣進(jìn)行變形、利用相似關(guān)系。06、08、10、12年、13年的填空題均是抽象型的行列式計(jì)算問(wèn)題,14年選擇考了一個(gè)數(shù)值型的矩陣行列式,15、16年的數(shù)一、三的填空題考查的是一個(gè)n行列式的計(jì)算,今年數(shù)一、數(shù)二、數(shù)三這塊都沒(méi)有涉及。
第二章矩陣
本章的概念和運(yùn)算較多,而且結(jié)論比較多,但是主要以填空題、選擇題為主,另外也會(huì)結(jié)合其他章節(jié)的知識(shí)點(diǎn)考大題。本章的重點(diǎn)較多,有矩陣的乘法、矩陣的秩、逆矩陣、伴隨矩陣、初等變換以及初等矩陣等。
其中06、09、11、12年均考查的是初等變換與矩陣乘法之間的相互轉(zhuǎn)化,10年考查的是矩陣的秩,08年考的則是抽象矩陣求逆的問(wèn)題,這幾年考查的形式為小題,而13年的兩道大題均考查到了本章的知識(shí)點(diǎn),第一道題目涉及到矩陣的運(yùn)算,第二道大題則用到了矩陣的秩的相關(guān)性質(zhì)。
14的第一道大題的第二問(wèn)延續(xù)了13年第一道大題的思路,考查的仍然是矩陣乘法與線(xiàn)性方程組結(jié)合的知識(shí),但是除了這些還涉及到了矩陣的分塊。16年只有數(shù)二了矩陣等價(jià)的判斷確定參數(shù)。
第三章向量
本章是線(xiàn)代里面的重點(diǎn)也是難點(diǎn),抽象、概念與性質(zhì)結(jié)論比較多。重要的概念有向量的線(xiàn)性表出、向量組等價(jià)、線(xiàn)性相關(guān)與線(xiàn)性無(wú)關(guān)、極大線(xiàn)性無(wú)關(guān)組等。復(fù)習(xí)的時(shí)候要注意結(jié)構(gòu)和從不同角度理解。
做題重心要放在問(wèn)題轉(zhuǎn)換上面。出題方式主要以選擇與大題為主。這一章無(wú)論是大題還是小題都特別容易出考題,06年以來(lái)每年都有一道考題,不是向量組的線(xiàn)性表出就是向量組的線(xiàn)性相關(guān)性的判斷,10年還考了一道向量組秩的問(wèn)題,13年考查的則是向量組的等價(jià),14年的選擇題則考查了向量組的線(xiàn)性無(wú)關(guān)性。
15年數(shù)一第20題結(jié)合向量空間的基問(wèn)題考查了向量組等價(jià)的問(wèn)題。16年數(shù)數(shù)一、數(shù)三第21題與數(shù)二23題考的同樣的題,第二問(wèn)考向量組的線(xiàn)性表示的問(wèn)題。
第四章線(xiàn)性方程組
主要考點(diǎn)有兩個(gè):一是解的判定與解的結(jié)構(gòu)、二是求解方程?疾斓姆绞竭是比較固定,直接給方程討論解的情況、解方程或者通過(guò)其他的關(guān)系轉(zhuǎn)化為線(xiàn)性方程組、矩陣方程的形式來(lái)考。
06年以來(lái)只有11年沒(méi)有出大題,其他幾年的考題均是含參方程的求解或者是解的判定問(wèn)題,13年考查的第一道大題考查的形式不是很明顯,但也是線(xiàn)性方程組求解的問(wèn)題。14年的第一道大題就是線(xiàn)性方程組的問(wèn)題,15年選擇題考查了解的判定,數(shù)二、數(shù)三同一個(gè)大題里面考查了矩陣方程的問(wèn)題。
16年數(shù)一第20題矩陣方程解的判斷和求解,數(shù)三第20題與數(shù)二第22題直接考線(xiàn)性方程解的判斷和求解,數(shù)一第21題第二問(wèn)解矩陣方程。16年數(shù)一、數(shù)三第21題與數(shù)二第23題第二問(wèn)直接考矩陣方程解求解,基本都不需要大家做轉(zhuǎn)換。今年數(shù)一、數(shù)三第20題、數(shù)二第22題第二問(wèn)題都考了抽象的線(xiàn)性方程的求解問(wèn)題。
第五章矩陣
矩陣的特征值與特征向量,每年大題都會(huì)涉及這章的內(nèi)容?即箢}的時(shí)候較多。重點(diǎn)考查三個(gè)方面,一是特征值與特征向量的定義、性質(zhì)以及求法;二是矩陣的相似對(duì)角化問(wèn)題,三是實(shí)對(duì)稱(chēng)矩陣的性質(zhì)以及正交相似對(duì)角化的問(wèn)題。要的實(shí)對(duì)稱(chēng)矩陣的性質(zhì)與正交相似對(duì)角化問(wèn)題可以說(shuō)每年必考,09、10、11、12、13年都考了。
14考查的則是矩陣的相似對(duì)角化問(wèn)題,是以證明題的形式考查的。15年數(shù)一、數(shù)二、數(shù)三選擇題結(jié)合二次型正交化特點(diǎn)然后結(jié)合特征值定義考查;大題也是有一個(gè)題目相同,都是矩陣相似,然后對(duì)角化問(wèn)題。
16年數(shù)一數(shù)三第21題與數(shù)二第23題的第一問(wèn)以考高次冪的形式出現(xiàn),實(shí)質(zhì)就是矩陣相似對(duì)角化問(wèn)題。今年數(shù)一、數(shù)三第5、6、20、題與數(shù)二第7、8、14、22、14題都考相似、相似對(duì)角的判斷性質(zhì)。今年在這章涉及的分?jǐn)?shù)高達(dá)20多分。
第六章二次型
本章是第五章的運(yùn)用,有兩個(gè)重點(diǎn):一是化二次型為標(biāo)準(zhǔn)形;二是正定二次型。前一個(gè)重點(diǎn)主要考查大題,有兩種處理方法:配方法與正交變換法,而正交變換法是考查的重中之重。
10、11、12年均以大題的形式出現(xiàn),考查的是利用正交變換化二次型為標(biāo)準(zhǔn)形,而13年的最后一道大題考查的也是二次型的題目,但它考查的則是二次型的矩陣表示,另外也考到二次型的標(biāo)準(zhǔn)形,它是通過(guò)間接的方式求得特征值然后直接得出標(biāo)準(zhǔn)形的。后一考點(diǎn)正定二次型則以小題為主。
14則是以填空題的形式出現(xiàn)的,考查的題目為已知二次型的負(fù)慣性指數(shù)為1,讓求參數(shù)的取值范圍。15年結(jié)合對(duì)角化考了個(gè)選擇題。
16年數(shù)一結(jié)合空間解析幾何考了二次型的標(biāo)準(zhǔn)型,數(shù)三、數(shù)二正負(fù)慣性指數(shù)考察。今年數(shù)一、數(shù)三第21題與數(shù)二第3題考察的就是二次型正交對(duì)角化問(wèn)題。
綜合所述,線(xiàn)代每年的考題都比較固定,大題基本上在線(xiàn)性方程和特征值的角度出。所以建議19的同學(xué)在復(fù)習(xí)線(xiàn)代的時(shí)候從以下幾個(gè)方面去把握。
►掌握要點(diǎn):
一、把線(xiàn)代基本的概念弄清楚,線(xiàn)代的概念要從定義的角度和形式上面去把握;
二、線(xiàn)代的記號(hào)要清楚,而且能夠?qū)懗蓪?duì)應(yīng)的形式去表示;
三、重視線(xiàn)代里面知識(shí)點(diǎn)的不同角度的轉(zhuǎn)換關(guān)系,比如秩與解關(guān)系、行列式與秩關(guān)系等;
四、前期要把線(xiàn)代里面固定題型的方法弄透,比如齊次方程的基礎(chǔ)解系是怎么求的、矩陣秩怎么求等
►具體方法:
一、線(xiàn)性代數(shù)比高數(shù)要相對(duì)來(lái)說(shuō)好復(fù)習(xí),在平時(shí)大家可以多看看高數(shù),但是在大綱解析出來(lái)之后,大家就不能懈怠它了。
因?yàn)檫@是一個(gè)分界點(diǎn)時(shí)間,今后線(xiàn)性代數(shù)每天都要安排時(shí)間復(fù)習(xí),因?yàn)樾枰车墓竭是比較多的,很多同學(xué)只要隔一段時(shí)間不復(fù)習(xí),知識(shí)點(diǎn)就會(huì)忘記,建議每天復(fù)習(xí)線(xiàn)性代數(shù)的時(shí)間不低于一個(gè)小時(shí)。
二、線(xiàn)性代數(shù)在前期可能做得題目比較簡(jiǎn)單,在今后,同學(xué)們要開(kāi)始做考研難度的題目,從現(xiàn)在開(kāi)始每天做真題,隔一天做一套,做完之后多總結(jié)真題規(guī)律。
線(xiàn)性代數(shù)所有章節(jié)都緊密聯(lián)系,所以同學(xué)們?cè)趶?fù)習(xí)的時(shí)候,不要覺(jué)得沒(méi)有復(fù)習(xí)到的章節(jié)可以先放放,需要把整個(gè)線(xiàn)性代數(shù)知識(shí)點(diǎn)融會(huì)貫通,形成自己的知識(shí)框架。
三、最后是有一個(gè)小建議,同學(xué)們從現(xiàn)在開(kāi)始,可以把線(xiàn)性代數(shù)的公式和結(jié)論總結(jié)在筆記上,并且抽時(shí)間要都推導(dǎo)一遍,尤其是第二章矩陣部分,公式很多。
考研數(shù)學(xué)沖刺求極限的方法
首先對(duì)極限的總結(jié)如下。極限的保號(hào)性很重要就是說(shuō)在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致。
1、極限分為一般極限,還有個(gè)數(shù)列極限
(區(qū)別在于數(shù)列極限是發(fā)散的,是一般極限的一種)。
2、解決極限的方法如下
1)等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用但是前提是必須證明拆分后極限依然存在)e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記。(x趨近無(wú)窮的時(shí)候還原成無(wú)窮小)
2)洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)
首先他的使用有嚴(yán)格的使用前提。必須是X趨近而不是N趨近。(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件。還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的不可能是負(fù)無(wú)窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒(méi)告訴你是否可導(dǎo),直接用無(wú)疑是死路一條)必須是0比0,無(wú)窮大比無(wú)窮大!當(dāng)然還要注意分母不能為0。
洛必達(dá)法則分為三種情況
1)0比0無(wú)窮比無(wú)窮時(shí)候直接用
2)0乘以無(wú)窮,無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成1中的形式了
3)0的0次方,1的無(wú)窮次方,無(wú)窮的0次方
對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái)了,就是寫(xiě)成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,ln(x)兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0,當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候ln(x)趨近于0)
3、泰勒公式
(含有e^x的時(shí)候,尤其是含有正余旋的加減的時(shí)候要特變注意!)e^x展開(kāi),sinx展開(kāi),cos展開(kāi),ln(1+x)展開(kāi)對(duì)題目簡(jiǎn)化有很好幫助
4、面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法。
取大頭原則最大項(xiàng)除分子分母!看上去復(fù)雜處理很簡(jiǎn)單。
5、無(wú)窮小與有界函數(shù)的處理辦法
面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來(lái)了!
6、夾逼定理
(主要對(duì)付的是數(shù)列極限)這個(gè)主要是看見(jiàn)極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用
(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)
8、各項(xiàng)的拆分相加
(來(lái)消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)。
9、求左右求極限的方式
(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,Xn的極限與Xn+1的極限是一樣的,應(yīng)為極限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用。
這兩個(gè)很重要!對(duì)第一個(gè)而言是x趨近0時(shí)候的sinx與x比值。第2個(gè)就如果x趨近無(wú)窮大無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式(第二個(gè)實(shí)際上是用于函數(shù)是1的無(wú)窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用第二個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法。
就是當(dāng)趨近于無(wú)窮大時(shí)候,不同函數(shù)趨近于無(wú)窮的速度是不一樣的。x的x次方快于x!,快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫(huà)圖也能看出速率的快慢)。當(dāng)x趨近無(wú)窮的時(shí)候他們的比值的極限一眼就能看出來(lái)了
12、換元法
是一種技巧,不會(huì)對(duì)某一道題目而言就只需要換元,但是換元會(huì)夾雜其中
13、假如要算的話(huà)四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒(méi)有辦法走投無(wú)路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì)
對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性。
16、直接使用求導(dǎo)數(shù)的定義來(lái)求極限
(一般都是x趨近于0時(shí)候,在分子上f(x)加減某個(gè)值)加減f(x)的形式,看見(jiàn)了有特別注意)(當(dāng)題目中告訴你F(0)=0時(shí),f(0)的導(dǎo)數(shù)=0的時(shí)候就是暗示你一定要用導(dǎo)數(shù)定義!)
考研數(shù)學(xué)易錯(cuò)點(diǎn)分析
高等數(shù)學(xué)
1.函數(shù)在一點(diǎn)處極限存在,連續(xù),可導(dǎo),可微之間關(guān)系。對(duì)于一元函數(shù)函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點(diǎn)連續(xù),則該函數(shù)在該點(diǎn)必有極限。若函數(shù)在某點(diǎn)不連續(xù),則該函數(shù)在該點(diǎn)不一定無(wú)極限。若函數(shù)在某點(diǎn)可導(dǎo),則函數(shù)在該點(diǎn)一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點(diǎn)一定不連續(xù),可導(dǎo)與可微等價(jià)。而對(duì)于二元函數(shù),只能又可微推連續(xù)和可導(dǎo)(偏導(dǎo)都存在),其余都不成立。
2.基本初等函數(shù)與初等函數(shù)的連續(xù)性:基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
3.極值點(diǎn),拐點(diǎn)。駐點(diǎn)與極值點(diǎn)的.關(guān)系:在一元函數(shù)中,駐點(diǎn)可能是極值點(diǎn),也可能不是極值點(diǎn),而函數(shù)的極值點(diǎn)必是函數(shù)的駐點(diǎn)或?qū)?shù)不存在的點(diǎn)。注意極值點(diǎn)和拐點(diǎn)的定義一充、二充、和必要條件。
4.夾逼定理和用定積分定義求極限。這兩種方法都可以用來(lái)求和式極限,注意方法的選擇。還有夾逼定理的應(yīng)用,特別是無(wú)窮小量與有界量之積仍是無(wú)窮小量。
5.可導(dǎo)是對(duì)定義域內(nèi)的點(diǎn)而言的,處處可導(dǎo)則存在導(dǎo)函數(shù),只要一個(gè)函數(shù)在定義域內(nèi)某一點(diǎn)不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。
6.泰勒中值定理的應(yīng)用,可用于計(jì)算極限以及證明。
7.比較積分的大小。定積分比較定理的應(yīng)用(常用畫(huà)圖法),多重積分的比較,特別注意第二類(lèi)曲線(xiàn)積分,曲面積分不可直接比較大小。
8.抽象型的多元函數(shù)求導(dǎo),反函數(shù)求導(dǎo)(高階),參數(shù)方程的二階導(dǎo),以及與變限積分函數(shù)結(jié)合的求導(dǎo)
9.廣義積分和級(jí)數(shù)的斂散性的判斷。
10.介值定理和零點(diǎn)定理的應(yīng)用。關(guān)鍵在于觀(guān)察和變換所要證明等式的形式,構(gòu)造輔助函數(shù)。
11.保號(hào)性。極限的性質(zhì)中最重要的就是保號(hào)性,注意保號(hào)性的兩種形式以及成立的條件。
12.第二類(lèi)曲線(xiàn)積分和第二類(lèi)曲面積分。在求解的過(guò)程中一般會(huì)使用格林公式和高斯公式,大部分同學(xué)都會(huì)把精力關(guān)注在是否閉合,偏導(dǎo)是否連續(xù)上,而忘記了第三個(gè)條件——方向,要引起注意。線(xiàn)性代數(shù)
1、行列式的計(jì)算。行列式直接考察的概率不高,但行列式是線(xiàn)代的工具,判定系數(shù)矩陣為方陣的線(xiàn)性方程組解的情況及特征值的計(jì)算都會(huì)用到行列式的計(jì)算,故要引起重視。
2、矩陣的變換。矩陣是線(xiàn)代的研究對(duì)象,線(xiàn)性方程組、特征值與特征向量、相似對(duì)角化,二次型,其實(shí)都是在研究矩陣。一定要注意在化階梯型時(shí)只能對(duì)矩陣做行變換,不可做列變換變換。
3、向量和秩。向量和秩比較抽象,也是線(xiàn)代學(xué)習(xí)的重點(diǎn)和難點(diǎn),研究線(xiàn)性方程組解的情況其實(shí)就是在研究系數(shù)矩陣的秩,也是在研究把系數(shù)矩陣按列分塊得到的向量組的秩。
4、線(xiàn)性方程組的解。線(xiàn)性方程組是每年的必看知識(shí)點(diǎn),要熟練掌握線(xiàn)性方程組解的結(jié)構(gòu)問(wèn)題,核心是理解基礎(chǔ)解系,要能夠掌握具體方程組的數(shù)列方法,更要能熟練解決抽象型方程組,一般會(huì)轉(zhuǎn)化為系數(shù)矩陣的秩或者基礎(chǔ)解,然后解決問(wèn)題。
5、特征值與特征向量。特征值與特征向量起到承前啟后的作用,一特征值對(duì)應(yīng)的特征向量其實(shí)就是其對(duì)應(yīng)矩陣作為系數(shù)矩陣的齊次線(xiàn)性方程組的基礎(chǔ)解系,其重要應(yīng)用就是相似對(duì)角化及正交相似對(duì)角化,是后面二次型的基礎(chǔ)。
6、相似對(duì)角化,包括相似對(duì)角化及正交相似對(duì)角化。要會(huì)判斷是否可以相似對(duì)角化,及正交相似對(duì)角化時(shí),怎么施密特正交化和單位化。
7、二次型。二次型是線(xiàn)代的一個(gè)綜合型章節(jié),會(huì)用到前面的很多知識(shí)。要熟練掌握用正交變換化二次型為標(biāo)準(zhǔn)型,二次型正定的判定,及慣性指數(shù)。
8、矩陣等價(jià)及向量組等價(jià)的充要條件,矩陣等價(jià),相似,合同的條件。
概率論與數(shù)理統(tǒng)計(jì)
1、非等可能 與 等可能。若一次隨機(jī)試驗(yàn)中可能出現(xiàn)的結(jié)果有N個(gè),且所有結(jié)果出現(xiàn)的可能性都相等,則每一個(gè)基本事件的概率都是1/N;若其中某個(gè)事件A包含的結(jié)果有M個(gè),則事件A的概率為M/N。
2、互斥與對(duì)立 對(duì)立一定互斥,但互斥不一定對(duì)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B對(duì)立,則滿(mǎn)足(1)A∩B=空集;(2)P(A+B)=1。
3、互斥與獨(dú)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B獨(dú)立,則P(AB)=P(A)P(B);概率為0或者1的事件與任何事件都獨(dú)立
4、排列與組合。排列與順序有關(guān),組合與順序無(wú)關(guān),同類(lèi)相乘有序,不同類(lèi)相乘無(wú)序。
5、不可能事件與概率為零的隨機(jī)事件。 不可能事件的概率一定為零,但概率為零的隨機(jī)事件不一定是不可能事件,如連續(xù)型隨機(jī)變量在任何一點(diǎn)的概率都為0。
6、必然事件與概率為1的事件。必然事件的概率一定為1,但概率為1的隨機(jī)事件不一定是必然事件。對(duì)于一般情形,由P(A)=P(B)同樣不能推得隨機(jī)事件A等于隨機(jī)事件B。
7、條件概率。P(A|B)表示事件B發(fā)生條件下事件A發(fā)生的概率。若“B是A的子集”,則P(A|B)=1,但P(B|A)=P(B)是不對(duì)的,只有當(dāng)P(A)=1時(shí)才成立。在求二維連續(xù)型隨機(jī)變量的條件概率密度函數(shù)時(shí),一定是在邊緣概率密度函數(shù)大于零時(shí),才可使用“條件=聯(lián)合/邊緣”;反過(guò)來(lái)用此公式求聯(lián)合概率密度函數(shù)時(shí),也要保證邊緣概率密度函數(shù)大于零。
8、隨機(jī)變量概率密度函數(shù)。對(duì)于一維連續(xù)型隨機(jī)變量,用分布函數(shù)法,先討論概率為0和1的區(qū)間,然后反解,再討論,最后求導(dǎo)。對(duì)于二維隨機(jī)變量,若是連續(xù)型和離散型,用全概率公式,若是連續(xù)型和連續(xù)性同樣用分布函數(shù)法,若隨機(jī)變量是Z=X+Y型,用卷積公式。
【考研數(shù)學(xué)歷年真題線(xiàn)性代數(shù)的考點(diǎn)總結(jié)】相關(guān)文章:
考研數(shù)學(xué)如何從歷年真題看線(xiàn)性考點(diǎn)12-11
考研數(shù)學(xué)線(xiàn)性代數(shù)重要考點(diǎn)總結(jié)11-07
考研數(shù)學(xué)復(fù)習(xí)如何利用歷年真題12-07
考研數(shù)學(xué)沖刺歷年的真題命題規(guī)律12-22
考研數(shù)學(xué)歷年真題的運(yùn)用策略11-23